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Abstract: Cotton seed purity is a critical factor influencing the cotton yield. In this study, near-infrared
hyperspectral imaging was used to identify seven varieties of cotton seeds. Score images formed
by pixel-wise principal component analysis (PCA) showed that there were differences among
different varieties of cotton seeds. Effective wavelengths were selected according to PCA loadings.
A self-design convolution neural network (CNN) and a Residual Network (ResNet) were used
to establish classification models. Partial least squares discriminant analysis (PLS-DA), logistic
regression (LR) and support vector machine (SVM) were used as direct classifiers based on full spectra
and effective wavelengths for comparison. Furthermore, PLS-DA, LR and SVM models were used for
cotton seeds classification based on deep features extracted by self-design CNN and ResNet models.
LR and PLS-DA models using deep features as input performed slightly better than those using full
spectra and effective wavelengths directly. Self-design CNN based models performed slightly better
than ResNet based models. Classification models using full spectra performed better than those using
effective wavelengths, with classification accuracy of calibration, validation and prediction sets all
over 80% for most models. The overall results illustrated that near-infrared hyperspectral imaging
with deep learning was feasible to identify cotton seed varieties.

Keywords: near-infrared hyperspectral imaging; cotton seed; convolution neural network; residual
network; classifier

1. Introduction

Cotton (Gossypium spp.) is one of the most widely cultivated economic crops in the world,
especially in China. What’s more, cotton is the main source of natural fiber, vegetable oil and
high protein meals for humans and livestock [1]. Cotton seeds of different varieties show different
characteristics relating to vigor, germination, yield, quality and stress resistance, etc. Thus, cotton seed
purity is an important factor for cotton yield, which is also closely related to the income of farmers.

Seed variety identification is an important issue for crop planting. Gene based techniques can be
used to identify seed varieties accurately [2,3]. However, the sample preparation is complex for these
methods, and workers with expert operation skill are also indispensable. Moreover, the inefficiency
and high costs also make gene based techniques unable to adapt to the needs of market. This situation
leads to the urgent demand of developing rapid and non-destructive techniques.

Machine vision is a rapid and non-destructive technique which could be used to identify seed
varieties, with the advantages of simple sample preparation, batch detection and good adaptability to
different application scenes. Moreover, it is easy to obtain the required images. Extraction of features,
such as shape, texture, color and etc., is the key factor for seed variety identification. Studies have
proved the feasibility to identify seed varieties using machine vision [4,5].
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Near-infrared spectroscopy is another rapid and non-destructive technique which could be applied
to identify seed varieties [6]. Near-infrared spectroscopy acquires near-infrared spectra which relate to
the chemical compositions of seeds. Near-infrared spectroscopy also has the advantage of minimum
sample preparation and batch detection. Studies have proved the possibility to discriminant seed
varieties using near-infrared spectroscopy [7–9].

Machine vision mainly focuses on spatial information but lacks composition information, while
near-infrared spectroscopy is on the contrary. Hyperspectral imaging, a technique integrating
both machine vision and near-infrared spectroscopy, can acquire spectral and spatial information
simultaneously. This advantage of hyperspectral imaging enables its wide application in various
fields [10–13].

Hyperspectral imaging can acquire a large number of samples in the same time as well as a large
amount of spectral data. Machine learning method is the key to analyzing the spectral information
and exploring the relationship between spectral information and the predicted features. Various
discriminant methods used for classification of seed varieties have showed good results, such as
linear discriminant analysis (LDA) [14,15], partial least-squares discriminant analysis (PLS-DA) [16,17],
support vector machine (SVM) [18], and artificial neural networks (ANN) [15], etc.

Nowadays, as an emerging machine learning method, deep learning has gain great attentions
from different fields [19–21]. Deep learning method learns data feature automatically and deeply,
which enables it to perform well with large volume of data. Deep learning is mainly used to analyze
2D images [22], and researchers have also extended it to the processing of 3D images [23] and
1D signal [24]. Deep learning for hyperspectral image analysis is primarily developed for remote
sensing [25]. Recently, deep learning has been applied to vibrational spectral data analysis for
classification [26] and regression [27].

