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Abstract: Previous studies have revealed the anti-inflammatory and neuroprotective properties
of Hericium erinaceus extracts, including the fact that the active ingredient erinacine C (EC) can
induce the synthesis of nerve growth factor. However, there is limited research on the use and
mechanisms of action of EC in treating neuroinflammation. Hence, in this study, the inflammatory
responses of human BV2 microglial cells induced by LPS were used to establish a model to assess the
anti-neuroinflammatory efficacy of EC and to clarify its possible mechanisms of action. The results
showed that EC was able to reduce the levels of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis
factor (TNF)-α, and inducible nitric oxide synthase (iNOS) proteins produced by LPS-induced BV2
cells, in addition to inhibiting the expression of NF-κB and phosphorylation of IκBα (p-IκBα) proteins.
Moreover, EC was found to inhibit the Kelch-like ECH-associated protein 1 (Keap1) protein, and
to enhance the nuclear transcription factor erythroid 2-related factor (Nrf2) and the expression of
the heme oxygenase-1 (HO-1) protein. Taken together, these data suggest that the mechanism of
action of EC involves the inhibition of IκB, p-IκBα, and iNOS expressions and the activation of the
Nrf2/HO-1 pathway.

Keywords: neuroinflammation; microglial cells; nitric oxide; erinacine C; proinflammatory cytokines;
Hericium erinaceus mycelium

1. Introduction

The occurrence of neurodegenerative diseases such as multiple sclerosis, Parkinson’s disease,
and Alzheimer’s disease (AD) is closely related to neuroinflammation [1–3]. Neuroinflammation
is a chronic, central nervous system (CNS)-specific, and inflammation-like glial response that leads
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to plaque formation, dystrophic neurite growth, excessive tau phosphorylation, and, ultimately,
neurodegenerative diseases [1,3]. Microglial cells are resident macrophages in the CNS, and play
an important role in regulating immune responses in the brain [4–6]. The abnormal activation of
microglial cells is one of the factors that cause neuroinflammation. In particular, phagocytic and
cytotoxic functions of microglial cells are triggered by CNS injury [7,8]. The invasion of xenobiotics,
such as lipopolysaccharide (LPS) and β-amyloid peptide (Aβ), in the brain often triggers the activation
of microglial cells. When activated, microglial cells have phagocytic abilities that allow them to move
to the infected region, clean up debris, and produce neurotoxic molecules, such as nitric oxide (NO),
and proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α,
that promote neuroinflammation [5,9–11]. In addition, the cytotoxic functions of microglial cells are
induced by the release of superoxide radicals and NO into the microenvironment in response to
pathogens and cytokine stimulation [12]. Hence, neuroinflammation and neurodegenerative diseases
may be prevented by inhibiting the production of neurotoxic chemokines and cytokines by microglial
cells [2].

Hericium erinaceus (H. erinaceus) is often consumed and taken as a health supplement in Taiwan,
China, and Japan. In Chinese folk medicine, H. erinaceus is used to treat tumors of the digestive system
such as esophageal cancer, gastric cancer and duodenal cancer [13,14]. According to various studies,
extracts from the fruiting body and mycelium of H. erinaceus provide many health benefits, such
as anti-oxidizing properties [15,16], anti-inflammatory properties [17,18], the promotion of neuron
growth and regeneration [19–21], the prevention of memory loss [22,23], and the activation of other
physiological functions. For example, recent studies have shown that 4-chloro-3,5-dimethoxybenzoic
methyl ester and erincine A isolated from H. erinaceus enhance NGF-induced neurite outgrowth
and protect neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma
cells [21]. Another interesting study suggested that H. erinaceus may exert anti-inflammatory effects
on macrophages by inhibiting Toll-like receptor (TLR) 4/c-Jun N-terminal kinases (JNKs) signaling
and improve adipose tissue inflammation associated with obesity [18]. These health benefits are often
linked to cyathane-type diterpenoids, such as erinacine compounds, often found in H. erinaceus [24–27].

