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Abstract: From the rediscovery of graphene in 2004, the interest in layered graphene analogs has
been exponentially growing through various fields of science. Due to their unique properties,
novel two-dimensional family of materials and especially transition metal dichalcogenides are
promising for development of advanced materials of unprecedented functions. Progress in 2D
materials synthesis paved the way for the studies on their hybridization with other materials to
create functional composites, whose electronic, physical or chemical properties can be engineered
for special applications. In this review we focused on recent progress in graphene-based and
MoS2 hybrid nanostructures. We summarized and discussed various fabrication approaches and
mentioned different 2D and 3D structures of composite materials with emphasis on their advances
for electroanalytical chemistry. The major part of this review provides a comprehensive overview of
the application of graphene-based materials and MoS2 composites in the fields of electrochemical
sensors and biosensors.
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1. Introduction

In the last decade we were witnesses of a rapid development of materials science research.
Inspired and motivated by the legendary Feynman’s lecture, many scientists are watching to “the
bottom” and focusing on the unique physicochemical and mechanical properties of nanomaterials.
In the 1960’s, a simple scotch tape technique was used to mechanically exfoliate bulk MoS2 to a
few-layers state; this also enabled the isolation of other layered materials decades later, including
graphene [1–3]. After pristine graphene isolation in 2004, burgeoning research in the field of layered 2D
materials began [2]. Nowadays, we can use several top-down and bottom-up synthetic procedures to
obtain materials with exact numbers of layers and specific properties. In addition, stacking of layered
materials on each other due to van der Waals forces can be used to engineer heterostructured solids
with unprecedented properties [4].

2D layered materials represent the thinnest (atomically thin) unsupported crystalline solids
without dangling bonds thus providing superior intralayer transport of light, heat, spin and
charge [5]. Graphene, a single layer of carbon atoms bound in hexagonal honeycomb lattice, is
a prominent member of the 2D layered materials group. It possesses several extraordinary properties
extensively described elsewhere [6]. Thevenot et al. described an electrochemical biosensor as an
integrated receptor–transducer device which provides selective quantitative or semi-quantitative
analytical information using a biological recognition element and an electrochemical transducer [7].
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The integration of graphene-based materials with an electrochemical transducer provides several
advantages, such as increased conductivity, electron transfer rate and/or increased surface-to-volume
ratio of transducer thanks to graphene’s ultrathin structure [8–11]. Further, graphene’s ability to be
functionalized with heteroatoms, various molecules or functional groups is part of the superior property
of this unique material. The electronic and chemical properties of graphene-based materials are highly
influenced by the content of oxygen functional groups. Graphene oxide (GO) and reduced graphene
oxide (rGO), as oxygenated monolayers of carbon atoms are widely applied in bioelectronics and
biosensors due to higher hydrophilicity (compared to graphene) and the presence of oxygen-containing
groups, which enable broad possibilities for functionalization. It is worth noting that conductivity of
graphene decreases with increasing oxygen content, thus a material of optimal C/O ratio is needed for
individual applications.

Transition metal dichalcogenides (TMDs) are graphene analogs formed by stacking of
sulfur-transition metal–sulfur sheets through van der Waals forces. As a consequence, individual
layers can be exfoliated from bulk material to single-layer form. Molybdenum disulfide (MoS2)
is a typical member of TMDs. It is composed of a stack of hexagonal layers of Mo atoms
sandwiched between two layers of S atoms and possesses p-type semiconducting properties with
poor electrical conductivity. MoS2 has two main advantages in electrochemical (bio)sensors. Firstly,
it provides additional electrochemically active sites. Secondly, it can improve transducer properties by
accommodating additional elements such as metal nanoparticles or biorecognition (e.g., antibodies,
enzymes, aptamers) [12]. Similar to graphene, MoS2 possesses different affinities towards ssDNA
and dsDNA [13]. Such behavior enables integration of MoS2 with broadly used aptamer technology.
However, 2D MoS2 still suffers from several drawbacks. Restacking of 2D materials due high surface
energy can decrease the amount of electrochemically active sites, and poor electrical conductivity limits
its use as transduction enhancer. Therefore, the hybridization of 2D MoS2 with highly conductive
materials such as graphene can help to overcome mentioned drawbacks and can result in materials
with fascinating electroanalytical properties.

Several reviews showing the use of MoS2 or the group of TMDs in the field of electrochemical
(bio)sensors have been published [14–17], however here we focus strictly on graphene-based composite
materials with MoS2 (Gr/MoS2). We briefly summarize the most important synthetic procedures
providing mentioned material. The vast majority of this review focuses on the electroanalytical
performance of devices and different state-of-art electrochemical biosensing approaches benefiting
from the unique properties of graphene/MoS2 composites.