The object of this study was to identify cotton seed varieties using near-infrared hyperspectral
imaging with deep learning. The specific objectives were: (1) Explore the differences among different
varieties of cotton seeds based on spectral information; (2) Develop deep learning architectures for
cotton seed variety identification; (3) Build PLS-DA, SVM and LR models used for comparison.

2. Results and Discussion

2.1. Spectral Profiles of Cotton Seeds

Figure 1 shows the average spectral reflectance curves of seven varieties of cotton seeds. Spectra
of all cotton seeds of each variety were averaged to obtain average spectrum of the corresponding
variety. The standard deviation (SD) of four typical wavelengths (peaks: 1119 and 1308 nm; valleys:
1204 and 1470 nm) were also presented. The waveband at 1119, 1204 and 1308 nm might related to
the second overtone of C–H stretch [28]. The spectral wavelength at 1470 nm can be attributed to the
O–H stretch first overtone [29]. It can be seen that similarities could be clearly observed among the
change tendency of seven spectral reflectance curves. Although some differences could be found for
the seven varieties of cotton seeds, the differences are distributed over several wavebands. Overlaps
could also be found. Thus, further analyses should be conducted to discriminate different varieties of
cotton seeds.
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Figure 1. Average spectra of seven varieties of cotton seeds with standard deviation of four 
wavelengths (peaks: 1119 and 1308 nm; valleys: 1204 and 1470 nm). 

Different varieties of cotton seeds could be divided into different groups according to color 
distribution within seed kernels. As well, different division could be found in PCA score images of 
different PCs. 

For PCA score image of PC1, the color distribution of cotton seeds could be divided into three 
groups (Group 1: Category 0, category 1 and category 3; Group 2: category 2 and category 4; Group 
3: category 5 and category 6). Group 1 is primarily in yellow and red color, and Group 2 is mainly in 
green and blue colors. However, there is no clear color bias in Group 3. For PCA score image of PC2, 
colors of several varieties of cotton seed show obvious differences. Most parts of category 0 is dark 
blue, and category 3 is primarily composed of red and orange colors, while category 5 is overall in 
yellow tones. 

Although PC3-PC10 explained less information, some differences revealed by color distribution 
could still be found among samples. For PCA score images of PC3, PC5, PC6 and PC7, category 3 
contains more blue areas, which is the most obvious difference with the other six varieties. Thus, 
there are two groups (Group 1: Category 3; Group 2: the other 6 categories). Three groups (Group 1: 
Category 0; Group 2: category 1; Group 3: The other 5 categories) of color distribution could be found 
in PCA score image of PC4: Category 0 is mainly in light blue color; and category 1 is most in orange 
and yellow tones, while seeds of the rest categories are mixed blue with yellow. For PCA score images 
of PC8, there are two groups (Group 1: Category 0, category 3 and category 5; Group 2: category 1, 
category 2, category 4 and category 6) of color distribution. For PCA score images of PC9, there are 
three groups (Group 1: Category 0-category 4; Group 2: category 5; Group 3: category 6) of color 
distribution. Category 6 could be clearly distinguished with mainly blue color in PCA score image of 
PC10. 

Category 1, 2 and 4 show slight differences with other varieties in the PCA score images of PC1-
PC10, indicating further classification using discrimination models were needed. 

Figure 1. Average spectra of seven varieties of cotton seeds with standard deviation of four wavelengths
(peaks: 1119 and 1308 nm; valleys: 1204 and 1470 nm).

2.2. Analysis of PCA Score Images

PCA was conducted for the qualitative analysis. One hyperspectral image of each variety was
randomly selected. PCA was conducted on pixel-wise spectra within the seeds in the hyperspectral
images of seven varieties of cotton seeds. Each pixel had score values of different PCs. Knowing
the scores value of each pixel of a certain PC, it was easy to obtain the pixel-wise PCA score image
(Figure 2). Since the first ten PCs (99.667%) contain most of the information of cotton seeds, PCA score
images of PC1-PC10 were obtained to show commonalities and differences among different cotton
seeds. As shown in Figure 2, Figure 2b,k show the PCA score images of PC1-PC10, respectively, and
the numbers in the left side represent the explained information of each PC.
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Figure 2. Pseudo raw image of the seven varieties of cotton seeds and the PCA score images of the 
first ten PCs. The letter (a) represent the pseudo raw image (1000, 1200 and 1400 nm); (b–k) represent 
the PCA score images of PC1–PC10. Numbers in the brackets are percentage of explained total 
variance. 