Erinacine C (EC, Figure 1) is a secondary metabolite of the mycelium of H. erinaceus [28]. In vitro
tests revealed that erinacine compounds promote the nerve growth factor (NGF) synthesis of astrocytes
in rodents [24,25,29]. For instance, Kawagishi et al. [24] discovered that EC stimulates the production
of NGF by astroglial cells in mice, and its stimulatory effect was better than that of epinephrine, a
previously known NGF stimulant. Therefore, EC is often regarded to have high potential for treating
neurodegenerative diseases such as AD [29]. Furthermore, in a study conducted by Tzeng et al. [27],
five-month old APP/PS1 mice were fed 300 mg/kg/day of erinacine A, which significantly reduced
the expression of fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (Iba1),
and Aβ protein in their hippocampuses, in addition to improving their activities of daily living.
Chen et al. [26] also discovered that the Aβ plaque loads in the brains of APP/PS1 mice were lowered
after the mice were continuously fed with 30 mg/kg/day of erinacine S for 30 days. However, many
studies have only indicated that EC can induce the synthesis of NGF, while there has been a lack
of reports regarding the role of EC in preventing neuroinflammation and its mechanism of action.
Therefore, in this research, the inflammatory responses of LPS-induced BV2 microglial cells were
used to establish a model to investigate the anti-neuroinflammatory efficacy of EC and its possible
mechanisms of action.
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Figure 1. The chemical structure of erinacine C: (A) 2-dimensional structure; (B) 3-dimensional 
structure. 

2. Results 

2.1. Effects of EC on Cell Viability 

To examine the effect of EC on cell viability, we counted the number of treated BV2 cells. As 
shown in Figure 2, the incubation of BV2 cells with 0.1–2.5 µM EC for 24 h did not decrease cell 
viability within the range of concentrations used. However, the cell viability was significantly 
decreased at concentrations of 5 and 10 µM EC. Therefore, we used cells cultured in 0.1–2.5 uM EC 
for 24 h for the follow-up experiments. 

 
Figure 2. Effects of erinacine C (EC) on cell growth in BV2 microglial cells. Cells were treated with 
different concentrations of EC (0.1–10 µM) for 24 h. Cell numbers were counted using a 
hemocytometer. Values (means ± SD, n = 3) not sharing a common lower case letter are significantly 
different (p < 0.05). 

2.2. Effects of EC on LPS-Induced Production of NO, IL-6, and TNF-α 

LPS is one of the immunostimulatory molecules that can activate inflammation and the 
production of NO in microglial cells [10,11]. As shown in Figure 3A, LPS induced a significant 
increase of NO levels in BV2 cells. EC significantly inhibited the LPS-induced production of NO in a 
dose-dependent manner, with a maximum inhibition of 31% at 2.5 µM EC, compared to the LPS-
treated groups (p < 0.05). N(G)-Nitro-L-arginine methyl ester (L-NAME) was used as the positive 
control, and the addition of 200 µM of L-NAME significantly inhibited the LPS-induced production 
of NO by 51% (p < 0.05). In addition, activated microglial cells are a major source of inflammatory 
cytokines such as IL-6 and TNF-α, both of which can be up-regulated in various inflammatory 

Figure 1. The chemical structure of erinacine C: (A) 2-dimensional structure; (B) 3-dimensional structure.

2. Results

2.1. Effects of EC on Cell Viability

To examine the effect of EC on cell viability, we counted the number of treated BV2 cells. As
shown in Figure 2, the incubation of BV2 cells with 0.1–2.5 µM EC for 24 h did not decrease cell viability
within the range of concentrations used. However, the cell viability was significantly decreased at
concentrations of 5 and 10 µM EC. Therefore, we used cells cultured in 0.1–2.5 uM EC for 24 h for the
follow-up experiments.
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Figure 2. Effects of erinacine C (EC) on cell growth in BV2 microglial cells. Cells were treated with
different concentrations of EC (0.1–10 µM) for 24 h. Cell numbers were counted using a hemocytometer.
Values (means ± SD, n = 3) not sharing a common lower case letter are significantly different (p < 0.05).