2. Synthesis of Gr/2D MoS2 Composites

Many different methods have been developed for fabrication of Gr/MoS2 hybrid materials of
exact properties such as thickness, morphology, number of electroactive sites. Desired properties of
materials correspond with their application purposes and for this reason a significant part of this
review is focused on Gr/MoS2 synthesis.

2.1. Hydrothermal and Solvothermal Synthesis

These methods are based on growth of MoS2 structures over graphene/GO/rGO support. MoS2

molecular precursors (e.g., Na2MoO4 and thioacetamide) are dissolved in aqueous (hydrothermal) or
organic solvents (solvothermal synthesis) and they are thermally treated in stainless steel reactors for an
exact time and at a specific temperature above boiling point of solvent. Products of various properties can
be obtained by optimization of heating temperature, reaction time and presence of additional compounds
such as surfactants. Advantages of these methods are high yields, simple procedures and relatively low
cost of equipment. However, the biggest drawback is low control of the synthesis process.

A few-layer MoS2 hybrid with GO was synthesized by Yu et al. [18]. They used N-methylimidazole
water-soluble pillar [5] arene as a surfactant to improve distribution of MoS2 sheets on commercial
GO. They heated a solution containing 7 mg·mL−1 of GO, 1.5 mmol Na2MoO4, 7.5 mmol L-cysteine
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dissolved in 40 mL deionized water at 240 ◦C for 24 h. The freeze-dried product was annealed in a
tube furnace at 500 ◦C for 2 h in flow of 10% hydrogen in nitrogen. This approach provided laterally
(in-plane) stacked MoS2 on Gr/GO/rGO substrates as reported in other publications with alternative
surfactants or without surfactant [19–21]. On the contrary, without surfactant, MoS2 vertically
stacked on electrochemically exfoliated graphite (EG) as a substrate was reported by Wang et al. [22].
They mixed EG with (NH4)2MoS4 in weight ratios from 1:1 to 1:13 in the presence of hydrazine and
treated these mixtures in stainless steel reactors at 200 ◦C for 15 h and obtained Gr/MoS2 with 95 wt%
MoS2 content. The product of this reported synthesis can be seen in Figure 1A,B. Hydrothermal growth
of MoS2 on GO in the presence of polyvinylpyrrolidone (PVP) and oxalate dihydrate was reported
by Teng et al. [23]. As a MoS2 precursors, they used ammonium paramolybdate (NH4)6Mo7O24 and
thiourea and heated their mixture with GO at 180 ◦C for 12 h in 100 mL autoclave. Then the material
was annealed at 800 ◦C in argon atmosphere to obtain rGO/MoS2. Finally, they covered rGO/MoS2

with amorphous carbon using chemical vapor deposition (CVD) to enhance charge transfer through
composite (Figure 1C). Hydrothermal and solvothermal methods are able to fabricate graphene and
MoS2 hybrid materials with various 2D and 3D structures. As reported Sun et al., just by changing
the rGO amount in the reaction, 3D assembly of MoS2 can be tuned from nanoflowers to crosslinked
nanosheets laterally stacked on GO [24]. They used mixed solvothermal synthesis in an ethanol and
octylamine mixture. Mixed solvents of deionized water and dimethylformamide (DMF) in a 1:2 ratio
were used by Zhao et al. [25]. They observed the effect of NH3·H2O concentration in the reaction reactor
on the final product and compared the results with solution with pH adjusted with NaOH. When
NH3·H2O was added to reaction mixture, the 3D porous framework constructed by interconnected
lamellar nanosheets of Gr/MoS2 hydrogel became more homogeneous with pore sizes from hundreds
of nanometers to micrometers. In addition, the presence of NH3·H2O resulted in graphene N-doping.
Solvothermal and hydrothermal approaches were also used to modify the 1D carbon fiber, carbon
nanotubes or macroscopic carbon paper [26–29]. MoS2 stacked on carbon nanofiber as was reported by
Li et al. can be seen in Figure 1D,E.
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Figure 1. (A) TEM images and (B) HRTEM images of vertically aligned exfolliated graphite
and MoS2 composite. From Wang et al. [22]. (C) Schematic illustration of the formation of the
graphene/MoS2/amorphous carbon composite. From Teng et al. [23]. (D) FE-SEM and (E) TEM images
of the MoS2 and carbon nanofiber composite. The insert shows the TEM image of a single MoS2 and
carbon nanofiber nanostructure. From Li et al. [29].