2.3. Effective Wavelength Selection 

The existence of uninformative variables might influence the modeling speed and accuracy. 
Thus, it is necessary to select effective wavelengths contributing more to the classification in order to 
reduce the data volume. As shown in PCA score images of the first ten PCs, differences among the 
seven varieties of cotton could be observed in each PC score image, and these PCs explained 99.667% 
of total variance. Thus, loadings of the ten PCs were used for effective wavelength selection. 

Figure 3 shows the detail of effective wavelengths selection. Table 1 summarized the selected 
effective wavelengths according to the loadings of PC1–PC10, and a total of 43 effective wavelengths 
were chosen for further analyses. Comparing with full spectra, the number of variables for effective 
wavelengths is reduced by 78.5%. As shown in Table 1 and Figure 3, some of the wavelengths were 
selected as effective wavelengths according to loadings of different PCs, and some successive 
wavelengths were selected. 

Figure 2. Pseudo raw image of the seven varieties of cotton seeds and the PCA score images of the first
ten PCs. The letter (a) represent the pseudo raw image (1000, 1200 and 1400 nm); (b–k) represent the
PCA score images of PC1–PC10. Numbers in the brackets are percentage of explained total variance.

Different varieties of cotton seeds could be divided into different groups according to color
distribution within seed kernels. As well, different division could be found in PCA score images of
different PCs.

For PCA score image of PC1, the color distribution of cotton seeds could be divided into three
groups (Group 1: Category 0, category 1 and category 3; Group 2: category 2 and category 4; Group 3:
category 5 and category 6). Group 1 is primarily in yellow and red color, and Group 2 is mainly in
green and blue colors. However, there is no clear color bias in Group 3. For PCA score image of PC2,
colors of several varieties of cotton seed show obvious differences. Most parts of category 0 is dark
blue, and category 3 is primarily composed of red and orange colors, while category 5 is overall in
yellow tones.

Although PC3-PC10 explained less information, some differences revealed by color distribution
could still be found among samples. For PCA score images of PC3, PC5, PC6 and PC7, category 3
contains more blue areas, which is the most obvious difference with the other six varieties. Thus,
there are two groups (Group 1: Category 3; Group 2: the other 6 categories). Three groups (Group
1: Category 0; Group 2: category 1; Group 3: The other 5 categories) of color distribution could be
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found in PCA score image of PC4: Category 0 is mainly in light blue color; and category 1 is most
in orange and yellow tones, while seeds of the rest categories are mixed blue with yellow. For PCA
score images of PC8, there are two groups (Group 1: Category 0, category 3 and category 5; Group 2:
category 1, category 2, category 4 and category 6) of color distribution. For PCA score images of PC9,
there are three groups (Group 1: Category 0-category 4; Group 2: category 5; Group 3: category 6)
of color distribution. Category 6 could be clearly distinguished with mainly blue color in PCA score
image of PC10.

Category 1, 2 and 4 show slight differences with other varieties in the PCA score images of
PC1-PC10, indicating further classification using discrimination models were needed.

2.3. Effective Wavelength Selection

The existence of uninformative variables might influence the modeling speed and accuracy. Thus,
it is necessary to select effective wavelengths contributing more to the classification in order to reduce
the data volume. As shown in PCA score images of the first ten PCs, differences among the seven
varieties of cotton could be observed in each PC score image, and these PCs explained 99.667% of total
variance. Thus, loadings of the ten PCs were used for effective wavelength selection.

Figure 3 shows the detail of effective wavelengths selection. Table 1 summarized the selected
effective wavelengths according to the loadings of PC1–PC10, and a total of 43 effective wavelengths
were chosen for further analyses. Comparing with full spectra, the number of variables for effective
wavelengths is reduced by 78.5%. As shown in Table 1 and Figure 3, some of the wavelengths
were selected as effective wavelengths according to loadings of different PCs, and some successive
wavelengths were selected.

Table 1. Effective wavenumbers selected by PCA loadings.

