## **Supplementary Materials**

## Experimental and DFT Study of Photoluminescent Green Emission Band of Halogenated (–F, –Cl and –Br) Imines

Francisco J. Melendez <sup>1,\*</sup>, María Eugenia Castro <sup>2</sup>, Oscar Portillo-Moreno <sup>3</sup>, Guadalupe Hernández-Téllez <sup>3</sup>, G.E. Moreno-Morales <sup>3</sup>, D. Gutiérrez-Argüelles <sup>3</sup>, Rodolfo Palomino-Merino <sup>4</sup>, E. Rubio-Rosas <sup>5</sup> and René Gutiérrez-Pérez <sup>3</sup> \*Correspondence: francisco.melendez@correo.buap.mx; Tel.: +52-222-229-5500 Ext. 2830

## **Table of Contents**

**Table S1.** X-ray data and calculated Cartesian coordinates for (a) **I**, (b) **I**–**F**, (c) **I**–**Cl** and (d) **I**–**Br** compounds. Theory level of calculations is PBE1PBE/6-311G(d,p).

**Figure S1.** Hirshfeld surfaces (d<sub>norm</sub> mapping) (left) and fingerprint plots (right) of halogen bonds C–X…H for (a) **I–F**, (b) **I–Cl** and (c) **I–Br** compounds.

**Figure S2.** Numbering convention use in the theoretical calculations PBE1PBE/6-311G(d,p) for (a) **I**, (b) **I**–**F**, (c) **I**–**Cl** and (d) **I**–**Br** compounds. For compound (b) **I**–**F** atom H17A is substituted by F1, for (c) by Cl1 and for (d) by Br1.

Table S2. RMSD parameter between X-ray experimental and calculated structures for internal coordinates of (a) I, (b) I–F, (c) I–Cl and (d) I–Br compounds. Theory level of calculations is PBE1PBE/6-311G(d,p).

**Figure S3.** Structures and comparison between calculated ECD spectra of *R*- and *S*-(**I**–**F**) enantiomers at PBE1PBE/6-311G(d,p) theory level.

**Table S3.** Gibbs free energies, transitions, oscillator strengths and their related rotatory (Rotatory strength in velocity form and Rotatory strength in length form) in the ECD spectra of compound (**I**–**F**) at the PBE1PBE/6-311G(d,p) theory level.

**Table S4.** Ring tilt angle ( $\theta_{\text{tilt}}$ , degrees), Molecular Orbital Energies (EHOMO and ELUMO, hartrees), gap Energies ( $\Delta E_g$ , eV), total energy (ETot, hartrees) and dipole moment (Debyes) for **I**, **I**–**F**, **I**–**Cl** and **I**–**Br** compounds calculated at PBE1PBE/6-311G(d,p) and PBE1PBE-D3/6-311G(d,p) theory levels.

**Table S1.** X-ray data and calculated Cartesian coordinates for (a) I, (b) I–F, (c) I–Cl and (d) I–Brcompounds. Theory level of calculations is PBE1PBE/6-311G(d,p).

| X-ray data structures Calculated structures |                                       |
|---------------------------------------------|---------------------------------------|
| (a                                          | ) I                                   |
| N 8.623128 3.301477 13.108582               | N -1.23458800 -0.47606600 0.70496700  |
| C 8.965310 3.123539 15.472294               | C 1.11319800 -0.38926600 0.20143700   |
| C 8.823896 2.333036 16.579164               | C 2.16122100 -1.00019700 -0.44808700  |
| Н 8.403266 1.507667 16.496879               | H 1.99185300 -1.92056500 -1.00180800  |
| C 9.301314 2.743617 17.848283               | C 3.46495300 -0.45550600 -0.41545400  |
| C 9.192952 1.924259 18.989660               | C 4.55486700 -1.06831700 -1.07729000  |
| Н 8.766750 1.100092 18.925623               | H 4.38266100 -1.98812700 -1.62829400  |
| C 9.703774 2.328227 20.178152               | C 5.80722600 -0.51294400 -1.02637200  |
| Н 9.625362 1.777580 20.923033               | Н 6.63587700 -0.99120500 -1.53785700  |
| C 10.350690 3.562975 20.296934              | C 6.02563300 0.68187100 -0.31036800   |
| Н 10.712755 3.817258 21.115474              | Н 7.02090200 1.11257300 -0.27720900   |
| C 10.452948 4.400968 19.218267              | C 4.98810300 1.29881600 0.34150400    |
| Н 10.864637 5.229944 19.313824              | H 5.15469100 2.21896500 0.89347500    |
| C 9.934254 4.009023 17.958107               | C 3.68602500 0.75144000 0.30823100    |
| C 10.043350 4.820566 16.808767              | C 2.58946400 1.36116900 0.97105400    |
| Н 10.437675 5.659761 16.875126              | H 2.76156000 2.28048600 1.52308600    |
| C 9.580729 4.391350 15.598376               | C 1.34112800 0.81134200 0.92218800    |
| Н 9.670113 4.937187 14.851173               | H 0.49860400 1.26971100 1.42695500    |
| C 8.521657 2.620983 14.163692               | C -0.22316500 -0.98734500 0.13922400  |
| Н 8.150355 1.769765 14.114586               | H -0.29731100 -1.92346000 -0.43872100 |
| C 8.186797 2.682901 11.854063               | C -2.50123300 -1.16919900 0.58582900  |
| Н 7.903097 1.760147 12.020956               | H -2.40273100 -2.05494700 -0.06522800 |
| C 7.011901 3.494444 11.311577               | C -2.93550500 -1.63640500 1.97716400  |
| Н 6.707693 3.106707 10.488060               | H -3.90371400 -2.14084700 1.92498600  |
| Н 6.295478 3.487832 11.951279               | H -2.19844800 -2.32684000 2.39664900  |
| Н 7.291808 4.399164 11.154969               | Н -3.02686600 -0.77797600 2.64721500  |
| C 9.340822 2.695525 10.860003               | C -3.54878500 -0.25901100 -0.02332700 |
| C 9.557591 1.648334 10.017242               | C -4.52251400 -0.78714700 -0.86817400 |
| H 9.005221 0.901715 10.063362               | H -4.49639600 -1.84424200 -1.11962500 |
| C 10.590166 1.675987 9.092196               | C -5.52151100 0.02289900 -1.39514100  |
| H 10.727695 0.943795 8.537102               | H -6.27110400 -0.40376500 -2.05393200 |
| C 11.403327 2.762853 8.988344               | C -5.55428000 1.37695100 -1.08600800  |
| H 12.087807 2.785096 8.357932               | H -6.32999600 2.01270900 -1.50006200  |
| C 11.192744 3.814252 9.823473               | C -4.58207100 1.91294500 -0.24887600  |
| H 11.743453 4.562074 9.764746               | H -4.59717800 2.97135200 -0.00863800  |
| C 10.181382 3.789605 10.753828              | C -3.58648600 1.10139500 0.27963700   |
| Н 10.059102 4.517590 11.320867              | H -2.81788900 1.51769800 0.92120800   |