2.2. Effects of EC on LPS-Induced Production of NO, IL-6, and TNF-α

LPS is one of the immunostimulatory molecules that can activate inflammation and the production
of NO in microglial cells [10,11]. As shown in Figure 3A, LPS induced a significant increase of NO
levels in BV2 cells. EC significantly inhibited the LPS-induced production of NO in a dose-dependent
manner, with a maximum inhibition of 31% at 2.5 µM EC, compared to the LPS-treated groups (p < 0.05).
N(G)-Nitro-l-arginine methyl ester (l-NAME) was used as the positive control, and the addition
of 200 µM of l-NAME significantly inhibited the LPS-induced production of NO by 51% (p < 0.05).
In addition, activated microglial cells are a major source of inflammatory cytokines such as IL-6 and
TNF-α, both of which can be up-regulated in various inflammatory diseases [5,11]. We analyzed the
production of IL-6 and TNF-α induced by LPS using an ELISA kit. As shown in Figure 3B,C, the levels
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of IL-6 and TNF-α were significantly increased in BV2 cells treated with LPS (p < 0.05). However, EC
significantly inhibited LPS-induced levels of IL-6 and TNF-α in a concentration-dependent manner.
When EC was added at 2.5 µM, the levels of IL-6 and TNF-α were reduced to 50% (p < 0.05) and 23%
(p < 0.05), respectively, as compared with those of LPS-treated group.
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Figure 3. Effects of erinacine C (EC) on LPS-induced production of nitric oxide (A; NO), interleukin 6
(B; IL-6), and tumor necrosis factor alpha (C; TNF-α) in BV2 microglial cells. Cells (1 × 105 cells/mL)
were pretreated with different concentrations (0.1–2.5 µM) of EC for 1 h, after which the cells were
treated with LPS (500 ng/mL) for 24 h. Culture supernatants were collected and the production of NO,
IL-6, and TNF-α was determined by an ELISA kit. l-NAME (200 µM) was used as the positive control.
Values (means ± SD, n = 3) not sharing a common lower case letter are significantly different (p < 0.05).

2.3. Effects of EC on LPS-Induced Protein Expression of iNOS

The protein expression of inducible nitric oxide synthase (iNOS) in BV2 cells was determined
by western blot. As shown in Figure 4, EC inhibited the iNOS protein expression induced by LPS
in a dose-dependent manner. Defining the iNOS protein expression in the LPS-treated group as
100% expression in order to quantify such expression in other groups, it can be seen that iNOS
protein expression was significantly inhibited by 40% in cells treated with 2.5 µM EC (p < 0.05).
We further demonstrated that 4-N-[2-(4-phenoxyphenyl) ethyl]quinazoline-4,6-diamine (QNZ), an
inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), at 10µM, significantly
suppressed the inhibitory effect of 2.5 µM EC on the expression of iNOS in BV2 cells (p < 0.05).
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Figure 4. Effects of erinacine C (EC) on LPS-induced iNOS expression in BV2 microglial cells. Cells
(1 × 105 cells/mL) were pretreated with different concentrations (0.1–2.5 µM) of EC for 1 h, after
which the cells were treated with LPS (500 ng/mL) for 24 h. iNOS protein expression was determined
by western blot analyses. Values (means ± SD, n = 3) not sharing a common lower case letter are
significantly different (p < 0.05). The western blot image is provided as a representative result of
multiple experiments.

2.4. Effects of EC on LPS-Induced NF-κB, p-IκBα, and IκBα Protein Expression in BV2 cells

NF-κB activation is an important mediator the LPS-induced expression of iNOS in BV2 cells [30,31].
We further determined whether EC suppressed the activation of NF-κB by measuring the LPS-induced
phosphorylation of IκBα (p-IκBα) in BV2 cells using western blot analysis. As shown in Figure 5,
LPS significantly up-regulated the expression of the NF-κB and p-IκBα proteins. However, at
1 µM and 2.5 µM, EC significantly decreased the protein expression of NF-κB and p-IκBα in a
concentration-dependent manner. The 2.5 µM EC significantly decreased the protein expression of
NF-κB and p-IκBα by 70% and 39%, respectively, while QNZ decreased the expression of NF-κB by
51%, as compared with that of the LPS-treated group (p < 0.05).
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Figure 5. Effects of erinacine C (EC) on LPS-induced NFκB (A), p-IκBα, and IκBα (B) protein expression
in BV2 microglial cells. Cells were pretreated with different concentrations (0.1–2.5 µM) of EC for 1
h, after which the cells were treated with LPS (500 ng/mL) for 24 h. NFκB, p-IκBα, and IκBα protein
expressions were determined by western blot analyses. Values (means ± SD, n = 3) not sharing a
common capital (or a lower case letter) are significantly different (p < 0.05). The western blot image is
provided as a representative result of multiple experiments.