2.2. Thermal and Chemical Reduction

These methods of Gr/MoS2 synthesis are even more facile than hydrothermal and solvothermal ones.
In case of thermal reduction, the thermal energy is used to convert MoS2 molecular precursors to MoS2

solid materials which are stuck on graphene-based support. In case of chemical reduction, chemical
reductants are used to reduce MoS2 precursors to 2D MoS2. Although these methods can easily produce
Gr/MoS2 in gram-scale, the main drawback is the control over synthesis process and that the properties
of the product can hardly be predicted. The common procedure for Gr/MoS2 fabrication using thermal
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reduction is to dissolve the Mo salt with S source to create homogeneous solution which is subsequently
dried and thermally treated at several hundred ◦C in inert atmosphere. Srivastava et al. fabricated MoS2

and graphene oxide composite by thermal exfoliation and reduction [30]. They ground ammonium
thiomolybdate and graphite oxide and treated the powder for 6 h at 400 ◦C and finally for 15 min at
1200 ◦C under flow of nitrogen gas. Koroteev et al. fabricated Gr/MoS2 composite by impregnation of
graphene with Mo-containing compound followed by thermal decomposition [31]. They dispersed
graphene flakes in water–ethanol mixed solution with addition of ammonium thiomolybdate. Before
thermal conversion (500–800 ◦C for 1 h) of MoS3 to MoS2 at vacuum, thiomolybdate was decomposed
using HCl and dried at air atmosphere. Instead of thermal reduction in inert gas or vacuum, synthesis
in the presence of CS2 results in S-doping of graphene-based materials (Figure 2A) [32]. Freeze-drying
of graphene-based materials with MoS2 precursors provides benefits of sponge-like 3D products before
thermal reduction [33]. As Jiang et al. mentioned, these 3D structures can help to prevent graphene or
MoS2 restacking problems during synthesis and further processing [34]. They fabricated Gr/MoS2 of
stable 3D structure using a combination of hydrothermal and chemical reduction methods. Firstly,
they fabricated monolayer MoS2 and graphene oxide. They mixed GO and MoS2 in isopropanol/water
solution where functional groups of GO attracted MoS2. The solution was hydrothermally treated
to create porous 3D architecture. Subsequently the composite, or more precisely GO, was reduced
using hydrazine. Ji et al. fabricated rGO/MoS2 by dry ball-milling of MoS2 and bulk GO at a ratio
of 1:1 for 5 h [35]. The product was subsequently chemically reduced with hydrazine. Wang et al.
used hydrazine to reduce (NH4)2MoS4 too. In addition, they used cetyltrimethylammonium bromide
(CTAB) as cationic surfactant to promote interaction between negatively charged GO and MoS4

2− [36].

2.3. Microwave and Electrochemical Synthesis

Microwave synthesis is an effective method for Gr/MoS2 fabrication and represents an alternative
to thermal methods. It can induce rapid decomposition of MoS2 precursors and hence lowers the
energy consumption and does not need any chemical reductant. Effective one-pot microwave-assisted
solvothermal synthesis was reported by Li et al. [37]. They dispersed liquid-exfoliated graphene
(0.71 mg·mL−1) in N-methylpyrrolidone with addition of 1-dodecanethiol, Na2MoO4·2H2O and
thiourea. Such solution was heated in a specialized glass reactor using microwave at 200 ◦C for 12 h.
Post-synthesis treatment in tube furnace at 800 ◦C for 2 h was used to remove sulfur residues and
improve product crystallinity (composite can be seen in Figure 2B,C). Xiang et al. decorated chemical
vapor deposited graphene foam with MoS2 nanoflowers using a microwave reactor [38]. More precisely,
they irradiated an aqueous solution of Na2MoO4·2H2O, thioacetamide and graphene foam in glass
tube and kept it at 180 ◦C for 12 h. Far shorter irradiation of the reaction mixture was reported by
Li et al. [39]. They kept a solution of GO, phosphomolybdic acid hydrate and thioacetamide adjusted
to pH 7 at 150 ◦C and 150 W for 10 min.