|    |           | (b)                | ) I–F                                 |
|----|-----------|--------------------|---------------------------------------|
| F  | -0.614355 | 3.356929 8.125196  | F -6.27134400 -2.02521400 -0.77280100 |
| Ν  | 3.252291  | 3.723301 13.096556 | N -0.82186100 0.83518500 0.61900500   |
| С  | 3.231898  | 3.767548 15.499240 | C 1.50219000 0.49325500 0.11551000    |
| С  | 3.513608  | 3.104422 16.657826 | C 2.55162500 0.83759300 -0.70532500   |
| Н  | 3.952033  | 2.285544 16.610879 | H 2.40425600 1.57434500 -1.49136900   |
| С  | 3.162244  | 3.621236 17.928750 | C 3.82794400 0.24992900 -0.55330200   |
| С  | 3.403379  | 2.926841 19.125901 | C 4.91837600 0.58860200 -1.38862300   |
| Н  | 3.863176  | 2.119172 19.105781 | H 4.76852500 1.32494700 -2.17260500   |
| С  | 2.967595  | 3.427726 20.319698 | C 6.14360300 -0.00128100 -1.21451300  |
| Н  | 3.124019  | 2.951030 21.102708 | H 6.97278700 0.26548600 -1.86121200   |
| С  | 2.289018  | 4.651323 20.376705 | C 6.33321600 -0.95715100 -0.19555700  |
| Н  | 1.987976  | 4.978167 21.193248 | H 7.30721900 -1.41750600 -0.06700100  |
| С  | 2.072934  | 5.355158 19.248298 | C 5.29450100 -1.30548700 0.63009700   |
| Н  | 1.639194  | 6.176396 19.303629 | H 5.43912400 -2.04158900 1.41514000   |
| С  | 2.486983  | 4.879052 17.984081 | C 4.01985300 -0.71596500 0.47603200   |
| С  | 2.256557  | 5.574627 16.781901 | C 2.92290500 -1.05175300 1.31118000   |
| Н  | 1.860407  | 6.415334 16.812081 | H 3.07306200 -1.78710500 2.09613900   |
| С  | 2.598034  | 5.046603 15.579720 | C 1.70107900 -0.46805300 1.13981000   |
| Н  | 2.417231  | 5.520939 14.801740 | H 0.85891300 -0.71782900 1.77466900   |
| С  | 3.528953  | 3.147490 14.203165 | C 0.19407800 1.12337100 -0.08076100   |
| Н  | 3.931231  | 2.309143 14.186398 | H 0.14517000 1.87392000 -0.88684800   |
| С  | 3.561763  | 2.994098 11.867548 | C -2.05817700 1.53783200 0.34476300   |
| Н  | 3.738538  | 2.054866 12.083840 | H -1.94220900 2.21111000 -0.52223700  |
| С  | 4.813704  | 3.614156 11.220350 | C -2.42102400 2.38279400 1.56837400   |
| Н  | 5.023734  | 3.140410 10.412189 | H -3.36601600 2.90689300 1.40415800   |
| Н  | 4.644855  | 4.536279 11.015794 | H -2.52801100 1.74119900 2.44655000   |
| Н  | 5.553494  | 3.551029 11.828985 | H -1.63865500 3.11953300 1.77056900   |
| С  | 2.394641  | 3.076104 10.918547 | C -3.16618800 0.55478500 0.02360800   |
| С  | 2.141892  | 2.054276 10.024876 | C -4.18010700 0.91343000 -0.86209500  |
| Н  | 2.667294  | 1.287315 10.053380 | H -4.14665800 1.88216900 -1.35294000  |
| С  | 1.129559  | 2.140411 9.085935  | C -5.23494700 0.05167600 -1.13552700  |
| Н  | 0.972637  | 1.445427 8.489036  | H -6.02673300 0.31917900 -1.82563000  |
| С  | 0.375750  | 3.257224 9.060784  | C -5.25947500 -1.18232800 -0.51205300 |
| С  | 0.563151  | 4.289672 9.922598  | C -4.26575100 -1.57413300 0.36702700  |
| Н  | 0.016077  | 5.040704 9.887388  | H -4.31781200 -2.55368400 0.82842800  |
| С  | 1.584749  | 4.201766 10.851480 | C -3.22090500 -0.69875500 0.63137300  |
| Н  | 1.730150  | 4.907370 11.439995 | H -2.42462400 -0.99059800 1.30624700  |
|    |           | (c)                | I–Cl                                  |
| Cl | 5.732667  | 6.914944 9.272675  | Cl 6.37897200 -1.83480400 -0.51225300 |
| Ν  | 2.488698  | 2.627557 13.047962 | N 0.39651900 1.01112100 0.56834600    |
| С  | 2.267628  | 3.112562 15.391266 | C -1.90281300 0.51601200 0.07552700   |
| С  | 2.876327  | 3.095050 16.617422 | C -2.96754500 0.77187800 -0.75794900  |
| Н  | 3.702461  | 2.676286 16.703070 | H -2.85618400 1.47892500 -1.57654700  |
| С  | 2.294278  | 3.688935 17.759961 | C -4.21406800 0.13120100 -0.57676200  |
| С  | 2.932654  | 3.730050 19.020308 | C -5.32010900 0.38140900 -1.42266900  |

| Н                  | 3.759394 3.318138 19.123560                                 | H -5.20619100 1.08935800 -2.23821000                                                                                                                      |
|--------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                  | 2.361507 4.360481 20.088032                                 | C -6.51571800 -0.25773400 -1.21939600                                                                                                                     |
| Н                  | 2.808492 4.390936 20.904228                                 | H -7.35751200 -0.05869200 -1.87413000                                                                                                                     |
| С                  | 1.099291 4.961979 19.956005                                 | C -6.65834200 -1.17699400 -0.15996700                                                                                                                     |
| Н                  | 0.711057 5.386073 20.687568                                 | H -7.60914600 -1.67725600 -0.00878900                                                                                                                     |
| С                  | 0.437294 4.928477 18.760656                                 | C -5.60339600 -1.43996800 0.67670900                                                                                                                      |
| Н                  | -0.399137 5.328207 18.690241                                | H -5.71196600 -2.14750700 1.49321700                                                                                                                      |
| С                  | 1.004201 4.295762 17.629627                                 | C -4.35860700 -0.79721800 0.49383000                                                                                                                      |
| C                  | 0.379755 4.270637 16.361832                                 | C -3.24643200 -1.04265600 1.34033800                                                                                                                      |
| Н                  | -0.463338 4.650570 16.266367                                | H -3 36049900 -1 74952100 -2 15690100                                                                                                                     |
| C                  | 0 975129 3 711015 15 286322                                 | C = -2.05467400 = -0.40763600 = 1.14168400                                                                                                                |
| н                  | 0 537229 3 714822 14 465387                                 | H -1 20189200 -0 58748400 1 78594300                                                                                                                      |
| C                  | 2 950824 2 559032 14 225031                                 | $C_{-0.62868800} = 1.20237400 = 0.15112800$                                                                                                               |
| н                  | 3 768479 2 134938 14 353672                                 | H -0.61426900 1.90739900 -0.99857400                                                                                                                      |
| $\hat{\mathbf{C}}$ | 2 222211 2 074026 11 067712                                 | C = 150227000 = 1.76601400 = 0.55051400                                                                                                                   |
| с<br>ц             | 4 042847 1 546282 12 272272                                 | U = 1.55227500 = 1.70051400 = 0.25551500                                                                                                                  |
|                    | 4.042047 1.340303 12.373272<br>2.475272 1.140600 11.102784  | $\begin{array}{c} 11 & 1.45007600 & 2.35780100 & -0.00207800 \\ C & 1.87272000 & 2.72140200 & 1.41401500 \\ \end{array}$                                  |
|                    | 2.4/33/3 1.149099 11.103/84                                 | C = 1.87375000 = 2.73140200 = 1.41491500                                                                                                                  |
| п                  | 2.168299 0.409628 11.631891                                 | H 1.04283000 3.43128100 1.33883400                                                                                                                        |
| п                  | 3.003518 0.822301 10.372559                                 | H 2.78865000 3.29865100 1.22579200                                                                                                                        |
| Н                  | 1.720708 1.633943 10.761869                                 | H 1.99769000 2.17265500 2.34584300                                                                                                                        |
| C                  | 3.946546 3.250374 11.225655                                 | C = 2.76825300 = 0.83587100 = 0.04573100                                                                                                                  |
| С                  | 3.223981 3.999582 10.308916                                 | C 2.88085300 -0.36216200 0.74826400                                                                                                                       |
| Η                  | 2.357873 3.741470 10.088194                                 | H 2.08323000 -0.65427200 1.42151500                                                                                                                       |
| С                  | 3.771507 5.130246 9.711072                                  | C 3.98590100 -1.18562400 0.58191800                                                                                                                       |
| Η                  | 3.274858 5.625911 9.099686                                  | H 4.06915600 -2.11889600 1.12625300                                                                                                                       |
| С                  | 5.036752 5.501804 10.026920                                 | C 4.99054200 -0.80538400 -0.29641800                                                                                                                      |
| С                  | 5.788388 4.785336 10.931134                                 | C 4.90121100 0.38017000 -1.01058200                                                                                                                       |
| Η                  | 6.652074 5.053345 11.147793                                 | Н 5.68979100 0.65928100 -1.69916700                                                                                                                       |
| С                  | 5.231777 3.655433 11.513744                                 | C 3.78747200 1.19083000 -0.83463400                                                                                                                       |
| Η                  | 5.739329 3.159007 12.115989                                 | Н 3.71294900 2.11594300 -1.39967000                                                                                                                       |
|                    | (d)                                                         | I–Br                                                                                                                                                      |
| Br                 | 5.785741 3.166512 26.255661                                 | Br 5.86998800 -1.39951500 -0.22953100                                                                                                                     |
| N                  | 2,458566 -1,191467 30,126340                                | N -0.38595000 1.31978100 0.50409000                                                                                                                       |
| C                  | 2 229173 -0 700773 32 458802                                | C = -2.62549100 = 0.58946900 = 0.03234400                                                                                                                 |
| C                  | 2.847143 -0.714574 33.680067                                | C -3.66569100 0.61704700 -0.86822200                                                                                                                      |
| н                  | 3 673323 -1 133964 33 760579                                | H -3 56847000 1 18610100 -1 78969300                                                                                                                      |
| C                  | 2 267909 -0 110406 34 828293                                | C -4.86801900 -0.08472100 -0.62457400                                                                                                                     |
| C                  | 2 914932 -0 068237 36 078434                                | $C_{-5} = 94726700 = 0.07159800 = 1.53914600$                                                                                                             |
| н                  | 3 745349 -0.473060 36 182725                                | H -5 84718700 0 49721500 -2 45874700                                                                                                                      |
| $\hat{C}$          | 2 332672 0 560465 37 132560                                 | C = 7.09992100 = 0.76394300 = 1.27180600                                                                                                                  |
| н                  | 2 769670 0 581933 37 952605                                 | H $_{-7}$ 92140900 $_{-0.74736000}$ $_{-1.27160000}$                                                                                                      |
| $\int_{C}$         | 1 088257 1 173833 37 000072                                 | $C_{-7}$ 22464800 $_{-1}$ 50071600 $_{-1.0010000}$                                                                                                        |
| Ч                  | 0.709970 1.612391 37.728415                                 | H $_{-8}$ 14143300 $_{-2}$ 04509300 $_{-1.50071000}$ 0 12461200                                                                                           |
|                    | 0.420656 1.136264 25.808262                                 | C = 6.19502300 = 1.53184700 = 0.12401200                                                                                                                  |
| с<br>ц             | 0.415208 1.537254 35.724205                                 | H = 6.28975800 - 2.0994/900 - 1.75045400                                                                                                                  |
|                    | -0.415200 $1.557254$ $55.7545050 000005 0 402761 24 697000$ | $\begin{array}{c} 11 - 0.20975000 - 2.09944000 - 1.75005400 \\ \hline \\$ |
|                    | 0.770203 0.473701 34.007992                                 | C = 4.77427000 = 0.02741700 = 0.00007000                                                                                                                  |
|                    | 0.047040 0.400100 00.474704                                 | L V9.20072200 -0.00202000 L42700100                                                                                                                       |