2.5. Effects of EC on Nrf2 and HO-1 Protein Expression in BV2 cells

Nuclear transcription factor erythroid 2-related factor (Nrf2) is a transcription factor that regulates
the coordinated expression of heme oxygenase-1 (HO-1). Nrf2 resides in the cytoplasm by forming an
inactive complex with an Nrf2-inhibitory protein called Kelch-like ECH-associated protein 1 (Keap1) [30].
Thus, we next evaluated the expression of Keap1, Nrf2, and HO-1 proteins in BV2 cells. As shown in
Figure 6A, EC significantly up-regulated the expression of nuclear Nrf2 protein in a dose-dependent
manner (p < 0.05). Compared to the control group, EC at 0.1, 1, and 2.5 µM significantly increased the
protein expression of nuclear Nrf2 by 56%, 67%, and 83%, respectively (p < 0.05). Meanwhile, although
EC significantly decreased the protein expression of Nrf2 in the cytoplasm compared to the control
group, the differences among the groups were not significant (p > 0.05). As shown in Figure 6B, EC
significantly increased HO-1 protein expression in a dose-dependent manner (p < 0.05). Compared to
the control group, the addition of EC at 0.1, 1, and 2.5 µM significantly increased the protein expression
of HO-1 by 93%, 141%, and 233%, respectively (p < 0.05).



Molecules 2019, 24, 3317 7 of 12
Molecules 2019, 24, x FOR PEER REVIEW 7 of 12 

 

 

Figure 6. Effects of erinacine C (EC) on Nrf2, Keap-1 (A), and HO-1 (B) protein expression in BV2 
microglial cells. Cells were treated with different concentrations (0.1–2.5 µM) of EC for 24 h. Nrf2, 
Keap-1, and HO-1 protein expressions were determined by western blot analyses. Values (means ± 
SD, n = 3) not sharing a common lower case letter are significantly different (p < 0.05). The western 
blot image is provided as a representative result of multiple experiments. 

3. Discussion 

The occurrence of neurodegenerative diseases is closely related to neuroinflammation. Studies 
have shown that the activation of microglial cells can be induced by LPS, which produces large 
amounts of reactive oxygen species (ROS), NO, and proinflammatory cytokines such as IL-6 and 
TNF-α that damage neurons and ultimately cause neurodegenerative diseases [3,5,11]. In this 
research, EC, which is found in extracts from the mycelium of H. erinaceus, reduced the NO, IL-6, and 
TNF-α produced by LPS-induced BV2 cells. The activation of iNOS in cells can be stimulated by LPS, 
TNF-α, or IL-1 [9]. The activated iNOS protein promotes the conversion of L-arginine to L-citrulline 
in cells, which in turn, produces and releases large amounts of NO [31–33]. Moreover, in this research, 
EC was found to inhibit the expression of the iNOS protein, as a statistically significant difference 
was observed (p < 0.05). Therefore, it is suggested that the reduced expression of the iNOS protein 
may be related to the ability of EC to inhibit LPS-induced NO. 

LPS induces the generation of various ROS, which triggers neuroinflammation and modulates 
the redox-sensitive signal transduction pathways and transcription factors in cells [10,11]. The NF-
κB plays a key role in redox-sensitive signal transduction pathways. According to Karki et al. [34], 
QNZ is a specific inhibitor of NF-κB. In this research, BV2 cells were cultivated in a mixture of QNZ 
and EC. The results indicated that QNZ weakened the inhibitory effect of EC on iNOS expression, 
suggesting that EC exerts its effect through modulating the NF-κB signaling transduction pathway. 