The electrochemical approach to fabricate Gr/MoS2 composites represents a low-cost and fast
method without the use of toxic compounds. Further, it seems to be the most suitable approach for
application in electrochemical (bio)sensors since they can be fabricated directly by the electrochemists
who are enabled to optimize product properties by using deposition conditions. Fabrication of
Gr/MoS2-modified electrode without the need of any post-fabrication treatment was reported by
Li et al. [40]. Firstly, they deposited rGO layer on fluorine-doped tin oxide (FTO) by electrochemical
reduction of GO from aqueous solution at −1.2 V. MoS2 nanoparticles were subsequently deposited on
the conductive surface of rGO layer through electrochemical deposition of ammonium thiomolybdate
in KCl electrolyte at −1.0 V for 5 min. Wan et al. reported constant current deposition of vertical
MoS2 structures over a CVD-covered graphene electrode [41]. They used a two-electrode system and
(NH4)2MoS4 as an electrolyte. Two-electron reduction occurred at the carbon rod cathode which was
covered with MoS2. On the graphene anode a thin film of MoS3 was oxidatively electrodeposited
(Figure 2D). A highly crystalline Gr/MoS2-covered anode was obtained by treating anode in quartz
tube at 800 ◦C.
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2.4. Chemical Vapor Deposition

CVD is an effective method of high quality Gr/MoS2 composite fabrication which provides excellent
control over the fabrication process. In general, the substrate (often metal) is exposed in a vacuum
chamber to gaseous precursors which react and/or decompose to create the desired deposited material,
and carrier gas removes byproducts. CVD of graphene is a well-established technique, however it still
faces many problems hampering the further use of graphene in fundamental research and practice [42].
In addition, it requires expensive equipment and the process needs to be stringently coordinated,
thus it seems to be more suitable for FET-based (bio)sensors [43]. Fabrication of vertically aligned
MoS2 nanosheets on graphene using CVD was reported by Gnanasecar et al. [44]. They fabricated
graphene using atmospheric pressure CVD of acetylene on Cu foil, and the graphene was transferred
onto a SiO2 wafer using poly(methyl methacrylate) (PMMA) film. Freestanding graphene on wafer
was obtained by chemical etching of Cu and PMMA film. For MoS2 structures growing on graphene
they used a home-made two-zone CVD reactor (Figure 2E). MoO3 and sulfur precursors were placed
in separately controlled heating zones under the flow of Ar. The heating zone with MoO3 was ramped
up to 650 ◦C (15 ◦C·min−1), then slowly heated to 750 ◦C (2 ◦C·min−1) and kept at 750 ◦C for 10 min.
For sulfurization, the sulfur zone was rapidly heated to 200 ◦C (20 ◦C·min−1). Biroju et al. used the
mechanical transfer method of MoS2 on graphene [45]. They separately fabricated large area graphene
and MoS2 using CVD and MoS2 on SiO2 wafer was uniformly pressed on graphene using a hydraulic
pressurizer. Chen et al. fabricated MoSx composite with CVD graphene by dispersing graphene in
(NH4)2MoS4 DMF solution and treating it in a quartz tube furnace at 120 ◦C and 500 ◦C for 1 h [46].

Molecules 2019, 24, x FOR PEER REVIEW 5 of 14 

 

2.4. Chemical Vapor Deposition 

CVD is an effective method of high quality Gr/MoS2 composite fabrication which provides 
excellent control over the fabrication process. In general, the substrate (often metal) is exposed in a 
vacuum chamber to gaseous precursors which react and/or decompose to create the desired 
deposited material, and carrier gas removes byproducts. CVD of graphene is a well-established 
technique, however it still faces many problems hampering the further use of graphene in 
fundamental research and practice [42]. In addition, it requires expensive equipment and the process 
needs to be stringently coordinated, thus it seems to be more suitable for FET-based (bio)sensors [43]. 
Fabrication of vertically aligned MoS2 nanosheets on graphene using CVD was reported by 
Gnanasecar et al. [44]. They fabricated graphene using atmospheric pressure CVD of acetylene on Cu 
foil, and the graphene was transferred onto a SiO2 wafer using poly(methyl methacrylate) (PMMA) 
film. Freestanding graphene on wafer was obtained by chemical etching of Cu and PMMA film. For 
MoS2 structures growing on graphene they used a home-made two-zone CVD reactor (Figure 2E). 
MoO3 and sulfur precursors were placed in separately controlled heating zones under the flow of Ar. 
The heating zone with MoO3 was ramped up to 650 °C (15 °C∙min−1), then slowly heated to 750 °C (2 
°C∙min−1) and kept at 750 °C for 10 min. For sulfurization, the sulfur zone was rapidly heated to 200 
°C (20 °C∙min−1). Biroju et al. used the mechanical transfer method of MoS2 on graphene [45]. They 
separately fabricated large area graphene and MoS2 using CVD and MoS2 on SiO2 wafer was 
uniformly pressed on graphene using a hydraulic pressurizer. Chen et al. fabricated MoSx composite 
with CVD graphene by dispersing graphene in (NH4)2MoS4 DMF solution and treating it in a quartz 
tube furnace at 120 °C and 500 °C for 1 h [46]. 