| Η | -0.496313 0.839547 33.332541 | H -4.00925300 -1.40773100 2.41712600 |
|---|------------------------------|--------------------------------------|
| С | 0.951469 -0.095839 32.351793 | C -2.75860700 -0.15356700 1.23368600 |
| Н | 0.519313 -0.084338 31.528671 | H -1.92551200 -0.15554500 1.92696800 |
| С | 2.922801 -1.258938 31.303442 | C -1.39456500 1.32683900 -0.26269900 |
| Η | 3.739902 -1.682928 31.436948 | H -1.39711500 1.89623800 -1.20672900 |
| С | 3.296851 -1.748866 29.046395 | C 0.76966500 2.10055300 0.11407300   |
| Н | 4.017111 -2.274829 29.453030 | Н 0.61165800 2.57155000 -0.87145900  |
| С | 2.442224 -2.683485 28.193378 | C 0.98746900 3.20540200 1.15076500   |
| Η | 2.959721 -3.001670 27.448730 | H 1.87085300 3.79800400 0.89956000   |
| Η | 1.674754 -2.206591 27.866575 | H 1.13421700 2.76523600 2.14016500   |
| Η | 2.154120 -3.428727 28.726047 | H 0.11767000 3.86666000 1.19149200   |
| С | 3.916032 -0.578099 28.312278 | C 1.99470000 1.21461100 0.01351500   |
| С | 5.201604 -0.174043 28.603411 | C 2.98258600 1.49205800 -0.92791100  |
| Η | 5.705181 -0.666271 29.211835 | H 2.85070100 2.32059700 -1.61843900  |
| С | 5.759654 0.942287 28.015030  | C 4.13822200 0.72471100 -1.00676200  |
| Η | 6.624571 1.206802 28.233464  | H 4.89996900 0.94642100 -1.74457700  |
| С | 5.013369 1.663761 27.096788  | C 4.30018500 -0.33820200 -0.13026300 |
| С | 3.741112 1.278106 26.768966  | C 3.32783700 -0.64094500 0.81305800  |
| Η | 3.246615 1.762666 26.147633  | H 3.46460000 -1.47913000 1.48592900  |
| С | 3.200615 0.152575 27.376031  | C 2.18073600 0.13847800 0.87921600   |
| Η | 2.339935 -0.118073 27.149783 | Н 1.40749500 -0.09669500 1.60167000  |





(Å) 0.60.81.01.21.41.61.82.02.22.42.62.8



(a)

0.6

I–F

 $d_i$ 





(b)



**Figure S1.** Hirshfeld surfaces (d<sub>norm</sub> mapping) (left) and fingerprint plots (right) of halogen bonds C–X…H for (a) **I–F**, (b) **I–Cl** and (c) **I–Br** compounds.



**Figure S2.** Numbering convention used in the theoretical calculations PBE1PBE/6-311G(d,p) for (a) **I**, (b) **I**–**F**, (c) **I**–**Cl** and (d) **I**–**Br** compounds. For compound (b) **I**–**F** atom H17A is substituted by F1, for (c) by Cl1 and for (d) by Br1.

**Table S2.** RMSD parameter between X-ray experimental and calculated structures for internal coordinates of (a) **I**, (b) **I**–**F**, (c) **I**–**Cl** and (d) **I**–**Br** compounds. Theory level of calculations is PBE1PBE/6-311G(d,p). RMSD is calculated from standard equation  $\sqrt{\frac{1}{n}\sum_{i=1}^{n}|v_i - w_i|^2}$  for *n* data for internal coordinate: Bond length, valence angle or dihedral angle for w<sub>i</sub> predicted values respect to v<sub>i</sub> experimental values. Numbering convention is shown in Figure S2.

| Parameter    | X-ray    | Calculated | RMSD |
|--------------|----------|------------|------|
| (a) <b>I</b> |          |            |      |
| N1 C11       | 1.260(5) | 1.26667    |      |
| N1 C12       | 1.465(5) | 1.44880    |      |
| C1 C2        | 1.368(5) | 1.37603    |      |
| C1 C10       | 1.415(5) | 1.41876    |      |
| C1 C11       | 1.470(5) | 1.46541    |      |
| C2 C3        | 1.417(5) | 1.41332    |      |
| C2 H2A       | 0.9300   | 1.08737    |      |
| C3 C4        | 1.409(5) | 1.41474    |      |
| C3 C8        | 1.420(5) | 1.42454    |      |
| C4 C5        | 1.356(6) | 1.37092    |      |
| C4 H4A       | 0.9300   | 1.08596    |      |
| C5 C6        | 1.399(7) | 1.40995    |      |
| C5 H5A       | 0.9300   | 1.08490    |      |

| C6 C7      | 1.370(6) | 1.37187   |            |
|------------|----------|-----------|------------|
| C6 H6A     | 0.9300   | 1.08497   |            |
| C7 C8      | 1.418(5) | 1.41285   |            |
| C7 H7A     | 0.9300   | 1.08586   |            |
| C8 C9      | 1.411(5) | 1.41900   |            |
| C9 C10     | 1.365(5) | 1.36493   |            |
| C9 H9A     | 0.9300   | 1.08605   |            |
| C10 H10A   | 0.9300   | 1.08385   |            |
| C11 H11A   | 0.9300   | 1.10265   |            |
| C12 C14    | 1.523(5) | 1.51555   |            |
| C12 C13    | 1.528(8) | 1.53058   |            |
| C12 H12A   | 0.9800   | 1.10369   |            |
| C13 H13A   | 0.9600   | 1.09298   |            |
| C13 H13B   | 0.9600   | 1.09358   |            |
| C13 H13C   | 0.9600   | 1.09280   |            |
| C14 C19    | 1.362(6) | 1.39314   |            |
| C14 C15    | 1.384(6) | 1.39324   |            |
| C19 C18    | 1.386(7) | 1.38892   |            |
| C19 H19A   | 0.9300   | 1.08690   |            |
| C18 C17    | 1.361(9) | 1.38928   |            |
| C18 H18A   | 0.9300   | 1.08533   |            |
| C17 C16    | 1.359(9) | 1.39042   |            |
| C17 H17A   | 0.9300   | 1.08506   |            |
| C16 C15    | 1.375(6) | 1.38893   |            |
| C16 H16A   | 0.9300   | 1.08543   |            |
| C15 H15A   | 0.9300   | 1.08428   | 0.10031687 |
| C11 N1 C12 | 117.7(4) | 117.92149 |            |
| C2 C1 C10  | 119.4(3) | 119.54771 |            |
| C2 C1 C11  | 119.5(3) | 119.55857 |            |
| C10 C1 C11 | 121.1(3) | 120.89371 |            |
| C1 C2 C3   | 121.5(3) | 121.36997 |            |
| C1 C2 H2A  | 119.2    | 119.83684 |            |
| C3 C2 H2A  | 119.2    | 118.79311 |            |
| C4 C3 C2   | 122.1(3) | 122.20318 |            |
| C4 C3 C8   | 119.3(3) | 119.01892 |            |
| C2 C3 C8   | 118.6(3) | 118.77789 |            |
| C5 C4 C3   | 120.5(4) | 120.72507 |            |
| C5 C4 H4A  | 119.7    | 120.45308 |            |
| C3 C4 H4A  | 119.7    | 118.82185 |            |
| C4 C5 C6   | 120.8(4) | 120.24279 |            |
| C4 C5 H5A  | 119.6    | 120.10912 |            |
| C6 C5 H5A  | 119.6    | 119.64808 |            |
| C7 C6 C5   | 120.5(4) | 120.34756 |            |
| C7 C6 H6A  | 119.7    | 120.04741 |            |
| C5 C6 H6A  | 119.7    | 119.60503 |            |
| C6 C7 C8   | 120.2(4) | 120.76875 |            |
| C6 C7 H7A  | 119.9    | 120.43730 |            |
| C8 C7 H7A  | 119.9    | 118.79395 |            |