Under normal physiological conditions, NF-κB is sequestered in the cytoplasm by its inhibitory 
protein, IκBα. When IκBα becomes phosphorylated, it undergoes ubiquitination and degradation, 
which results in the release and nuclear translocation of NF-κB, inducing the expression of specific 
target genes, such as TNF-α, IL-6, and iNOS [3,11,35]. Previous studies have shown that the 
expression of NF-κB in the nucleus was increased when BV2 cells were stimulated by LPS, resulting 
in the activation of iNOS and production of NO [33,35,36]. The results of this research were consistent 
with those in the aforementioned literature. Furthermore, a dose-response relationship was observed, 
and EC was found to significantly inhibit the expressions of the NF-κB and p-IκBα proteins. 
Therefore, it is suggested that EC lowers concentrations of LPS-induced NO, IL-6, and TNF-α, and 
inhibits the expression of iNOS, by down-regulating the expression of the NF-κB and p-IκBα proteins. 

Figure 6. Effects of erinacine C (EC) on Nrf2, Keap-1 (A), and HO-1 (B) protein expression in BV2
microglial cells. Cells were treated with different concentrations (0.1–2.5 µM) of EC for 24 h. Nrf2,
Keap-1, and HO-1 protein expressions were determined by western blot analyses. Values (means ± SD,
n = 3) not sharing a common lower case letter are significantly different (p < 0.05). The western blot
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3. Discussion

The occurrence of neurodegenerative diseases is closely related to neuroinflammation. Studies
have shown that the activation of microglial cells can be induced by LPS, which produces large amounts
of reactive oxygen species (ROS), NO, and proinflammatory cytokines such as IL-6 and TNF-α that
damage neurons and ultimately cause neurodegenerative diseases [3,5,11]. In this research, EC, which
is found in extracts from the mycelium of H. erinaceus, reduced the NO, IL-6, and TNF-α produced by
LPS-induced BV2 cells. The activation of iNOS in cells can be stimulated by LPS, TNF-α, or IL-1 [9].
The activated iNOS protein promotes the conversion of l-arginine to L-citrulline in cells, which in
turn, produces and releases large amounts of NO [31–33]. Moreover, in this research, EC was found
to inhibit the expression of the iNOS protein, as a statistically significant difference was observed
(p < 0.05). Therefore, it is suggested that the reduced expression of the iNOS protein may be related to
the ability of EC to inhibit LPS-induced NO.

LPS induces the generation of various ROS, which triggers neuroinflammation and modulates
the redox-sensitive signal transduction pathways and transcription factors in cells [10,11]. The NF-κB
plays a key role in redox-sensitive signal transduction pathways. According to Karki et al. [34], QNZ is
a specific inhibitor of NF-κB. In this research, BV2 cells were cultivated in a mixture of QNZ and EC.
The results indicated that QNZ weakened the inhibitory effect of EC on iNOS expression, suggesting
that EC exerts its effect through modulating the NF-κB signaling transduction pathway.

Under normal physiological conditions, NF-κB is sequestered in the cytoplasm by its inhibitory
protein, IκBα. When IκBα becomes phosphorylated, it undergoes ubiquitination and degradation,
which results in the release and nuclear translocation of NF-κB, inducing the expression of specific
target genes, such as TNF-α, IL-6, and iNOS [3,11,35]. Previous studies have shown that the expression
of NF-κB in the nucleus was increased when BV2 cells were stimulated by LPS, resulting in the
activation of iNOS and production of NO [33,35,36]. The results of this research were consistent with
those in the aforementioned literature. Furthermore, a dose-response relationship was observed, and
EC was found to significantly inhibit the expressions of the NF-κB and p-IκBα proteins. Therefore,
it is suggested that EC lowers concentrations of LPS-induced NO, IL-6, and TNF-α, and inhibits the
expression of iNOS, by down-regulating the expression of the NF-κB and p-IκBα proteins.
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Another possible mechanism was suggested in the literature, that is, the activation of the Nrf2/HO-1
signaling pathway reduces LPS-induced cellular damage and inflammatory responses [30,37,38]. As
an inducible isoform, the expression of HO-1 is up-regulated by various oxidants [30,39]. HO-1
is regarded to have modulating, immune-regulating, and anti-inflammatory functions [30,37–39].
Furthermore, the Nrf2 is sequestered in the cytoplasm by its inhibitory protein, Keap1. When the
cell is stimulated by oxidants, Nrf2 is released and induced by Keap1, which causes Nrf2 to undergo
nuclear translocation and interact with the antioxidant response elements (AREs) of HO-1 [40]. In
this research, a dose-response relationship was observed, and EC was found to significantly inhibit
the expression of the Keap1 protein and increase the expression of the Nrf2 protein in the nucleus.
Hence, it is suggested that certain mechanisms of the anti-inflammatory responses induced by EC were
achieved by up-regulating the Nrf2/HO-1 signaling pathway.