Methods No. Effective Wavelengths (nm)

PCA loadings 43

1009, 1025, 1032, 1052, 1069, 1082, 1096, 1116, 1119, 1123, 1126,
1130, 1200, 1204, 1224, 1227, 1230, 1241, 1264, 1268, 1308, 1315,
1318, 1321, 1342, 1345, 1362, 1386, 1396, 1399, 1402, 1409, 1426,

1443, 1450, 1453, 1456, 1470, 1548, 1554, 1588, 1598, 1602
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Figure 3. Effective wavelengths selection using the first ten PCs. The letters from (a–j) represent the 
PCs from PC1 to PC 10. 
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Figure 3. Effective wavelengths selection using the first ten PCs. The letters from (a–j) represent the
PCs from PC1 to PC 10.

2.4. Discriminant Models using Full Spectra and Effective Wavelengths

Two different CNN architectures were used to classify cotton seed varieties, including a self-design
CNN architecture and a ResNet architecture. As mentioned above, the two CNN models used SoftMax
function as classifier. For comparison, LR, PLS-DA and SVM models, which were widely used
discriminant models in spectral data analysis, were built using full spectra or effective wavelengths.
In addition, LR, PLS-DA and SVM which is widely used in traditional CNN models were also used
to replace SoftMax function. They are used to handle the classification tasks based on the features
extracted by the two CNN architectures for further improvement. Table 2 shows the results of different
classification models using full spectra or effective wavelengths for cotton seed varieties identification.

Table 2. Results of classification models using full spectra and effective wavelengths.

Classifier
Full Spectra (%) Effective Wavelengths (%)

Calibration Validation Prediction Calibration Validation Prediction

CNN-SoftMax a 91.191 89.065 88.838 87.629 84.071 82.860
CNN-LR 94.060 88.611 87.752 90.070 83.731 83.276
CNN-PLS-DA 91.112 88.082 86.644 87.088 82.709 82.027
CNN-SVM 93.695 89.255 88.006 89.970 84.487 84.260
ResNet-SoftMax 95.381 85.698 86.039 92.273 79.985 79.228
ResNet-LR 99.585 84.335 82.324 98.238 76.040 75.952
ResNet-PLS-DA 95.130 85.585 85.358 91.707 78.509 77.677
ResNet-SVM 96.325 85.963 85.887 94.098 79.153 79.115
LR 84.156 82.406 83.012 62.736 62.429 65.305
PLS-DA 81.764 79.947 80.401 78.870 77.261 77.147
SVM 93.557 89.217 88.422 89.441 84.147 84.033

a. CNN-SoftMax means using SoftMax function as classifier for the CNN model.

For models using full spectra, classification results were decent. Most of models obtained the
classification accuracy over 80%. Among eleven models using full spectra, PLS-DA model obtained
the worst results, with the accuracy of calibration (81.764%), validation (79.947%) and prediction set
(80.401%) all lower than other models. CNN-SVM and SVM models obtained similar results, with
accuracy around 93%, 89% and 88% for calibration, validation and prediction sets, respectively, while
CNN-SVM obtained slightly better performances in calibration and validation sets than SVM model.
Except SVM model, pure LR and PLS-DA models performed worse than the corresponding LR and
PLS-DA models combined with deep learning. For LR and PLS-DA models based on the CNN and the
ResNet architecture, the accuracy was improved by about 10%, 14% for calibration set, respectively.
The reason could be attributed to the strong feature learning ability of deep learning. Compared
with the self-design CNN based models, ResNet based models performed better in the calibration set.
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However, for the validation and prediction sets, self-design CNN based models achieved better results,
with accuracy in the range of 86–89%.

For classification models using effective wavelengths, LR model obtained the worst results, with
classification accuracy of calibration, validation and prediction sets all lower than 70%. Compared
with LR models, CNN-SVM and SVM obtained better performances, with classification accuracy
of calibration set over 89% and classification accuracy of validation and prediction sets over 84%.
The self-design CNN based models achieved classification accuracy of calibration, validation and
prediction all over 80%. ResNet based models showed better performances for calibration set with
classification accuracy over 90%, but classification accuracy of validation and prediction was lower
than 80%. In summary, the self-design CNN based models performed worse in calibration set but
obtained better performance in validation and prediction sets than ResNet based models.