 

Figure 2. (A) Schematic representation showing synthesis of S-doped reduced graphene oxide 
(rGO)/MoS2 composite. From Wang et al. [32]. (B) Low-magnification and (C) high-magnification 
TEM images of rGO/MoS2 composite fabricated by one-pot microwave synthesis. From Li et al. [37]. 
(D) Schematic diagram of the chemical bath deposition of MoS2 on graphene as the anode and carbon 
rod as the cathode. From Wan et al. [41]. (E) Schematic of the two-zone chemical vapor deposition 
(CVD) furnace utilized for the synthesis of vertical MoS2 on graphene. From Gnanasekar et al. [44]. 
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Figure 2. (A) Schematic representation showing synthesis of S-doped reduced graphene oxide
(rGO)/MoS2 composite. From Wang et al. [32]. (B) Low-magnification and (C) high-magnification TEM
images of rGO/MoS2 composite fabricated by one-pot microwave synthesis. From Li et al. [37]. (D)
Schematic diagram of the chemical bath deposition of MoS2 on graphene as the anode and carbon rod
as the cathode. From Wan et al. [41]. (E) Schematic of the two-zone chemical vapor deposition (CVD)
furnace utilized for the synthesis of vertical MoS2 on graphene. From Gnanasekar et al. [44].

2.5. Alternative Approaches

Some alternative approaches which cannot be placed within above-mentioned categories were
developed. A very facile method for Gr/MoS2 fabrication was developed by Kumar et al. [47]. First,
they prepared graphite oxide solution by continuous magnetic stirring and sonication of graphite
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oxide in ethanol. After addition of bulk MoS2 into graphite oxide solution, ethanol was evaporated.
Dry powder was treated with microwave irradiation (800 W, 130 s) for complete exfoliation of graphite
oxide. Simple mixing of GO solution with MoS2 nanoparticles and annealing at 400 ◦C was reported
by Venkatesan et al. [48].

3. Applications of Gr/2D MoS2 Composites

Graphene-based materials and MoS2 composites possess specific properties depending on their
morphology and structure. The properties are mostly influenced by number of MoS2 layers, graphene
degree of oxidation, composite plane or 3D structure. Thus they represent versatile materials, which
were recognized as promising for several fields of science. Among others, electrochemical sensors and
biosensors can benefit from Gr/MoS2 advances by improved analytical performance such as higher
sensitivity, increased analyte selectivity, better peak-to-peak separation and/or a broader linear dynamic
range. In this chapter, electroanalytical devices benefiting from Gr/MoS2 properties are divided into
sensors and biosensors applications, which directly reduce/oxidize analyte and which use biological
recognition elements, respectively.

3.1. Gr/2D MoS2 Composites in Electrochemical Sensors

Electrochemistry represents a facile technique to detect small molecules with high sensitivity, low
detection limits, reasonable cost and short time consumption. Uric acid (UA), dopamine (DA) and
ascorbic acid (AA) are small biological molecules, which are presented in human physiological fluids
and can help to determine human states, including several diseases. However their simultaneous
determination is still challenging due to electrode fouling and their oxidation at almost the same
potentials. The improvement of electrode sensitivity towards uric acid (UA), dopamine (DA) and
ascorbic acid (AA) and differential pulse voltammetry (DPV) peak-to-peak separation via electrode
modification with reduced graphene oxide composite with MoS2 was demonstrated by Xing et al. [49].
They showed that porous nanostructure of the composite increased specific surface of the electrode
by nearly 4-fold compared with MoS2 modification, provided more active sites for target molecules
adsorption and as a result improved electrode catalytic performance. The same conclusions were
also made by Huang et al. in case of acetaminophen sensing in the presence of AA and DA with a
similar electrode [50]. Direct oxidation of nitrite ions on conventional electrodes is still challenging
due to the high overpotentials required. Thus, different modified electrodes were reported for nitrite
sensing [51–54]. Gr/MoS2 can be used to decrease nitrite ions reduction potentials to +0.8 V vs.
Ag/AgCl and increase sensitivity (Figure 3A,B) [55]. Three-dimensional nanostructured graphene,
MoS2 flowers and multiwall carbon nanotubes (MWCNTs) composite was previously used for
sensitive enzymeless determination of hydrogen peroxide [56]. An amperometric sensor based on
modified glassy carbon electrode (GCE) showed excellent electrocatalytic activity towards reduction
of H2O2, with a detection limit (LOD) of 0.83 µM, linear range of 5 µM–145 µM and sensitivity of
5.184 µA·µM·cm−2. Direct reduction of methyl parathion (its nitro functional group) was reported [57].
Methyl parathion belongs to the group of organophosphorus pesticides which generate concerns
in food safety, water management and public health. Hydrothermally fabricated graphene MoS2