| C9 C8 C7                                          | 122.4(3)             | 122.32437  |            |
|---------------------------------------------------|----------------------|------------|------------|
| C9 C8 C3                                          | 118.9(3)             | 118.89691  |            |
| C7 C8 C3                                          | 118.6(3)             | 118.77871  |            |
| C10 C9 C8                                         | 121.0(3)             | 121.12773  |            |
| C10 C9 H9A                                        | 119.5                | 120.27189  |            |
| C8 C9 H9A                                         | 119.5                | 118.60038  |            |
| C9 C10 C1                                         | 120.5(3)             | 120.39783  |            |
| C9 C10 H10A                                       | 119.7                | 121.59480  |            |
| C1 C10 H10A                                       | 119.7                | 118.00735  |            |
| N1 C11 C1                                         | 122.4(3)             | 122.98867  |            |
| N1 C11 H11A                                       | 118.8                | 121.53967  |            |
| C1 C11 H11A                                       | 118.8                | 115.47166  |            |
| N1 C12 C14                                        | 109.3(3)             | 110.48918  |            |
| N1 C12 C13                                        | 108.0(4)             | 108.62314  |            |
| C14 C12 C13                                       | 110.3(3)             | 110.64504  |            |
| N1 C12 H12A                                       | 109.8                | 110 75846  |            |
| C14 C12 H12A                                      | 109.8                | 107 85234  |            |
| C13 C12 H12A                                      | 109.8                | 108 45600  |            |
| C12 C13 H13A                                      | 109.5                | 110 41535  |            |
| C12 C13 H13B                                      | 109.5                | 110.41935  |            |
| H13A C13 H13B                                     | 109.5                | 10.49027   |            |
| C12 C13 H13C                                      | 109.5                | 100.90509  |            |
| $H_{12}^{12} C_{13}^{13} H_{13}^{13} C_{13}^{13}$ | 109.5                | 109.93030  |            |
| H12B C12 H12C                                     | 109.5                | 108.32731  |            |
| $C_{10} C_{14} C_{15}$                            | 109.5<br>117.6(4)    | 110.40740  |            |
| $C_{19} C_{14} C_{13}$                            | 117.0(4)<br>121.2(4) | 121 15422  |            |
| C19 C14 C12<br>C15 C14 C12                        | 121.3(4)<br>121.1(4) | 121.13422  |            |
| C13 C14 C12<br>C14 C10 C18                        | 121.1(4)<br>121.1(5) | 119.94037  |            |
| C14 C19 C18                                       | 121.1(3)             | 120.75555  |            |
| C14 C19 H19A                                      | 119.4                | 119.40555  |            |
| C17 C18 C19 H19A                                  | 119.4                | 119.7607   |            |
| C17 C18 C19                                       | 120.8(5)             | 120.04072  |            |
| C17 C18 H18A                                      | 119.6                | 120.12752  |            |
| C19 C18 H18A                                      | 119.6                | 119.83032  |            |
| C16 C17 C18                                       | 118.6(4)             | 119.55063  |            |
|                                                   | 120.7                | 120.24876  |            |
| C18 C17 H17A                                      | 120.7                | 120.19959  |            |
| C17 C16 C15                                       | 121.0(5)             | 120.33516  |            |
| C17 C16 H16A                                      | 119.5                | 119.96136  |            |
| C15 C16 H16A                                      | 119.5                | 119.70312  |            |
| C16 C15 C14                                       | 120.9(5)             | 120.45194  |            |
| C16 C15 H15A                                      | 119.6                | 120.59206  |            |
| C14 C15 H15A                                      | 119.6                | 118.94916  | 1.54509014 |
| C10 C1 C2 C3                                      | -1.2(5)              | -0.10803   |            |
| C11 C1 C2 C3                                      | 176.6(3)             | 179.88347  |            |
| C1 C2 C3 C4                                       | -178.3(3)            | -179.96561 |            |
| C1 C2 C3 C8                                       | 0.3(4)               | -0.00751   |            |
| C2 C3 C4 C5                                       | 177.6(3)             | 179.95329  |            |
| C8 C3 C4 C5                                       | -1.0(5)              | -0.01231   |            |

| C3 C4 C5 C6                          | 0.0(6)    | -0.00751              |            |
|--------------------------------------|-----------|-----------------------|------------|
| C4 C5 C6 C7                          | 1.4(7)    | 0.01588               |            |
| C5 C6 C7 C8                          | -1.6(6)   | -0.00389              |            |
| C6 C7 C8 C9                          | -178.4(3) | 179.95585             |            |
| C6 C7 C8 C3                          | 0.5(5)    | -0.01588              |            |
| C4 C3 C8 C9                          | 179.7(3)  | -179.94897            |            |
| C2 C3 C8 C9                          | 1.1(4)    | 0.08424               |            |
| C4 C3 C8 C7                          | 0.8(4)    | 0.02377               |            |
| C2 C3 C8 C7                          | -177.9(3) | -179.94302            |            |
| C7 C8 C9 C10                         | 177.4(3)  | 179.9674              |            |
| C3 C8 C9 C10                         | -1.6(5)   | -0.06084              |            |
| C8 C9 C10 C1                         | 0.6(5)    | -0.04741              |            |
| C2 C1 C10 C9                         | 0.8(5)    | 0.13252               |            |
| C11 C1 C10 C9                        | -177.0(3) | -179.85886            |            |
| C12 N1 C11 C1                        | 178.1(3)  | -179.25575            |            |
| C2 C1 C11 N1                         | 179.9(3)  | -179.53596            |            |
| $C_10$ $C_1$ $C_{11}$ $N_1$          | -2 4(5)   | 0 45542               |            |
| $C_{11} N_1 C_{12} C_{14}$           | -123.3(4) | -123 00938            |            |
| C11 N1 C12 C13                       | 1167(4)   | 115 44974             |            |
| N1 C12 C14 C19                       | 1420(4)   | 145 33193             |            |
| $C_{13}C_{12}C_{14}C_{19}$           | -99 5(6)  | -94 33065             |            |
| N1 C12 C14 C15                       | -40.0(6)  | -36 77324             |            |
| $C_{13} C_{12} C_{14} C_{15}$        | 78 6(5)   | -50.77524<br>83 56/19 |            |
| $C_{15} C_{12} C_{14} C_{15} C_{15}$ | 0.3(7)    | -0.42354              |            |
| $C_{12} C_{14} C_{19} C_{18}$        | 178 5(5)  | -0.42334              |            |
| C12 C14 C19 C10<br>C14 C19 C18 C17   | 1.0(8)    | 0.27225               |            |
| C14 C19 C10 C17                      | -1.0(0)   | 0.27525               |            |
| C19 C18 C17 C16                      | 0.9(0)    | -0.05056              |            |
| $C_{10} C_{17} C_{10} C_{15} C_{15}$ | -0.2(0)   | -0.21730              |            |
|                                      | -0.5(8)   | 0.06291               |            |
| C19 C14 C15 C16                      | 0.4(7)    | 0.20026               | 1 002512/7 |
| C12 C14 C15 C16                      | -177.6(5) | -177.00105            | 1.99231207 |
| RMSD <sub>tot</sub>                  |           |                       | 1.46403028 |
| (b) <b>I</b> –F                      |           |                       |            |
| F1 C17                               | 1.367(6)  | 1.34251               |            |
| N1 C11                               | 1.277(6)  | 1.26683               |            |
| N1 C12                               | 1.462(7)  | 1.44824               |            |
| C1 C2                                | 1.364(7)  | 1.37610               |            |
| C1 C10                               | 1.430(7)  | 1.41875               |            |
| C1 C11                               | 1.467(7)  | 1.46517               |            |
| C2 C3                                | 1.417(7)  | 1.41331               |            |
| C2 H2A                               | 0.9300    | 1.08738               |            |
| C3 C4                                | 1.405(7)  | 1.41474               |            |
| C3 C8                                | 1.428(7)  | 1.42454               |            |
| C4 C5                                | 1.365(7)  | 1.37093               |            |
| C4 H4A                               | 0.9300    | 1.08595               |            |
|                                      |           |                       |            |