The classification models using full spectra performed better than those using effective wavelengths.
LR model using full spectra performed significantly better than LR model using effective wavelengths.
The self-design CNN based models and ResNet based models using full spectra also performed better
than those using effective wavelengths. The reason was that full spectra contained more information
than the selected effective wavelengths. What’s more, dealing with the simple data sets by deep
learning couldn’t fully reflect the advantage of deep learning. The differences of performances of
self-design CNN based models and ResNet based models indicating that CNN architectures had
influence on classification performances. Performances of deep learning models varied due to the
different classifiers, indicating the influence of classifiers on model performances.

Figure 4 shows the confusion matrices of calibration, validation and prediction for CNN-SVM
model using full spectra. Good classification performances could be found for category 3
(Xinjiangzaomian1) and category 5 (Xinluzhong52), for which few samples were misclassified. Category
0 (Jinxin5) were more likely to be misclassified as category 5. Category 1 (Jinxin7) were more likely
to be misclassified as category 2 (Shennongmian1), category 4 (Xinluzaomian29) and category 6
(Xinluzhong42). Category 4 was more likely to be misclassified as category 1, category 2 and category 6.
Category 6 was more likely to be misclassified as category 1, category 2 and category 4. Most of the cotton
seeds could be accurately classified, which indicated that as a rapidly and non-destructively method,
hyperspectral imaging coupled with deep learning could be used to identify cotton seed varieties.
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3. Materials and Methods

3.1. Sample Preparation

Seven different varieties of cotton seeds were collected in 2016 from Shihezi, Xinjiang
Uyghur Autonomous Region, China. These seven varieties were Jinxin5, Jinxi7, Shennongmian1,
Xinjiangzaomian1, Xinluzaomian29, Xinluzhong52 and Xinluzhong42, and the corresponding number
of seeds used in the study were 2353, 2497, 2242, 1031, 1122, 1804 and 2111, respectively. All these
seeds were sound. The sulfuric acid solution was used for the depilation treatment of cotton seeds. The
H2SO4 solution (75% mass fraction) heated to 100 ◦C was slowly pour into a ceramic container with
cotton seeds placed inside until the cotton seeds were submerged, and then the seeds were rapidly
stirred until the fluff on the seeds was completely removed. Finally, the cotton seeds were rinsed
with water until the water was clear, and then the cotton seeds were air-dried before the acquisition
of hyperspectral image. For further analysis, category values of the seven varieties of cotton were
assigned as 0, 1, 2, 3, 4, 5, 6 (corresponding to Jinxin5, Jinxi7, Shennongmian1, Xinjiangzaomian1,
Xinluzaomian29, Xinluzhong52 and Xinluzhong42, respectively). To build calibration models, the
cotton seeds were randomly divided into the calibration set, the validation set and the prediction set at
the ratio of 3:1:1.



Molecules 2019, 24, 3268 12 of 17

3.2. Hyperspectral Image Acquisition and Correction

A line-scan near-infrared hyperspectral imaging system with the spectral range of 942–1646
nm was used to acquire hyperspectral images of cotton seeds. The system contains an imaging
spectrograph (ImSpector N17E, Spectral Imaging Ltd., Oulu, Finland) integrated with a Xeva 992
camera (Xenics Infrared Solutions, Leuven, Belgium) which uses an OLES22 lens (Spectral Imaging Ltd.,
Oulu, Finland). The light source is two 150W tungsten halogen lamps (3900 Lightsource, Illumination
Technologies Inc., Elbridge, NY, USA). The line scan is conducted by moving the sample plate using a
stepper motor (Isuzu Optics Corp., Taiwan, China).

To acquire hyperspectral images, the system parameters were firstly adjusted to acquire clear and
non-deformable images. The camera exposure time, the sample plate moving speed and the distance
between sample plate and the camera were set as 3 ms, 11.5 mm/s and 14 cm. Then white reference
image and dark reference image were acquired using the adjusted system. The white reference image
was acquired using a piece of pure white Teflon board with nearly 100% reflectance, and the dark
reference image was acquired by turning off the light source and covered the camera lens with lens cap.

To acquire hyperspectral images, single cotton seeds were placed separately. In all, the number
of hyperspectral images of Jinxin5, Jinxin7, Shennongmian1, Xinjiangzaomian1, Xinluzaomian29,
Xinluzhong52 and Xinluzhong42 were 19, 20, 17, 8, 9, 14 and 16.