4. Materials and Methods

4.1. Chemicals and Reagents

The EC (purity > 98%, molecular formula C25H38O6, molecular weight 434) was a gift from
Dr. Chien-Chih Chen (Chang Gung University of Science and Technology, Taoyuan city, Taiwan). Its
structure was confirmed based on its 13C- and 1H-NMR spectra (Supplementary Figure S1 [24]). LPS
from Escherichia coli serotype O55:B5 (L6529), ammonium persulfate (APS), Trizma base (Tris), and
bromophenol blue were purchased from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum
(FBS), trypsin, DMEM, and penicillin/streptomycin were purchased from Gibco/BRL (Rockville, MD,
USA). QNZ (EVP4593) was purchased from Selleckchem (Houston, TX, USA). NF-κB monoclonal
antibody (mAb; cat. no. sc-8008), p-IκBα mAb (cat. no. sc-8404), Keap-1 mAb (cat. no. sc-33569), Nrf2
mAb (cat. no. sc-365949), HO-1 mAb (cat. no. sc-390991), and Lamin B1 mAb (cat. no. sc-37700)
were purchased from Santa Cruz (Dallas, TX, USA). iNOS mAb (cat. no. bs-2072R) was purchased
from Bioss Antibodies (Woburn, MA, USA). IκBα mAb (cat. no. MS5-15132) was purchased from
Thermo Fisher Scientific (Waltham, MA, USA). The above reagents were of reagent grade I or molecular
biology grade.

4.2. Extraction and Isolation of EC

The mycelia of H. erinaceum were refluxed with 95% ethanol. The ethanol solution was concentrated
in vacuum to give a brown extract which was partitioned with H2O/EtOAc (1:1) to afford a H2O layer
and an EtOAc layer. The EtOAc layer was chromatographed on a silica gel column (70–230 mesh,
70 × 10 cm), eluting with a gradient system of n-hexane/EtOAc (10:1; 3:1; 3:2; 1:1; 1:2; 0:1) to give seven
fractions (Fr. I−VII). Fraction VI, the eluate of n-hexane/EtOAc (1:2), was separated on a Sephadex
LH-20 column eluting with MeOH to yield two sub-fractions (Fr. VI-1 and VI-2). Sub-fraction VI-1 was
further purified with Sephadex LH-20 column eluted with MeOH to give erinacine C.

4.3. Cell Culture

Cell culture was performed as described previously [2,41]. Briefly, the BV2 microglial cells (a gift
from Dr. Yuh-Chiang Shen, National Research Institute of Chinese Medicine, Taipei, Taiwan) were
cultured in DMEM medium containing 10% (v/v) fetal bovine serum (FBS), 0.37% (w/v) NaHCO3,
penicillin (100 units/mL), and streptomycin (100 µg/mL) at 37 ◦C in a humidified incubator under 5%
CO2 and 95% air. Equal numbers of cells (1 × 104/mL) were incubated for 24 h before being subjected to
the various treatments. Before the experiment, the medium was removed, and the cells were washed
twice with phosphate-buffered saline (PBS). Then, new media (with 10% FBS) containing various
concentrations (0.1–10 µM) of EC were added, and the samples were incubated for 1 h, after which
the cells were treated with LPS (0.5 µg/mL) for 24 h. In addition, the effects of l-NAME (200 µM) and
QNZ (20 µM) were also evaluated, with the cells treated with them used as a positive control. Stock
solutions of EC, QNZ, and l-NAME were dissolved in DMSO. Before being used, the compounds
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were diluted in 10% FBS in culture medium to the desired concentrations at the time of addition. The
highest concentration of DMSO used did not exceed 0.1% (v:v) of the total assay volume, which did
not affect cell viability.