| C5 H5A     | 0.9300   | 1.08486   |            |
|------------|----------|-----------|------------|
| C6 C7      | 1.347(8) | 1.37185   |            |
| C6 H6A     | 0.9300   | 1.08496   |            |
| C7 C8      | 1.413(7) | 1.41280   |            |
| C7 H7A     | 0.9300   | 1.08584   |            |
| C8 C9      | 1.408(7) | 1.41899   |            |
| C9 C10     | 1.356(7) | 1.36489   |            |
| C9 H9A     | 0.9300   | 1.08603   |            |
| C10 H10A   | 0.9300   | 1.08383   |            |
| C11 H11A   | 0.9300   | 1.10249   |            |
| C12 C14    | 1.507(7) | 1.51566   |            |
| C12 C13    | 1.540(8) | 1.53063   |            |
| C12 H12A   | 0.9800   | 1.10383   |            |
| C13 H13A   | 0.9600   | 1.09300   |            |
| C13 H13B   | 0.9600   | 1.09283   |            |
| C13 H13C   | 0.9600   | 1.09351   |            |
| C14 C15    | 1.381(7) | 1.39324   |            |
| C14 C19    | 1.389(7) | 1.39418   |            |
| C15 C16    | 1.383(8) | 1.38927   |            |
| C15 H15A   | 0.9300   | 1.08651   |            |
| C16 C17    | 1.348(9) | 1.38278   |            |
| C16 H16A   | 0.9300   | 1.08385   |            |
| C17 C18    | 1.357(9) | 1.38339   |            |
| C18 C19    | 1.384(8) | 1.38848   |            |
| C18 H18A   | 0.9300   | 1.08403   |            |
| C19 H19A   | 0.9300   | 1.08383   | 0.09710186 |
| C11 N1 C12 | 117.2(5) | 118.01050 |            |
| C2 C1 C10  | 118.6(5) | 119.55712 |            |
| C2 C1 C11  | 120.2(5) | 119.56088 |            |
| C10 C1 C11 | 121.2(5) | 120.88197 |            |
| C1 C2 C3   | 122.3(5) | 121.36489 |            |
| C1 C2 H2A  | 118.9    | 119.82686 |            |
| C3 C2 H2A  | 118.9    | 118.80807 |            |
| C4 C3 C2   | 122.8(5) | 122.20854 |            |
| C4 C3 C8   | 118.9(5) | 119.02009 |            |
| C2 C3 C8   | 118.2(5) | 118.77136 |            |
| C5 C4 C3   | 120.6(5) | 120.72073 |            |
| C5 C4 H4A  | 119.7    | 120.44878 |            |
| C3 C4 H4A  | 119.7    | 118.83048 |            |
| C4 C5 C6   | 120.7(6) | 120.24396 |            |
| C4 C5 H5A  | 119.7    | 120.10426 |            |
| C6 C5 H5A  | 119.7    | 119.65178 |            |
| C7 C6 C5   | 120.0(6) | 120.34974 |            |
| C7 C6 H6A  | 120.0    | 120.04493 |            |
| C5 C6 H6A  | 120.0    | 119.60533 |            |
| C6 C7 C8   | 121.7(6) | 120.76647 |            |
| C6 C7 H7A  | 119.1    | 120.42534 |            |
| C8 C7 H7A  | 119.1    | 118.80819 |            |

| C9 C8 C7      | 123.3(5)  | 122.31227  |            |
|---------------|-----------|------------|------------|
| C9 C8 C3      | 118.7(5)  | 118.78872  |            |
| C7 C8 C3      | 118.0(5)  | 118.89901  |            |
| C10 C9 C8     | 121.5(5)  | 121.12619  |            |
| C10 C9 H9A    | 119.2     | 120.27063  |            |
| C8 C9 H9A     | 119.2     | 118.60317  |            |
| C9 C10 C1     | 120.7(5)  | 120.39144  |            |
| C9 C10 H10A   | 119.7     | 121.56613  |            |
| C1 C10 H10A   | 119.7     | 118.04233  |            |
| N1 C11 C1     | 122.0(5)  | 122.96731  |            |
| N1 C11 H11A   | 119.0     | 121.54447  |            |
| C1 C11 H11A   | 119.0     | 115.48818  |            |
| N1 C12 C14    | 109.8(5)  | 110.45749  |            |
| N1 C12 C13    | 109.0(5)  | 108.59162  |            |
| C14 C12 C13   | 110.1(5)  | 110.74057  |            |
| N1 C12 H12A   | 109.3     | 110.79209  |            |
| C14 C12 H12A  | 109.3     | 107.81728  |            |
| C13 C12 H12A  | 109.3     | 108.42669  |            |
| C12 C13 H13A  | 109.5     | 110.45985  |            |
| C12 C13 H13B  | 109.5     | 109.96850  |            |
| H13A C13 H13B | 109.5     | 108.51806  |            |
| C12 C13 H13C  | 109.5     | 110.49556  |            |
| H13A C13 H13C | 109.5     | 108.86260  |            |
| H13B C13 H13C | 109.5     | 108.48187  |            |
| C15 C14 C19   | 117.6(5)  | 118.68640  |            |
| C15 C14 C12   | 120.6(6)  | 119.98365  |            |
| C19 C14 C12   | 121.7(5)  | 121.29797  |            |
| C14 C15 C16   | 121.8(6)  | 121.19824  |            |
| C14 C15 H15A  | 119.1     | 119.62378  |            |
| C16 C15 H15A  | 119.1     | 119.17751  |            |
| C17 C16 C15   | 118.3(6)  | 118.57310  |            |
| C17 C16 H16A  | 120.8     | 119.62889  |            |
| C15 C16 H16A  | 120.8     | 121.79618  |            |
| C16 C17 C18   | 122.8(6)  | 121.77065  |            |
| C16 C17 F1    | 118.6(7)  | 119.08388  |            |
| C18 C17 F1    | 118.6(7)  | 119.14448  |            |
| C17 C18 C19   | 118.7(6)  | 118.87949  |            |
| C17 C18 H18A  | 120.7     | 119.46526  |            |
| C19 C18 H18A  | 120.7     | 121.65480  |            |
| C18 C19 C14   | 120.9(6)  | 120.89056  |            |
| C18 C19 H19A  | 119.5     | 120.10912  |            |
| C14 C19 H19A  | 119.5     | 118.99383  | 0.95965786 |
| C10 C1 C2 C3  | 2.0(7)    | 0.19337    |            |
| C11 C1 C2 C3  | -175.6(4) | -179.75204 |            |
| C1 C2 C3 C4   | 177.6(4)  | 179.87004  |            |
| C1 C2 C3 C8   | 0.1(7)    | -0.10212   |            |
| C2 C3 C4 C5   | -175.7(5) | -179.95739 |            |
| C8 C3 C4 C5   | 1.7(7)    | 0.01470    |            |

| C3 C4 C5 C6     | -0 9(9)   | -0 02024   |            |
|-----------------|-----------|------------|------------|
| C4 C5 C6 C7     | -0.8(9)   | 0.00650    |            |
| C5 C6 C7 C8     | 1.5(9)    | 0.01274    |            |
| C6 C7 C8 C9     | 178.8(5)  | -179,99932 |            |
| C6 C7 C8 C3     | -0.6(8)   | -0.01785   |            |
| C4 C3 C8 C9     | 179.6(5)  | 179.98637  |            |
| C2 C3 C8 C9     | -2.8(6)   | -0.04057   |            |
| C4 C3 C8 C7     | -1.0(7)   | 0.00423    |            |
| C2 C3 C8 C7     | 176.6(5)  | 179.97729  |            |
| C7 C8 C9 C10    | -176.0(5) | -179.92749 |            |
| C3 C8 C9 C10    | 3.4(7)    | 0.09102    |            |
| C8 C9 C10 C1    | -1.3(8)   | -0.00096   |            |
| C2 C1 C10 C9    | -1.5(7)   | -0.14170   |            |
| C11 C1 C10 C9   | 176.1(5)  | 179.80298  |            |
| C12 N1 C11 C1   | -178.4(4) | 179.16131  |            |
| C2 C1 C11 N1    | 178.4(4)  | 178.53447  |            |
| C10 C1 C11 N1   | 0.9(7)    | -1.41019   |            |
| C11 N1 C12 C14  | 134.2(5)  | 123.17434  |            |
| C11 N1 C12 C13  | -105.2(6) | -115.20676 |            |
| N1 C12 C14 C15  | -150.1(5) | -148.48630 |            |
| C13 C12 C14 C15 | 90.0(7)   | 91.17412   |            |
| N1 C12 C14 C19  | 33.7(7)   | 33.59768   |            |
| C13 C12 C14 C19 | -86.2(7)  | -86.74190  |            |
| C19 C14 C15 C16 | 0.4(8)    | 0.43953    |            |
| C12 C14 C15 C16 | -175.9(5) | -177.53065 |            |
| C14 C15 C16 C17 | -0.2(9)   | -0.25738   |            |
| C15 C16 C17 C18 | -0.6(9)   | -0.11017   |            |
| C15 C16 C17 F1  | 179.1(5)  | -179.74501 |            |
| C16 C17 C18 C19 | 1.0(9)    | 0.28169    |            |
| F1 C17 C18 C19  | -178.6(5) | 179.91631  |            |
| C17 C18 C19 C14 | -0.8(8)   | -0.09029   |            |
| C15 C14 C19 C18 | 0.1(8)    | -0.26208   |            |
| C12 C14 C19 C18 | 176.3(5)  | 177.68031  | 3.04837903 |
| RMSDtot         |           |            | 1.72332805 |
|                 |           |            |            |
| (c) <b>I–Cl</b> |           |            |            |
| Cl1 C17         | 1.746(6)  | 1.74185    |            |
| N1 C11          | 1.266(5)  | 1.26699    |            |
| N1 C12          | 1.473(6)  | 1.44791    |            |
| C1 C2           | 1.369(5)  | 1.37616    |            |
| C1 C10          | 1.428(5)  | 1.41876    |            |
| C1 C11          | 1.461(5)  | 1.46488    |            |
| C2 C3           | 1.413(5)  | 1.41319    |            |
| C2 H2A          | 0.9300    | 1.08739    |            |
| C3 C4           | 1.413(5)  | 1.41474    |            |
| C3 C8           | 1.432(5)  | 1.42444    |            |
| C4 C5           | 1.365(6)  | 1.37088    |            |

