Supplementary materials

Polyamines disrupt the KaiABC oscillator by inducing protein denaturation

Jinkui Li^{1,2}, Lingya Zhang², Junwen Xiong^{1,3}, Xiyao Cheng^{1,3}, Yongqi Huang^{1,3}, Zhengding Su^{1,3}, Ming Yi^{4,*}, Sen Liu^{1,2,3,*}

¹Key Laboratory of Fermentation Engineering (HBUT, Ministry of Education) and National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China

² Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College of China Three Gorges University, Yichang 443002, China

³ Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
⁴ School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

* Correspondence: senliu.ctgu@gmail.com (S.L.); mingyi@cug.edu.cn (M.Y.)

Figure S1. Polyamines caused the drop of solutions' pH values and protein denature after long-time incubation with Kai proteins. The samples without extra polyamines were controls. The total protein amounts of each lane were same. (A) The SDS-PAGE gels showed that the Kai proteins became less or invisible in the supernatants after being incubated for 72 hours with 10 mM of polyamines. Kai proteins became less or invisible in the supernatants. The additional protein bands at ~ 15 kDa were likely from the degradation of KaiA. (B) The pH values of the mixtures of Kai proteins and 10 mM polyamines dropped significantly after long-time incubation. The protein names are noted above the top lines.

Figure S2. The electrostatic potentials of the protein surfaces were calculated with APBS (v2.1) in Pymol with the default settings. For each Kai protein, only a monomer in the homo-oligomers was shown. The Tau-K18 protein was not shown because its apo structure was not available. The PDB IDs were: 14-3-3, 3RDH; BSA, 3V03; KaiA, 5C5E; KaiB, 1R5P; KaiC, 2GBL.

Table S1.	The sequences a	and cloning	information	of the prote	eins tested in	this study.	

Protein	Source	DNA coding sequence	Protein sequence	Restriction sites	Plasmid
KaiA	Svnechoc	ctctcgcaaattgcaatctgcatttgggtggaatcgacggcaattttgcaggattgccagcggg	GPLGSLSOIAICIWVESTAILODCO	BamH I	pGEX-6P-1
	OCCUS SD.	cectetcegcceatcectatcaactccaagtctetgagtctegceaaatectcttegagtatec	RALSADRYOLOVCESGEMLLEY	Not I	1 -
	PCC	ccaaacccatcgtgaccaaatcgactgcctgattttagtggcagccaatcccagcttcagggc	AOTHRDOIDCLILVAANPSFRAV		
	7942	agtigticagcagctctgctttgagggagtggtggtggtaccagcgattgtcgtaggcgatcgcga	VOOLCFEGVVVPAIVVGDRDSED		
		cagtgaggatcccgatgaaccagccaaagaacagctctatcacagcgctgaactgcacctc	PDEPAKEOLYHSAELHLGIHOLE		
		getatccatcagetcgagcaattgccctaccaagttgatgctgcactggctgaatttctgcgctt	OLPYOVDAALAEFLRLAPVETM		
			ADHIMLMGANHDPELSSOORDL		
		gctatcgagccagcagcgggacctcgctcagcgactacaagagcgcctaggctatctcggg	AORLOERLGYLGVYYKRDPDRF		
		etctactacaagcgtgatcccgatcgctttctgcgcaacctaccgcctacgaaagccaaaag	LRNLPAYESOKLHOAMOTSYREI		
		ctgcaccaagcgatgcagactagctatcgtgaaatcgttttgagctatttttcgccgaatagcaa	VLSYFSPNSNLNOSIDNFVNMAFF		
		cctcaaccagagcattgacaacttcgtcaacatggctttcttt	ADVPVTKVVEIHMELMDEFAKK		
		tgetagaaattcacatggaggtgagggaggttggcgaggttggcgagggggggg	LRVEGRSEDILLDYRLTLIDVIAH		
		tcagaggacattttgctggattatcggctgactttaattgatgtaattgcacatctttgtgagatgt	LCEMYRRSIPRET		
		atcgacggtctatcccacgagaaacctga			
KaiB	Synechoc	agccetcgtaaaacctacattetcaagctetacgtegeeggeaatactecaaacteagteegtg	GPLGSSPRKTYILKLYVAGNTPNS	BamH I	pGEX-6P-1
	occus sp.	ccctcaaaacgctcaagaacattctcgaagttgaatttcaaggtgtttatgctctaaaggtgatc	VRALKTLKNILEVEFQGVYALKV	Not I	1
	PCC	gatgttetcaaaaatecteagttggcagaagaggataaaatectagegaegecaaecetege	IDVLKNPQLAEEDKILATPTLAKV		
	7942	caaggttctaccactgcctgtccgacggattattggtgatttatccgaccgtgagaaagttttga	LPLPVRRIIGDLSDREKVLIGLDLL		
		ttggccttgatttactctacggcgaacttcaagattccgacgacttctaa	YGELQDSDDF		