nanocomposite was used to modify GCE, and amperometry at −0.6 V vs. Ag/AgCl was used to
compare the performance of bare, MoS2-modified and graphene-modified electrodes. A sensor was
shown with parameters competitive to enzyme based detection—LOD 3.2 nM and linear dynamic
range from 10 nM to 1.9 mM [58]. Good claimed selectivity of the sensor was ascribed to π-stacking
of methyl parathion phenyl group on Gr/MoS2 composite, however discrimination was not possible
between parathion and methyl parathion. Good performance of the sensor in spiked real fruit and
vegetable samples was shown. A flexible electrochemical sensor of folic acid (FA) based on MoS2

nanosheet-modified rGO paper was designed by Kiransan et al. [59]. Their electrodes were fabricated
by a two-step process. At first, the vacuum filtration of MoS2 and GO solution through polycarbonate
membrane created a free-standing film of composite. Secondly, the film was reduced in HI solution
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for 1 h and then they cut the membrane to pieces of 5 × 10 mm. To obtain the best performance they
optimized the ratio of GO and MoS2 in filtrated solution, finding that a 3:1 ratio was optimal. Oxidation
of FA in 0.1 M PBS buffer (pH 7) took place at +0.73 mV vs. Ag/AgCl (Figure 3C). Amperometric
detection resulted in LOD of 37 nM and the sensor showed good selectivity even in the serum and the
presence of 1.0 mM AA and 0.5 mM UA (Figure 3D).
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Figure 3. (A) Cyclic voltammetry CV curves of the glassy carbon electrode (GCE), GCE modified with
rGO, MoS2 and rGO/MoS2 in 0.1 M PBS (pH = 7.0) with 500 µM nitrite. (B) CV curves of the GCE
modified with rGO/MoS2 in 0.1 M PBS (pH = 7.0) under different concentrations of nitrite: 100, 300,
500, 700, and 1000 µM (scan rate: 50 mV·s−1). Both from Hu et al. [55]. (C) CV curves of rGO (black)
and rGO/MoS2 paper electrodes in 0.1 M PBS (pH 7.0) with (blue) and without (red) 2.0 mM folic acid
(FA). Scan rate: 50 mV·s−1. Inset: Structure of FA. (D) The CVs of the same concentrations of ascorbic
acid (AA, blue line), uric acid (UA, green line) and FA (black line) and 1.0 mM AA, 0.5 mM UA and
0.5 mM FA containing solution (red line) at the rGO/MoS2 composite paper electrode in pH 7.0 PBS.
Scan rate: 50 mV· s−1. Both from Kiransan et al. [59].

3.2. Gr/2D MoS2 Composites in Electrochemical Biosensors

Good biocompatibility of Gr/2D MoS2 materials has led many researchers to modify these materials
with biological macromolecules such as nucleic acid aptamers, enzymes or antibodies. In case of
enzymes, it was demonstrated that layered 3D structures help to increase enzymes’ stability and
protect them from loss of activity. Several mediator-free enzyme-based biosensors benefiting from
Gr/MoS2 properties were described. Among others, Yoon et al. designed the H2O2 biosensor based
on myoglobin (Mb) redox activity [60]. In detail, they encapsulated MoS2 nanoparticles within GO
and used this composite material to modify gold electrodes via chemical linker (the principle can be
seen in Figure 4A). Mb is able to mediate electrochemical reduction of H2O2 due to the presence of
iron within its core [61]. They compared the performance of the designed electrode with Mb/MoS2

and Mb/GO. Mb/GO/MoS2 showed an enhanced electrochemical signal even in the presence of AA,
NaNO2 and NaHCO3. The amperometric read-out at −0.3 V vs. Ag/AgCl reached a LOD of 20 nM
H2O2. The same approach with immobilization of Mb was used for biosensing of nitric oxide and
nitrite ions [62,63]. Alternatively, hemoglobin can be used instead of Mb as showed by Liu et al. [64].
Jeong et al. compared the performance of planar Gr/MoS2 and Gr/MoS2 with 3D structure as enzymatic
glucose biosensors [65]. They immobilized glucose oxidase (GOx) on glassy carbon electrodes modified
with the mentioned composites and evaluated them with amperometric detection using flow-injection
analysis. In general, glucose enzymatic biosensors sense H2O2 generated by oxidation of glucose
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by GOx. They summarized that the 3D-based biosensor possessed considerably higher sensitivity
(3.36 µA·mM−1) than a biosensor using the same but planar material (0.11 µA·mM−1). At the H2O2