| C4 H4A     | 0.9300   | 1.08594   |            |
|------------|----------|-----------|------------|
| C5 C6      | 1.405(7) | 1.40988   |            |
| C5 H5A     | 0.9300   | 1.08486   |            |
| C6 C7      | 1.367(6) | 1.37189   |            |
| C6 H6A     | 0.9300   | 1.08496   |            |
| C7 C8      | 1.415(5) | 1.41282   |            |
| C7 H7A     | 0.9300   | 1.08586   |            |
| C8 C9      | 1.413(5) | 1.41907   |            |
| C9 C10     | 1.351(5) | 1.36492   |            |
| C9 H9A     | 0.9300   | 1.08602   |            |
| C10 H10A   | 0.9300   | 1.08381   |            |
| C11 H11A   | 0.9300   | 1.10247   |            |
| C12 C13    | 1.523(7) | 1.53114   |            |
| C12 C14    | 1.524(7) | 1.51508   |            |
| C12 H12A   | 0.9800   | 1.10374   |            |
| C13 H13A   | 0.9600   | 1.09340   |            |
| C13 H13B   | 0.9600   | 1.09299   |            |
| C13 H13C   | 0.9600   | 1.09279   |            |
| C14 C19    | 1.378(7) | 1.39278   |            |
| C14 C15    | 1.387(6) | 1.39338   |            |
| C15 C16    | 1.391(7) | 1.38813   |            |
| C15 H15A   | 0.9300   | 1.08388   |            |
| C16 C17    | 1.356(8) | 1.38757   |            |
| C16 H16A   | 0.9300   | 1.08362   |            |
| C17 C18    | 1.377(8) | 1.38692   |            |
| C18 C19    | 1.388(8) | 1.38872   |            |
| C18 H18A   | 0.9300   | 1.08347   |            |
| C19 H19A   | 0.9300   | 1.08658   | 0.09681894 |
| C11 N1 C12 | 117.0(4) | 117.92634 |            |
| C2 C1 C10  | 118.3(4) | 119.56175 |            |
| C2 C1 C11  | 120.1(3) | 119.48036 |            |
| C10 C1 C11 | 121.6(4) | 120.95788 |            |
| C1 C2 C3   | 122.4(3) | 121.36634 |            |
| C1 C2 H2A  | 118.8    | 119.84149 |            |
| C3 C2 H2A  | 118.8    | 118.79210 |            |
| C2 C3 C4   | 123.2(3) | 122.19172 |            |
| C2 C3 C8   | 118.4(3) | 118.77379 |            |
| C4 C3 C8   | 118.4(3) | 119.03449 |            |
| C5 C4 C3   | 121.5(4) | 120.71234 |            |
| C5 C4 H4A  | 119.3    | 120.45037 |            |
| C3 C4 H4A  | 119.3    | 118.83728 |            |
| C4 C5 C6   | 120.0(4) | 120.24080 |            |
| C4 C5 H5A  | 120.0    | 120.11344 |            |
| C6 C5 H5A  | 120.0    | 119.64576 |            |
| C7 C6 C5   | 120.5(4) | 120.36237 |            |
| C7 C6 H6A  | 119.8    | 120.03453 |            |
| C5 C6 H6A  | 119.8    | 119.60310 |            |
| C6 C7 C8   | 121.1(4) | 120.75471 |            |

| C6 C7 H7A     | 119.5     | 120.43805 |             |
|---------------|-----------|-----------|-------------|
| C8 C7 H7A     | 119.5     | 118.80723 |             |
| C9 C8 C7      | 123.2(4)  | 122.31830 |             |
| C9 C8 C3      | 118.2(4)  | 118.78638 |             |
| C7 C8 C3      | 118.5(4)  | 118.89529 |             |
| C10 C9 C8     | 121.8(4)  | 121.13266 |             |
| C10 C9 H9A    | 119.1     | 120.26196 |             |
| C8 C9 H9A     | 119.1     | 118.60534 |             |
| C9 C10 C1     | 120.9(4)  | 120.37885 |             |
| C9 C10 H10A   | 119.5     | 121.55349 |             |
| C1 C10 H10A   | 119.5     | 118.06756 |             |
| N1 C11 C1     | 123.4(4)  | 123.03896 |             |
| N1 C11 H11A   | 118.3     | 121.49693 |             |
| C1 C11 H11A   | 118.3     | 115.46410 |             |
| N1 C12 C13    | 109.2(5)  | 108.64251 |             |
| N1 C12 C14    | 107.4(4)  | 110.50786 |             |
| C13 C12 C14   | 114.8(4)  | 110.54207 |             |
| N1 C12 H12A   | 108.4     | 110.84220 |             |
| C13 C12 H12A  | 108.4     | 108.41609 |             |
| C14 C12 H12A  | 108.4     | 107.87159 |             |
| C12 C13 H13A  | 109.5     | 110.41999 |             |
| C12 C13 H13B  | 109.5     | 110.50069 |             |
| H13A C13 H13B | 109.5     | 108.87436 |             |
| C12 C13 H13C  | 109.5     | 109.97462 |             |
| H13A C13 H13C | 109.5     | 108.48711 |             |
| H13B C13 H13C | 109.5     | 108.53061 |             |
| C19 C14 C15   | 117.7(5)  | 118.59954 |             |
| C19 C14 C12   | 120.5(5)  | 120.03805 |             |
| C15 C14 C12   | 121.7(5)  | 121.32850 |             |
| C14 C15 C16   | 121.2(5)  | 120.92809 |             |
| C14 C15 H15A  | 119.4     | 119.04067 |             |
| C16 C15 H15A  | 119.4     | 120.02558 |             |
| C17 C16 C15   | 119.3(5)  | 119.31906 |             |
| C17 C16 H16A  | 120.3     | 119.89160 |             |
| C15 C16 H16A  | 120.3     | 120.78905 |             |
| C16 C17 C18   | 121.3(6)  | 120.90135 |             |
| C16 C17 Cl1   | 119.5(5)  | 119.57806 |             |
| C18 C17 Cl1   | 119.2(5)  | 119.51971 |             |
| C17 C18 C19   | 118.7(5)  | 119.03920 |             |
| C17 C18 H18A  | 120.6     | 120.03852 |             |
| C19 C18 H18A  | 120.6     | 120.92084 |             |
| C14 C19 C18   | 121.7(5)  | 121.21146 |             |
| C14 C19 H19A  | 119.1     | 119.70210 |             |
| C18 C19 H19A  | 119.1     | 119.08597 | 1.128413162 |
| C10 C1 C2 C3  | -2.5(5)   | -0.09970  |             |
| C11 C1 C2 C3  | 176.0(3)  | 179.92696 |             |
| C1 C2 C3 C4   | -177.3(3) | 179.97899 |             |
| C1 C2 C3 C8   | 1.9(5)    | -0.03985  |             |

| C2 C3 C4 C5         | 177.4(4)  | 179.97641  |             |
|---------------------|-----------|------------|-------------|
| C8 C3 C4 C5         | -1.8(5)   | -0.00470   |             |
| C3 C4 C5 C6         | 1.4(6)    | -0.01907   |             |
| C4 C5 C6 C7         | -0.4(6)   | 0.01802    |             |
| C5 C6 C7 C8         | -0.3(6)   | 0.00731    |             |
| C6 C7 C8 C9         | -177.9(4) | 179.89938  |             |
| C6 C7 C8 C3         | -0.1(6)   | -0.03072   |             |
| C2 C3 C8 C9         | -0.2(5)   | 0.11487    |             |
| C4 C3 C8 C9         | 179.0(3)  | -179.90336 |             |
| C2 C3 C8 C7         | -178.1(3) | -179.95253 |             |
| C4 C3 C8 C7         | 1.1(5)    | 0.02924    |             |
| C7 C8 C9 C10        | 176.9(4)  | -179.98091 |             |
| C3 C8 C9 C10        | -0.8(5)   | -0.05073   |             |
| C8 C9 C10 C1        | 0.2(6)    | -0.08990   |             |
| C2 C1 C10 C9        | 1.4(5)    | 0.16596    |             |
| C11 C1 C10 C9       | -177.1(4) | -179.86110 |             |
| C12 N1 C11 C1       | 177.4(4)  | -178.92816 |             |
| C2 C1 C11 N1        | -174.8(4) | -179.50971 |             |
| C10 C1 C11 N1       | 3.6(6)    | 0.51732    |             |
| C11 N1 C12 C13      | 130.7(5)  | 113.39712  |             |
| C11 N1 C12 C14      | -104.2(5) | -125.16520 |             |
| N1 C12 C14 C19      | 97.9(5)   | 149.24992  |             |
| C13 C12 C14 C19     | -140.5(5) | -90.44341  |             |
| N1 C12 C14 C15      | -77.9(6)  | -32.89788  |             |
| C13 C12 C14 C15     | 43.8(6)   | 87.40879   |             |
| C19 C14 C15 C16     | -0.7(7)   | 0.25166    |             |
| C12 C14 C15 C16     | 175.2(4)  | -177.63062 |             |
| C14 C15 C16 C17     | 0.3(8)    | 0.06701    |             |
| C15 C16 C17 C18     | -0.2(8)   | -0.24603   |             |
| C15 C16 C17 Cl1     | 179.7(4)  | -179.90243 |             |
| C16 C17 C18 C19     | 0.6(8)    | 0.09903    |             |
| Cl1 C17 C18 C19     | -179.3(4) | 179.75562  |             |
| C15 C14 C19 C18     | 1.1(7)    | -0.40311   |             |
| C12 C14 C19 C18     | -174.9(4) | 177.50730  |             |
| C17 C18 C19 C14     | -1.0(8)   | 0.23114    | 16.04746053 |
| RMSD <sub>tot</sub> |           |            | 8.444173096 |
| (d) <b>I–Br</b>     |           |            |             |
| Br1 C17             | 1.887(6)  | 1.89750    |             |
| N1 C11              | 1.267(6)  | 1.26701    |             |
| N1 C12              | 1.477(6)  | 1.44816    |             |
| C1 C2               | 1.369(6)  | 1.37615    |             |
| C1 C10              | 1.418(6)  | 1.41882    |             |
| C1 C11              | 1.459(6)  | 1.46490    |             |
| C2 C3               | 1.421(6)  | 1.41331    |             |
| C2 H2A              | 0.9300    | 1.08737    |             |
| C3 C4               | 1.408(6)  | 1.41471    |             |