KaiC pGEX-6P-1 Svnechoc ggatccacttccgctgagatgactagccctaataataattctgagcaccaagccatcgctaag GPLGSGSTSAEMTSPNNNSEHQAI BamH I AKMRTMIEGFDDISHGGLPIGRST Not I occus sp. atgcgcacgatgattgaaggctttgatgatattagtcatggcggtcttccaatcgggcgatcga PCC ccctcgttagtggtacttcaggaaccggcaagacccttttttctattcaatttctctataacggtattLVSGTSGTGKTLFSIQFLYNGIIEF 7942 atcgagtttgatgagcctggggttttcgttactttcgaagaaaccccgcaagatatcattaaaaa DEPGVFVTFEETPODIIKNARSFG WDLAKLVDEGKLFILDASPDPEG cttcacccgatccagaaggtcaagaggttgttggggggttcgatctctctgctctgattgagcg **OEVVGGFDLSALIERINYAIOKYR** gattaattatgcaattcaaaagtatcgagcgcgggggtttcaattgactcggtcacgtccgttt ARRVSIDSVTSVFQQYDASSVVR tccagcaatatgatgcctcttctgtggttcgccgcgaactctttcggttggtagctcgcctaaaa RELFRLVARLKQIGATTVMTTERI EEYGPIARYGVEEFVSDNVVILRN caaattggggcaactacggtcatgaccaccgagcgtatcgaggaatatggcccgatcgctc VLEGERRRRTLEILKLRGTSHMK gttacggtgttgaggaatttgtctccgataacgtcgtgattctccgcaacgttttggaagggga GEYPFTITDHGINIFPLGAMRLTQ gcgccgtcgccgcaccctcgaaatcctcaagctacgtggcaccagccacatgaaagggga atatccgttcacgattacggatcatggcatcaatatcttcccgctcggggcaatgcgccttacg RSSNVRVSSGVVRLDEMCGGGFF cagcgatcgtcgaacgtgcgtgtttcatctggtgtcgtcgactcgatgaaatgtgtggtggg **KDSIILATGATGTGKTLLVSRFVE** ggettetttaaggaeteaateattetggeaactggegetaeaggeaetggtaaaactetgttagt NACANKERAILFAYEESRAOLLR NAYSWGMDFEEMERONLLKIVC tagccgtttcgttgagaatgcttgtgctaacaaagagcgggcgattctgttcgcttatgaagagt cacgageteagetgeteegeaatgeetatteatggggaatggaetttgaggagatggagege AYPESAGLEDHLOIIKSEINDFKP caaaacctcctcaaaattgtttgcgcctatcctgaatctgcaggtcttgaagaccatttgcagatt ARIAIDSLSALARGVSNNAFRQFV attaagtcggagatcaatgactttaagccagctcgtattgcaatcgactccctctctgctttggc IGVTGYAKQEEITGLFTNTSDQF gcggggcgttagcaacaatgccttccgccaatttgtaattggtgtcactggctacgcgaaaca MGAHSITDSHISTITDTIILLQYVEI agaagaaatcacgggactattcacaaataccagtgatcaatttatgggagcgcattcgattact RGEMSRAINVFKMRGSWHDKAI gactcccatatctcaacaattacggatacgattatcttgctccaatacgtcgagattcgtggcga REFMISDKGPDIKDSFRNFERIISG SPTRITVDEKSELSRIVRGVOEKG aatgtcccgcgccattaacgtcttcaagatgcgcggatcttggcatgacaaagcaatccgcga att cat gat cag c ga caa a g g g c c g g a cat caa g g att ctt t c c g g a a ctt t g a g c g g att attPES tcaggttcgccaacacggattaccgtcgatgagaaaagcgaactctcgcgaattgtgcgcgg cgttcaagaaaaagggccggagagctagcca

Tau-K18	Homo sapiens	atgggcagcagccatcaccatcatcaccacagccaggatctggaaaacctgtattttcaggg atcccaaaccgcgccggtgccgatgccggacctgaaaaacgttaagagcaaaatcggtagc accgagaacctgaaacaccagccgggtggcggtaaagtgcaaatcattaacaagaaactgg acctgagcaacgttcagagcaagtgcggcagcaagataacattaaacatgtgccgggcgg tggcagcgtgcaaattgtttacaaaccggtggacctgagcaagttaccagcaagtgcggta gcctgggcaacatccaccacagccgggtggcggtagcggtaggtgaggtgaagagcgaaaaac tggacttcaaagatcgtgtgcaaagcaagatcggtagcctggataacattacccacgttccgg gcggtggcaacaagaaaattgaataa	MGSSHHHHHHSQDLENLYFQGS QTAPVPMPDLKNVKSKIGSTENL KHQPGGGKVQIINKKLDLSNVQS KCGSKDNIKHVPGGGSVQIVYKP VDLSKVTSK CGSLGNIHHKPGGGQVEVKS EKLDFKDRVQ SKIGSLDNIT HVPGGGNKKIE	BamH I EcoRI	pET-28a
---------	-----------------	---	--	-----------------	---------