4.4. Cell Growth Analysis

The cell growth was assayed as described in a previous study by Chuang et al. [41]. BV2 cells were
plated in 24-well plates at a density of 1 × 105 cells/well and grown for 24 h. Different concentrations
of EC were then added to the cells to reach final concentrations of 0.1, 0.5, 1, 2.5, 5, and 10 µM in the
presence of FBS. The control group only contained 10% FBS. The cells were then grown at 37 ◦C, 5%
CO2, and 95% air for different periods of time, and the trypan blue exclusion protocol was used to
determine cell viability.

4.5. Measurement of NO, TNF-α, and IL-6

Measurements of NO, TNF-α, and IL-6 were performed as described by Santhosh et al. [42] and
Barberi et al. [43], with minor modifications. BV2 cells were incubated with various concentrations
of EC for 1 h prior to incubation with or without LPS (0.5 µg/mL) for a further 24 h. The total NO
concentration in culture supernatants was estimated using a colorimetric assay kit (cat. no. 780001;
Cayman Chemicals, Ann Arbor, MI, USA). TNF-α and IL-6 concentrations in culture supernatants were
assessed using the commercial cytokine ELISA kit (cat. no. 431301 and 430901; BioLegend, San Diego,
CA, USA), according to the manufacturer’s instructions.

4.6. Western Blotting

Expression levels of NF-κB, IκB, p-IκBα, Keap-1, Nrf2, HO-1, and iNOS proteins were determined
by western blotting. Western blot analysis was performed as described previously [41]. Briefly, the
medium was removed and cells were lysed with 20% sodium dodecyl sulphate (SDS) containing 1 mM
phenylmethylsulfonyl fluoride. The lysate was sonicated for 30 s on ice followed by centrifugation
at 12,000× g for 30 min at 4 ◦C. An amount of protein (40 µg) from the supernatant was resolved
by SDS-polyacrylamide gel electrophoresis (PAGE) and transferred onto a nitrocellulose membrane.
After blocking with Tris-buffered saline buffer (20 mM Tris-HCl, 150 mM NaCl, pH 7.4) containing
5% nonfat milk, the membrane was incubated with anti-NF-κB mAb, anti-IκBα mAb, anti-p-IκBα
mAb, anti-Keap-1 mAb, anti-Nrf2 mAb, anti-HO-1 mAb, and anti-iNOS mAb followed by horseradish
peroxidase-conjugated anti-mouse IgG and then visualized using an ECL chemiluminescent detection
kit (Millipore, Billerica, MA, USA). The relative levels of NF-κB, IκB, p-IκBα, Keap-1, Nrf2, HO-1, and
iNOS proteins were quantitated using Matrox Inspector version 2.1 software (Matrox, Dorval, QC,
Canada).

4.7. Statistical Analysis

Statistical analysis was performed as described previously [41]. Values were expressed as
means ± SD and analyzed using one-way ANOVA, followed by the application of Duncan’s Multiple
Range Test for comparisons of group means. The statistical analysis was performed using SPSS version
10 (IBM Inc., Armonk, NY, USA. P values < 0.05 were considered statistically significant.

5. Conclusions

In summary, we have shown here that EC reduced the concentrations of LPS-induced
pro-inflammatory factors such as IL-6, TNF-α, and NO. It is postulated that the mechanism of
action of EC involves the inhibition of the expressions of NF-κB, p-IκBα, and iNOS. EC also activates
the Nrf2 signaling pathway, which increases the expression of HO-1. More studies are required to
further elucidate the anti-inflammatory mechanisms of EC.
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