| C3 C8      | 1.420(6) | 1.42466   |            |
|------------|----------|-----------|------------|
| C4 C5      | 1.358(7) | 1.37092   |            |
| C4 H4A     | 0.9300   | 1.08592   |            |
| C5 C6      | 1.393(8) | 1.40998   |            |
| C5 H5A     | 0.9300   | 1.08486   |            |
| C6 C7      | 1.366(7) | 1.37181   |            |
| C6 H6A     | 0.9300   | 1.08496   |            |
| C7 C8      | 1.412(7) | 1.41278   |            |
| C7 H7A     | 0.9300   | 1.08584   |            |
| C8 C9      | 1.417(6) | 1.41892   |            |
| C9 C10     | 1.352(6) | 1.36484   |            |
| C9 H9A     | 0.9300   | 1.08599   |            |
| C10 H10A   | 0.9300   | 1.08383   |            |
| C11 H11A   | 0.9300   | 1.10246   |            |
| C12 C14    | 1.515(8) | 1.51516   |            |
| C12 C13    | 1.527(8) | 1.53064   |            |
| C12 H12A   | 0.9800   | 1.10367   |            |
| C13 H13A   | 0.9600   | 1.09300   |            |
| C13 H13B   | 0.9600   | 1.09279   |            |
| C13 H13C   | 0.9600   | 1.09338   |            |
| C14 C15    | 1.379(7) | 1.39254   |            |
| C14 C19    | 1.386(7) | 1.39360   |            |
| C15 C16    | 1.380(8) | 1.38944   |            |
| C15 H15A   | 0.9300   | 1.08660   |            |
| C16 C17    | 1.386(8) | 1.38718   |            |
| C16 H16A   | 0.9300   | 1.08341   |            |
| C17 C18    | 1.369(8) | 1.38815   |            |
| C18 C19    | 1.388(8) | 1.38842   |            |
| C18 H18A   | 0.9300   | 1.08352   |            |
| C19 H19A   | 0.9300   | 1.08404   | 0.09679236 |
| C11 N1 C12 | 116.8(5) | 117.98573 |            |
| C2 C1 C10  | 118.6(4) | 119.58264 |            |
| C2 C1 C11  | 119.2(4) | 119.55475 |            |
| C10 C1 C11 | 122.2(4) | 120.86259 |            |
| C1 C2 C3   | 122.2(4) | 121.35039 |            |
| C1 C2 H2A  | 118.9    | 119.83271 |            |
| C3 C2 H2A  | 118.9    | 118.81677 |            |
| C4 C3 C8   | 119.2(4) | 119.03745 |            |
| C4 C3 C2   | 122.9(4) | 122.20433 |            |
| C8 C3 C2   | 117.9(4) | 118.75821 |            |
| C5 C4 C3   | 120.4(5) | 120.70826 |            |
| C5 C4 H4A  | 119.8    | 120.47492 |            |
| C3 C4 H4A  | 119.8    | 118.81681 |            |
| C4 C5 C6   | 120.8(5) | 120.24106 |            |
| C4 C5 H5A  | 119.6    | 120.10709 |            |
| C6 C5 H5A  | 119.6    | 119.65185 |            |
| C7 C6 C5   | 120.5(5) | 120.36480 |            |
| C7 C6 H6A  | 119.8    | 120.04282 |            |

| C5 C6 H6A                    | 119.8                | 119.59238 |           |
|------------------------------|----------------------|-----------|-----------|
| C6 C7 C8                     | 120.5(5)             | 120.75838 |           |
| C6 C7 H7A                    | 119.8                | 120.42591 |           |
| C8 C7 H7A                    | 119.8                | 118.81568 |           |
| C7 C8 C9                     | 122.3(4)             | 122.29783 |           |
| C7 C8 C3                     | 118.6(4)             | 118.89004 |           |
| C9 C8 C3                     | 119.1(4)             | 118.81213 |           |
| C10 C9 C8                    | 121.0(4)             | 121,11873 |           |
| C10 C9 H9A                   | 119.5                | 120.29479 |           |
| C8 C9 H9A                    | 119.5                | 118.58648 |           |
| C9 C10 C1                    | 121.2(4)             | 120.37761 |           |
| C9 C10 H10A                  | 119.4                | 121 55875 |           |
| C1 C10 H10A                  | 119.4                | 118 06355 |           |
| N1 C11 C1                    | 122 7(5)             | 122 97102 |           |
| N1 C11 H11A                  | 118.6                | 122.57102 |           |
| C1 C11 H11A                  | 118.6                | 115 49901 |           |
| N1 C12 C14                   | 107.1(4)             | 110 35360 |           |
| N1 C12 C13                   | 107.1(4)<br>108.8(5) | 108 68175 |           |
| $C_{14} C_{12} C_{13}$       | 100.0(5)<br>115 5(5) | 110 60745 |           |
| N1 C12 H12A                  | 108 4                | 110.87512 |           |
| C14 $C12$ $H12A$             | 108.4                | 107 81956 |           |
| C14 C12 H12A<br>C12 C12 H12A | 100.4                | 107.01950 |           |
| C13 C12 H12A                 | 100.4                | 100.40920 |           |
| C12 C13 H13A                 | 109.5                | 110.33010 |           |
|                              | 109.5                | 109.97307 |           |
|                              | 109.5                | 108.53821 |           |
|                              | 109.5                | 110.40028 |           |
| HI3A CI3 HI3C                | 109.5                | 108.88145 |           |
| HI3B CI3 HI3C                | 109.5                | 108.46377 |           |
|                              | 118.0(6)             | 118.62726 |           |
|                              | 120.4(5)             | 120.12852 |           |
|                              | 121.6(5)             | 121.21309 |           |
| C14 C15 C16                  | 121.6(6)             | 121.22305 |           |
| C14 C15 H15A                 | 119.2                | 119.69878 |           |
| C16 C15 H15A                 | 119.2                | 119.07780 |           |
| C15 C16 C17                  | 119.1(5)             | 118.97484 |           |
| C15 C16 H16A                 | 120.5                | 120.69175 |           |
| C17 C16 H16A                 | 120.5                | 120.33219 |           |
| C18 C17 C16                  | 120.8(6)             | 120.97775 |           |
| C18 C17 Br1                  | 119.9(5)             | 119.54187 |           |
| C16 C17 Br1                  | 119.3(4)             | 120.97775 |           |
| C17 C18 C19                  | 119.1(6)             | 119.25286 |           |
| C17 C18 H18A                 | 120.5                | 120.15238 |           |
| C19 C18 H18A                 | 120.5                | 120.59437 |           |
| C14 C19 C18                  | 121.4(5)             | 120.94282 |           |
| C14 C19 H19A                 | 119.3                | 119.09743 |           |
| C18 C19 H19A                 | 119.3                | 119.95288 | 1.1739708 |
| C10 C1 C2 C3                 | -1.9(7)              | -0.20027  |           |
| C11 C1 C2 C3                 | 175.8(4)             | 179.74200 |           |