14-3-3	Homo	atagacagcagcatcaccatcatcaccacagccaggatctggaaaacctgtattttcaggg	MGSSHHHHHHSODI FNI VFOGS	RamHI	nFT-28a
1455	anniona	ataataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	MDVNELVOVAVLAEOAEDVDD	Eco DI	pE1 200
	sapiens	aiceaiggacaagaacgageiggigeagaaggegaaaciggeggageaageggaacgiia	WIDKNEL VQKAKLAEQAEK I DD	ECONI	
		cgacgatatggcggcgtgcatgaagagcgtgaccgagcagggtgcggaactgagcaacg	MAACMKSVTEQGAELSNEERNL		
		aggaacgtaacctgctgagcgttgcgtataaaaacgtggttggt	LSVAYKNVVGARRSSWRVVSSIE		
		cgtgtggttagcagcatcgaacaaaagaccgagggcgcggaaaagaaacagcaaatggc	QKTEGAEKKQQMAREYREKIETE		
		gcgtgagtaccgtgaaaaaatcgagaccgaactgcgtgacatttgcaacgatgtgctgagcc	LRDICNDVLSLLEKFLIPNASQAE		
		tgctggagaagttcctgatcccgaacgcgagccaggcggaaagcaaagtgttctacctgaa	SKVFYLKMKGDYYRYLAEVAAG		
		gatgaagggtgactactatcgttatctggcggaagtggcgggggggg	DDKKGIVDQSQQAYQEAFEISKK		
		attgttgatcagagccagcaagcgtaccaagaggcgttcgaaatcagcaagaaaga	EMQPTHPIRLGLALNFSVFYYEIL		
		aaccgacccacccgattcgtctgggtctggcgctgaacttcagcgtgttctactatgagattct	NSPEKACSLAKTAFDEAIAELDTL		
		gaacagcccggaaaaggcgtgcagcctggcgaaaaccgcgtttgacgaggcgatcgcgg	SEESYKDSTLIMQLLRDNLTLWT		
		aactggataccctgagcgaggaaagctataaagacagcaccctgattatgcagctgctgcgt	SDTQGDEAEAGEGGEN		
		gataacctgaccctgtggaccagcgacacccaaggtgatgaggcggaagcgggtgagggt	-		
		ggcgaaaactaa			

BSA	Bovine	Not applicable (Commercial product)	DTHKSEIAHRFKDLGEEHFKGLV	Not	Not
			LIAFSQYLQQCPFDEHVKLVNEL	applicable	applicable
			TEFAKTCVADESHAGCEKSLHTL		
			FGDELCKVASLRETYGDMADCC		
			EKQEPERNECFLSHKDDSPDLPK		
			LKPDPNTLCDEFKADEKKFWGK		
			YLYEIARRHPYFYAPELLYYANK		
			YNGVFQECCQAEDKGACLLPKIE		
			TMREKVLTSSARQRLRCASIQKF		
			GERALKAWSVARLSQKFPKAEF		
			VEVTKLVTDLTKVHKECCHGDL		
			LECADDRADLAKYICDNQDTISS		
			KLKECCDKPLLEKSHCIAEVEKD		
			AIPENLPPLTADFAEDKDVCKNY		
			QEAKDAFLGSFLYEYSRRHPEYA		
			VSVLLRLAKEYEATLEECCAKDD		
			PHACYSTVFDKLKHLVDEPQNLI		
			KQNCDQFEKLGEYGFQNALIVRY		
			TRKVPQVSTPTLVEVSRSLGKVG		
			TRCCTKPESERMPCTEDYLSLILN		
			RLCVLHEKTPVSEKVTKCCTESL		
			VNRRPCFSALTPDETYVPKAFDE		
			KLFTFHADICTLPDTEKQIKKQTA		
			LVELLKHKPKATEEQLKTVMENF		
			VAFVDKCCAADDKEACFAVEGP		
			KLVVSTQTALA		

Table S2. The sequence compositions of the tested proteins could not explain the role of polyamines. (A) The sequence properties of the proteins studied in this work were compared. The parameters were calculated with ProtParam

(<u>http://web.expasy.org/protparam/</u>). The sequences of the expressed proteins were used except BSA (Table S2). Glu and Asp were considered as negatively charged residues, whereas Arg and Lys were positively charged.

Name	Molecular weight (Da)	Theoretical pI	Positively charged residue ratio	Negatively charged residue ratio
KaiA	32912.52	4.83	8.68%	14.93%
KaiB	11716.69	6.47	13.21%	13.21%
KaiC	58427.31	5.81	11.81%	13.14%
BSA	66462.98	5.60	14.06%	16.98%
Tau-K18	16250.42	9.52	13.91%	8.61%
14-3-3	30312.80	4.93	11.61%	17.60%