oxidation potential of −0.45 V the minimal influence of common interferences such as AA, DA or
UA was observed. Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron
buds for biosensing of lactate and sensing of glucose in sweat, as reported by Wang et al. [66]. In this
approach Cu buds enabled direct oxidation of glucose at +0.42 V vs. saturated calomel electrode (SCE)
as was reported before [67,68]. For glucose, they reached LOD of 500 nM and linear dynamic range of
5–1775 µM with minimal influence of ions abundant in sweat such as Na+, Cl−, K+, Ca2+ and Mg2+.
Further, they modified the mentioned electrode with lactate oxidase. Lactate oxidase is able to convert
lactic acid to pyruvate and H2O2, which enabled the indirect quantification of the concentration of
lactic acid. LOD of 0.1 µM was obtained for lactate but as authors point out, low detection limits are
not mandatory for sweat analysis and stability, selectivity and wide linear range are preferred. Total
concentration of phenolic compounds in red wine samples based on carbon screen-printed electrode
modified with graphene quantum dots, MoS2 and Trametes versicolor laccase (TvL) was reported by
Vasilescu et al. (Figure 4B) [69].

Apart from nucleic acid hybridization sensors, electrochemical signal transduction is highly
suitable for detection of aptamer–protein interaction. Aptamers are single-stranded nucleic acid (DNA
or RNA) which possess high affinity to target molecules, comparable to or even higher than antibodies.
In comparison with antibodies, which are still taken as a golden standard in biorecognition elements,
aptamers are about 10-times smaller, more thermally stable and cheaper. Since aptamers are selected
in vivo, their sequence can be selected to preserve desired function even in non-physiological pH
or high salt concentration (important for electroanalysis). Since no animals are used for aptamer
production, molecules which do not cause immune response such as toxic compounds or small
molecules such as ions can be used to produce aptamers. In response to these facts, aptamers are
frequently used as biorecognition elements in many different analytical applications [70]. Among
others, electrochemical aptasensing is rapidly developing and covers several fields such as food safety,
environmental hazards, medical diagnosis, etc.

A voltammetric lipopolysaccharides (LPS) aptasensor benefiting from advanced properties of
graphene and MoS2 composite was reported by Yuan et al. [71]. They used large specific surface of
polyethyleneimine (PEI) functionalized rGO and MoS2 composite (PEI–rGO–MoS2) as a carrier for an
electrochemical label—toluidine blue (TB). More precisely, they modified GCE with PEI–rGO–MoS2

and loaded it with TB. Next, they used gold nanoparticles (AuNPs) to attach thiolated LPS aptamer
on the electrode and used bovine serum albumin (BSA) to block the electrode against unspecified
binding of LPS. In the presence of LPS in analyzed samples the TB reduction signal (−0.35 V vs.
SCE) gradually decreased. The response of the aptasensor linearly decreased with logarithm of LPS
concentration in the range of 5.0 × 10−5 ng·mL−1 to 2.0 × 102 ng·mL−1 with the LOD of 3.01 × 10−5

ng·mL−1. Their sensor showed good performance in the presence of common serum interferents such
as BSA, AA, DA or glucose and showed recoveries in the range 101–103% in spiked serum samples.
Aflatoxin B1 (AFB1) was target of the aptasensor designed by Geleta et al. [72]. They synthesized rGO,
MoS2 and polyaniline (PANI) composite covered with chitosan (CS). GCE modified as mentioned was
used to immobilize thiolated AFB1 aptamer via AuNPs (Figure 4C). After aptamer immobilization, the
surface excessive active sites were blocked with 6-mercapto-1-hexanol. They used [Fe(CN)6]3−/4− as an
electrochemical reporter and observed a decrease of its DPV signal with increasing concentration of
AFB1 in analyzed samples. They obtained a remarkable LOD of 0.002 fg·mL−1 and a calibration curve
with a linear range of 0.01 fg·mL−1 to 1.0 fg·mL−1 (Figure 4D).