| C1 C2 C3 C4         | -177.3(4) | -179.83897 |            |
|---------------------|-----------|------------|------------|
| C1 C2 C3 C8         | 1.5(6)    | 0.15722    |            |
| C8 C3 C4 C5         | -1.0(7)   | -0.01243   |            |
| C2 C3 C4 C5         | 177.9(5)  | 179.98375  |            |
| C3 C4 C5 C6         | 0.0(8)    | 0.02209    |            |
| C4 C5 C6 C7         | 1.0(8)    | -0.00766   |            |
| C5 C6 C7 C8         | -1.0(8)   | -0.01651   |            |
| C6 C7 C8 C9         | -178.1(5) | -179.96544 |            |
| C6 C7 C8 C3         | 0.0(7)    | 0.02566    |            |
| C4 C3 C8 C7         | 0.9(6)    | -0.01124   |            |
| C2 C3 C8 C7         | -178.0(4) | 179.99246  |            |
| C4 C3 C8 C9         | 179.1(4)  | 179.98018  |            |
| C2 C3 C8 C9         | 0.2(6)    | -0.01613   |            |
| C7 C8 C9 C10        | 176.5(5)  | 179.91106  |            |
| C3 C8 C9 C10        | -1.7(7)   | -0.08005   |            |
| C8 C9 C10 C1        | 1.4(7)    | 0.03905    |            |
| C2 C1 C10 C9        | 0.4(7)    | 0.10118    |            |
| C11 C1 C10 C9       | -177.2(4) | -179.84032 |            |
| C12 N1 C11 C1       | 177.4(5)  | -179.28507 |            |
| C2 C1 C11 N1        | -174.6(5) | -178.23575 |            |
| C10 C1 C11 N1       | 3.0(7)    | 1.70576    |            |
| C11 N1 C12 C14      | -104.2(5) | -122.39017 |            |
| C11 N1 C12 C13      | 130.3(5)  | 116.16230  |            |
| N1 C12 C14 C15      | 98.1(6)   | 147.12127  |            |
| C13 C12 C14 C15     | -140.6(6) | -92.58109  |            |
| N1 C12 C14 C19      | -79.2(6)  | -34.93602  |            |
| C13 C12 C14 C19     | 42.1(7)   | 85.36163   |            |
| C19 C14 C15 C16     | 1.7(8)    | -0.41535   |            |
| C12 C14 C15 C16     | -175.7(5) | 177.58014  |            |
| C14 C15 C16 C17     | -0.8(8)   | 0.21654    |            |
| C15 C16 C17 C18     | -0.2(8)   | 0.12882    |            |
| C15 C16 C17 Br1     | -178.5(4) | 179.77812  |            |
| C16 C17 C18 C19     | 0.3(8)    | -0.26360   |            |
| Br1 C17 C18 C19     | 178.6(4)  | -179.91268 |            |
| C15 C14 C19 C18     | -1.6(7)   | 0.27630    |            |
| C12 C14 C19 C18     | 175.7(5)  | -177.69656 |            |
| C17 C18 C19 C14     | 0.6(8)    | 0.05686    | 15.4142874 |
| RMSD <sub>tot</sub> |           |            | 8.1166585  |

## **Electronic Circular Dichroism (ECD) calculations**

Structure determination is mostly achieved by interpretation of MS (mass spectrometry), NMR (nuclear magnetic resonance) data [ref1], Theoretical Calculation of Electronic Circular Dichroism [ref2, ref3] and stereochemical assignments are generally the most time consuming step within this procedure. The calculations of electronic circular dichroism (ECD) are altenative to determine absolute configuration of chiral molecules. The quantum chemistry methods including time dependent density functional theory (TD-DFT) can be used to calculate or predict the ECD of chiral molecules. In this study, the calculations showed that both conformations R and S of the fluorinecontaining system (I–F) have the same Gibbs free energy values. However, theoretical calculation of its ECD by using the TD-PBE1PBE/6-311G(d,p) theory level was employed to calculate rotatory strength R in the dipole velocity form (Rvel) and dipole length form (Rlen) and excitation energy (in nm) to establish the most favored configuration. Thus, we calculated the ECD and UV spectra of conformers of the I-F compound to verify the assignment of R-(I-F) over S-(I-F) configuration. Experimentally a R chiral compound was prefered in crystalography, it is reasonably perceived that the calculated ECD of the major conformer should reflect when the configuracions are correct and appropriate. The simulated ECD theoretical spectra of R- and S-(I-F) enantiomers are shown in Figure 3. In the ECD curve of R-(I–F), the diagnostic Cotton effects (CEs) were two strong negative signals with Rotational strengths of -59.11 and -46.63 cgs, while for S-(I-F) the ECD spectrum was opposite to that of R-(I–F) with slightly weaker intensities of 59.10 and 46.62 cgs consistent with the optical rotation results and concluded that the R-(I–F) and S-(I–F) absolute configurations assigned to I–F system may be present crystallographically on theoretical study in gas phas. Table 3 presents the results that the two conformers exist crystallographically since the Gibbs free energies, wavelength, oscillator strength, rotatory strength in velocity form and rotatory strength in length form are practically the same but of the opposite sign.

[ref1] Breton, R.C.; Reynolds, W.F. Using NMR to identify and characterize natural products. *Nat. Prod. Rep.* 2013, *30*, 501–524.

[ref2] Ding, Y.; Li, Xing-Cong; Ferreira D. Theoretical Calculation of Electronic Circular Dichroism of the Rotationally Restricted 3,8-Biflavonoid Morelloflavone. *J. Org. Chem.* **2007**, 72, 24, 9010-9017.

[ref3] Li, L.; Wang, L.; Si, Y. Electronic circular dichroism behavior of chiral Phthiobuzone. *Acta Pharm. Sin. B.* **2014**, 4(2), 167-171.



**Figure S3.** Structures and comparison between calculated ECD spectra of *R*- and *S*-(I-F) enantiomers at PBE1PBE/6-311G(d,p) theory level.

**Table S3.** Gibbs free energies, transitions, oscillator strengths and their related rotatory (Rotatory strength in velocity form and Rotatory strength in length form) in the ECD spectra of compound (**I**–**F**) at the PBE1PBE/6-311G(d,p) theory level.

| Enantiomer                        | Gº(u.a.)  | Transition          | $\Delta E_g(eV)$ | λ(nm) | Oscillator<br>strength | R <sub>vel</sub><br>(10 <sup>-40</sup> cgs) | R <sub>len</sub><br>(10 <sup>-40</sup> cgs) |
|-----------------------------------|-----------|---------------------|------------------|-------|------------------------|---------------------------------------------|---------------------------------------------|
| <i>R</i> -( <b>I</b> - <b>F</b> ) | -887.1774 | $73 \rightarrow 74$ | 4.13             | 300.6 | 0.076                  | 9.973                                       | 8.216                                       |
|                                   |           | $73 \rightarrow 75$ | 4.41             | 281.1 | 0.145                  | 18.863                                      | 14.807                                      |
|                                   |           | $69 \rightarrow 74$ | 4.47             | 277.4 | 0.004                  | -10.911                                     | -12.454                                     |
|                                   |           | $72 \rightarrow 74$ | 4.61             | 269.0 | 0.009                  | 6.424                                       | 6.967                                       |
|                                   |           | $71 \rightarrow 74$ | 5.13             | 241.7 | 1.058                  | -87.763                                     | -73.342                                     |
| S-(I–F)                           | -887.1774 | $73 \rightarrow 74$ | 4.13             | 300.6 | 0.076                  | -9.929                                      | -8.173                                      |
|                                   |           | $73 \rightarrow 75$ | 4.41             | 281.1 | 0.145                  | -18.800                                     | -14.739                                     |
|                                   |           | $69 \rightarrow 74$ | 4.47             | 277.4 | 0.004                  | 10.831                                      | 12.369                                      |
|                                   |           | $72 \rightarrow 74$ | 4.61             | 269.0 | 0.009                  | -6.425                                      | -6.969                                      |
|                                   |           | $71 \rightarrow 74$ | 5.13             | 241.7 | 1.058                  | 87.688                                      | 73.279                                      |

| PBE1PBE/6-311G(d,p) |                     |         |           |                |            |        |
|---------------------|---------------------|---------|-----------|----------------|------------|--------|
| Compound            | $\theta_{tilt}$     | Еномо   | Elumo     | $\Delta E_{g}$ | ETot       | μ      |
| Ι                   | 145.33<br>(142.01ª) | -0.2350 | -0.0566   | 4.8535         | -788.2530  | 1.4943 |
| I–F                 | 33.59<br>(33.72 ª)  | -0.2371 | -0.0591   | 4.8431         | -887.4288  | 2.9426 |
| I–Cl                | 149.25<br>(97.72 ª) | -0.2382 | -0.0605   | 4.8347         | -1247.7157 | 3.5991 |
| I–Br                | 147.12<br>(98.08 ª) | -0.2380 | -0.0604   | 4.8341         | -3361.4753 | 3.4362 |
|                     |                     | PBE1PI  | BE-D3/6-3 | 11G(d,p)       |            |        |
| Compound            | $\theta_{tilt}$     | Еномо   | Elumo     | $\Delta E_{g}$ | ETot       | μ      |
| Ι                   | 145.89              | -0.2349 | -0.0565   | 4.8545         | -788.2720  | 1.4802 |
| I–F                 | 36.42               | -0.2369 | -0.0589   | 4.8439         | -887.4482  | 2.9018 |
| I–Cl                | 148.64              | -0.2381 | -0.0603   | 4.8360         | -1247.7359 | 3.5188 |
| I–Br                | 148.93              | -0.2381 | -0.0604   | 4.8349         | -3361.4959 | 3.4611 |

**Table S4.** Ring tilt angle ( $\theta_{tilt}$ , degrees), Molecular Orbital Energies ( $E_{HOMO}$  and  $E_{LUMO}$ , hartrees), gap Energies ( $\Delta E_g$ , eV), total energy ( $E_{Tot}$ , hartrees) and dipole moment (Debyes) for I, I–F, I–Cl and I–Br compounds calculated at PBE1PBE/6-311G(d,p) and PBE1PBE-D3/6-311G(d,p) theory levels.

 $^{a}$ Ring tilt N-C<sub>chiral</sub>-C<sub>ring</sub>-C<sub>ring</sub> of compounds of X-ray data.

[ref1] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, **2010**, *132*, 154104.