After image acquisition, the images were corrected to calibrate light intensity and reduce dark
current. The image correction was conducted using the equation:

Ic =
Iraw − Idark

Iwhite − Idark
(1)

where Ic is the corrected image, Iraw is the raw image, Iwhite is the white reference image and Idark is
the dark reference image.

3.3. Spectral Data Preprocessing and Extraction

To extract spectral data, each cotton seed was defined as the region of interest. Cotton seeds were
firstly isolated from the background. A binary image was formed by the gray-scale image at 1200
nm, in which seed regions were ‘1′ and the background regions were ‘0′. The binary image was then
applied to the gray-scale images at each wavelength to remove the background. The outer ring of
each cotton was eliminated, and pixel-wise spectra were firstly preprocessed by wavelet transform
(wavelet function Daubechies 10 with decomposition level 3) followed with an area normalization.
Then average spectrum was calculated from pixel-wise spectra within each cotton seed to represent
the seed.

3.4. Multivariate Analysis

3.4.1. Principal Component Analysis

Principal component analysis (PCA) is a widely used qualitative analysis and data reduction
method which could be used to explore data features. PCA conducts linear transformation to transform
the original variables into a set of new orthogonal variables. These new variables were ranked according
to the variance. The first variable with the largest variance was the first principal component (PC1),
and the rest are defined in the same manner. The first few PCs contain the most useful information,
and generally the first few PCs are used for qualitative analyses and data reduction. In hyperspectral
images, each pixel has a spectrum. PCA can be conducted on pixel-wise spectra, and scores of each
pixel at each PC can be obtained. The pixel-wise score values of each PC can be presented by color
gradients, which is the PCA score images. Differences among samples can be observed intuitively
from the PCA score images [30].
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3.4.2. Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) is the most widely used supervised
discrimination method. PLS-DA is performed in the same way as partial least squares regression (PLSR).
PLS-DA uses a set of dummy numbers referring to the sample categories as the dependent variables,
and then PLS-DA conducts the same procedures as PLSR to explore the linear relationship between
the independent variables and the dependent variables [31]. Specially, the categories of the seven
varieties of cottons for PLS-DA were assigned as 0000001, 0000010, 0000100, 0001000, 0010000, 0100000
and 1000000 (corresponding to Jinxin5, Jinxi7, Shennongmian1, Xinjiangzaomian1, Xinluzaomian29,
Xinluzhong52 and Xinluzhong42, respectively).

3.4.3. Logistic Regression

Logistic regression (LR) is a linear model for classification, which can fit binary or multinomial
logistic regression [32]. On the basis of linear regression algorithm, a sigmoid function is added to map
the linear combination of independent variables into the value in the range [0,1]. LR algorithm can be
applied with optional L1, L2 regularization. It also can be extended to multi-class classification tasks
using One-vs-Rest.

3.4.4. Support Vector Machine

Support vector machine (SVM) is a widely used pattern recognition algorithm. SVM aims to
construct a hyperplane or a set of hyperplanes to separate the samples from different classes maximally.
For samples which cannot be linearly classified, kernel functions are applied to map the original data
into high-dimension space. The new data in the high-dimension space may be linearly separable.
Radial bias function (RBF) is a widely used kernel function, and it can deal with linear and non-linear
issues effectively. In this study, SVM with RBF kernel function was used to establish discriminant
models. For PLS-DA models, leave-one-out cross validation were used. For SVM models, a five-fold
cross validation was used. A grid-search procedure was used to find the optimal parameters of SVM
models, i.e., the penalty coefficient (C) and the kernel parameter (γ) [33].

3.4.5. Deep Learning Methods

Deep learning algorithms have become a kind of useful method for spectra data analyses in
agriculture [21]. Convolutional neural network (CNN) is one of the well-known deep learning
structures for feature extraction, classification and regression. In this study, two kinds of one-dimension
CNN [26] architectures were designed and evaluated to achieve feature representation from input
spectra data and realize classification based on extracted deep features.