Human papillomavirus (HPV) aptasensor was reported by Chekin et al. [73]. HPV is
non-enveloped dsDNA virus that infects the epithelium and is associated with oncogenic risk. Since
this virus is essential for the development of cervical cancer it is accepted as its molecular biomarker.
They decided to detect HPV-16 via its L1 capsid protein. They drop-casted porous rGO on GCE and
subsequently drop-casted MoS2 on rGO-modified GCE. GCE/rGO/MoS2 electrode was chemically
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functionalized using physisorption of thiol ligands (mixture of PEG and 11-mercaptoundecanoic acid
(MUA)). NH2 functionalized L1 protein aptamer was subsequently immobilized on the electrode
using carbodiimide chemistry (EDC/NHS). They used DPV to detect (Fe(CN)6)4− as a mediator whose
signal showed a constant decrease in the L1 protein concentration range of 0.2–2ng·mL−1 and LOD
0.1–2ng·mL−1. rGO/MoS2 nanosheets and Fe3O4 NPs nanozyme synergic catalytic activity was used
to amplify the signal of a MCF-7 cytosensor [74]. They used rGO/MoS2 composite for electrode
modification due to its high surface area, fast electron transfer and good biocompatibility. For MCF-7
cells preconcentration, they used aptamer-modified superparamagnetic Fe3O4 nanoparticles which
were attracted by including attached cells to the surface of GCE via magnetic field (Figure 4E). Both
materials, rGO/MoS2 and Fe3O4 NPs, possessed a synergetic effect in ability to reduce H2O2, and thus
mediate 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation (+0.3 V vs. SCE). TMB oxidation product was
analyzed using DPV and the concentration of MCF-7 cells in samples was reported. They obtained a
LOD of 6 cells·mL−1 and a linear range over 15–45 cells·mL−1 (Figure 4F).
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Figure 4. (A) Schematic of electrochemical biosensors composed of myoglobin (Mb) and of GO/MoS2

with electrochemical enhancement for H2O2 detection. From Yoon et al. [60]. (B) Schematic
representation of construction and the detection principle of screen-printed carbon electrode
modified with graphene quantum dots, MoS2 and laccase as a caffeic acid biosensor. From
Vasilescu et al. [69]. (C) Schematic representation of the reduced graphene oxide/molybdenum
disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1

fabrication. (D) Differential pulse voltammetry (DPV) responses of the aptasensor after 20 min
incubation with 0.0100, 0.0156, 0.0313, 0.0625, 0.125, and 1.00 fg·mL−1 AFB1. Both from Geleta et al. [72].
(E) Schematic illustration of magnetic beads assisted bi-nanozyme signal amplification for detection of
circulating tumor cells. (F) DPV responses to MCF-7/aptamer/Fe3O4NPs/rGO/MoS2/GCE-fabricated
cytosensor after capturing different concentrations of MCF-7 cells from (a) to (h): 0, 15, 20, 25, 30, 35,
40 and 45 cells·mL−1 in 0.01M PBS (pH=5.0) with 0.1mM of H2O2 and 0.2mM of TMB. Both from
Tian et al. [74].
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4. Conclusions

In summary, graphene-based materials have attracted great interest from the scientific community.
Various fabrication methods which produce composites were developed in efforts to control their
structure. The research in the field of graphene-based material composites with MoS2 is in its starting
phase and our understanding of the fundamental connection between composite structures and
their properties is limited. Methods mentioned in this review bring advantages but still face several
challenges and their further development is needed.

Benefits of such composite materials for electroanalytical chemistry were demonstrated in many
publications and are promising for further development in this field. Firstly, graphene-based material
composites with MoS2 possess high electrocatalytic activity, good electric conductivity and high
concentrations of electroactive sites. Such properties enable direct oxidation/reduction of various
electroactive compounds, bringing higher sensitivity, selectivity and better peak-to-peak separation in
complex samples. Rich functionalities of composites provide possibilities of biorecognition element
immobilization. Increased electrode surfaces, often with rich 3D structures enable stable and efficient
immobilization of enzymes and promote the development of third generation electrochemical biosensors
independent of redox mediators or oxygen. The protective environment of graphene-based material
composites with MoS2 provides immobilized enzymes and antibodies protection from degradation and
helps to retain their function. Regarding aptamers, here such biosensors take advantage of increased
surface and enhance the electrochemical signal of the reporter.

Gr/MoS2 was shown to be a beneficial material with several attractive properties. However, the
aim of all advanced materials should be application in the real world. Here, we see the possibilities for
integration of Gr/MoS2 to currently developed platforms such as screen-printed electrodes or those
currently being developed, such as promising paper-based electrodes.
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