The first architecture is shown in Figure 5a, which consists of two convolution blocks (Conv.
Block), a fully connected network with three dense layers, and a SoftMax layer. The function of SoftMax
layer is as follows [34]:

σ(z)i =
ezi∑K

k=1 ezk
(2)

where K is the number of elements of the input vector, zi is the ith element of the input vector and σ(z)i
is the ith element of the output vector.
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Figure 5. The architectures of proposed classification models: (a) The architecture of CNN-SoftMax,
CNN-LR, CNN-PLS-DA and CNN-SVM; (b) the architecture of the Convolution Block; (c) the
architecture of ResNet-SoftMax, ResNet-LR, ResNet-PLS-DA and ResNet-SVM; (d) the architecture of
the Residual Block.

The Conv. Block is built by a one-dimension convolutional layer with a ReLU activation and
a max pooling layer, which is described in Figure 5b. The numbers of kernels are 64 and 128 for
Conv-1D layers in Conv. Block 1 and Conv. Block 2, respectively. The numbers of the neurons
in Dense 1, Denses 2 and 3 were defined as 512, 128, 7, respectively. The second architecture is a
one-dimension-convolution based ResNet (ResNet-1D) architecture shown in Figure 5c, including a 1
by 1 convolution layer, four residual blocks (RES. Block), a global average pooling (GlobalAvgPool)
layer, a dense layer with 7 neurons and a SoftMax layer. The design of ResNet-1D structure refers to
the well-known ResNet for two-dimension image classification [35]. The detail information of the RES.
Block is shown in Figure 5d. The numbers of kernels in two Conv-1D layers are same in each RES.
Block, which were defined in turn as 64, 128, 256, 512.

All convolutional layers in the two mentioned CNN models used a kernel size of 3, stride of
1. The training procedure for both of two mentioned CNN models was carried out to minimize the
SoftMax Cross Entropy Loss using Stochastic Gradient Descent (SGD).

Considering that SoftMax is not the best classifier, we used LR, PLS-DA, SVM as classifier
for comparison in Figure 5. The activated output of Dense 2 layer in Figure 5a and the output of
GlobalAvgPool layer in Figure 5c were defined as the input value for LR, PLS-DA and SVM models.

3.4.6. Effective Wavelength Selection

Spectral data extracted from the hyperspectral images contains redundant and uninformative
information. Selection of informative variables contributing more to prediction is of great importance.
Variable selection can reduce the number of input variables to simplify models and improve the
modelling efficiency. In this study, loadings of PCA were used for effective wavelength selection [36].

Loadings are regression coefficients between original variables and the corresponding PCs, which
could be obtained during the linear transformation of PCA. The absolute loading value indicates the
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importance of the corresponding variables. The larger the absolute loading value, the more important
the variable is. Therefore, variables with larger absolute loading value of each PC can be selected as
effective wavelengths.

3.4.7. Model Evaluation and Software

The performances of models were evaluated by the classification accuracy, which was defined
as the ratio of the number of correctly classified seeds to the total number of cotton seeds. PLS-DA
and SVM were conducted on Matlab R2014b (The Math Works, Natick, MA, USA). LR model was
programmed using scikit-learn machine learning package in Python 3. Deep learning models were
conducted on Python 3 and MXNET framework (Amazon, Seattle, WA, USA).

4. Conclusions

Hyperspectral imaging coupled with deep learning was successfully used to identify cotton seed
varieties. PCA score images of the first ten PCs illustrated the differences among the seven cotton
seed varieties. A total of 43 effective wavelengths were selected by loadings of the first 10 PCs. Two
different CNN architectures, including a self-design CNN model and a ResNet model, using SoftMax
function, PLS-DA, LR and SVM as classifiers all obtained good performances based on full spectra or
effective wavelengths. Pure PLS-DA, LR and SVM models were also built using full spectra or effective
wavelengths. CNN-LR and CNN-PLS-DA models performed better than pure LR and PLS-DA models.
Variations on classification performances of self-design CNN and ResNet based models showed the
influence of classifiers in deep learning models. The different performances between self-design CNN
based models and ResNet based models illustrated the influence of CNN architectures. Classification
models using full spectra performed better than those using effective wavelengths, and the differences
were larger for deep learning based models. The overall result illustrated that deep learning models
could be applied to identify cotton seed varieties. In future studies, sample number and different deep
learning architectures should be taken into consideration to improve the accuracy and robustness of
classification model.
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