Supplymentary Materials

Model Statistics	IL-15	IL-15/IL-15Rα	IL-15/IL-2Rβ/γc	IL-15/IL-15Rα/IL-2Rβ/γc
Min	0.77	0.72	0.63	0.90
Max	2.70	2.50	3.40	2.43
Average	1.85	1.82	2.55	1.91
Std ¹	0.36	0.20	0.48	0.24

Table S1. RMSD Statistics (min, max, average and corresponding standard deviation) for the variousIL-15 multimeric models.

¹ Standard deviation

Figure S1. RMSDs plots of the C α carbon atoms of the whole IL-15 chain over 200 ns of MD simulations.

Figure S2. RMSDs plots of the C α carbon atoms of the IL-15 chain with (brown) and without (green) the C α atoms of the C-D loop over 200 ns of MD simulations.

Figure S3. Matrices of all possible RMSD pairs computed from the trajectories of the duplicate and triplicate of the tetramer (100 ns of MD simulations). The ordinate and abscissa axes correspond to the number of frames.

Figure S4. Average RMSDs values together with their standard deviations, calculated for each specific structural elements of the IL-15 chain over 200 ns of MD simulations.

Figure S5. RMSF of C α carbon atoms of IL-15 residues for duplicate and triplicate of the MD simulations of the tetramer considering the first 100 ns.

Table S2. Residues, atoms and corresponding distances and percentage of presence along the simulation time for the interface contacts predicted by the MD simulations for the IL-15/IL-15R α complex in the dimeric and tetrameric receptors. The lines colored in yellow and blue correspond respectively to the contacts observed in the crystallographic structures and revealed by the MD simulations. The distances reported are average distances for the last 100 ns of the MD simulation, meaning that for a given interatomic distance, the value has been inferior to 3.0 Å during a certain time of the simulation. When a given average was superior to the limit of 3.0, it has been reported in italic in the table.

				Dimer	Tetramer	Dimer	Tetramer
IL-15		IL-15Ra		d(HA) Å	d(HA) Å	Percentage (%)	Percentage (%)
Residue	Atom	Residue	Atom				
Asp22	OD2	Arg24	HH11		2.27(1.42)		87
Asp22	OD1	Arg26	(NH1)H	1.83 (58)	1.74(16)	97	100
	CB(HB)	Arg26	(NH2)H	2.83(42)	2.80(33)	73	73
Thr24	(C)O	Arg35	(NH2)H	2.68(47)	2.98(41)	74	50
Leu25	(CA)HA	Arg35	(NH2)H	2.36(20)	2.45(20)	100	100
Tyr26	O(H)	Lys34	CB(HB)	2.71(24)	2.97(32)	89	59
Tyr26	(O)H	Arg35	O(C)	1.81(13)	1.79(12)	100	100
Tyr26	(CD2)H	Ala37	(CB)HB2		2.49(23)		98,00
Tyr26	(CD2)H	Ala37	(CA)HA	2.52(22)		98	
Leu45	HD22	Ala37	CB(HB1)		2.48(37)		94
Leu45	(CB)HB	Ala37	CB(HB3)	2.61(41)		84	
Leu45	(C)O	Gly38	(CA)HA2	2.54(21)	2.44(20)	98	99
Glu46	OE1	Arg35	(NH2)H	1.66(07)	1.66(07)	100	100
Glu46	OE2	Ala37	(CA)HA	2.55(25)	2.49(22)	96	98
Glu46	OE2	Gly38	HN	1.81(12)	1.78(12)	100	100
Gln48	(CB)HB2	Gly38	(CA)HA2	2.81(47)	3.66(94)	72	26
Val49	(CG2)HG22	Arg35	(NH1)HH12	2.70(34)	2.69(30)	84	84
Val49	(CG2)HG22	Gly38	(CA)HA2	2.35(25)	2.42(26)	98	97
Val49	(CG2)HG22	Thr39	(C)O	2.93(29)	2.89(27)	64	70
Val49	(CG2)HG11	Ser40	(CB)HB2	2.39(26)	2.22(22)	98	99
Leu52	(CB)HB2	Ser40	(CB)HB2	2.76(48)	2.59(34)	73	88
Leu52	(CD2)HD22	Leu42	(CB)HB2	2.93(75)		73	
Leu52	(CD2)HD22	Ser60	(OG)HG1		2.78(47)		76
Glu53	(C)O	Arg24	(NH1)HH12	3.35(1.35)		40	
Glu53	OE1	Arg26	(NH2)H22	1.67(08)	1.67(08)	100	100
Glu53	OE2	Ser40	(OG)HG1	1.95(32)	1.88(19)	99	100
Glu53	(CG)HG2	Leu42	(CB)HB1	2.41(27)	2.42(23)	98	98
Cys88	(CB)HB1	Ala37	(CB)HB2	2.41(28)	2.67(29)	98	87
Glu89	(CB)HB1	Lys34	(CE)HE1	3.34(1.28)	2.25(35)	51	98
Glu89	(CG)HG2	Arg35	(C)O	3.06(39)	3.10(47)	51	49
Glu89	(CG)HG2	Lys36	(CA)HA	1.93(36)	1.91(34)	99	99
Glu89	OE2	Ala37	HN	1.94(21)	2.00(19)	100	100
Glu89	(CG)HG2	Ile64	(CD)HD3	2.41(30)	2.37(28)	96	96
Glu90	(CA)HA	Lys34	HZ2	4.10(1.90)	2.50(84)	33	70

Glu90	(CG)HG2	Pro67	(OG)HG1	4.37(2.25)		49	
Glu93	OE1	Arg35	(NE)HE	1.83(25)	2.07(75)	98	87

Table S3. Residues, atoms and corresponding distances and percentage of presence along the simulation time for the interface contacts predicted by the MD simulations for the IL-15/IL-2R β complex in the trimeric and tetrameric receptors. The lines colored in yellow and blue correspond respectively to the contacts observed in the crystallographic structures and revealed by the MD simulations. The distances reported are average distances for the last 100 ns of the MD simulation, meaning that for a given interatomic distance, the value has been inferior to 3.0 Å during a certain time of the simulation. When a given average was superior to the limit of 3.0, it has been reported in italic in the table.

				Trimer	Tetramer	Trimer	Tetramer
IL-15		IL-2Rβ		d(HA)	d(HA)	Percentage	Percentage
		D 11		Α	Α	(%)	(%)
Residue	Atom	Residue	Atom				
Asn4	(ND2)HD22	Thr74	(OG1)HG1	3.21(1.20)		59	
Asn4	(ND2)HD21	Tyr134	(CB)HB1	2.68(23)	2.73(61)	93	83
Ser7	(OG)HG1	His133	(CB)HB2	2.87(51)		68	
Ser7	(CB)HB1	Tyr134	(CD2)HD2	2.95(67)	6.21(3.20)	66	32
Ser7	(OG)HG1	Glu136	OE2		3.70(2.15)		45
Asp8	OD1	Tyr134	(OH)HH	1.85(39)	2.57(97)	96	71
Lys11	(CB)HB2	His133	(CD2)HD2	3.15(1.15)		55	
Asp61	OD2	Leu69	(CG)HG1	2.18(82)	3.15(1.58)	82	54
Asp61	(CB)HB1	Gln70	(C)O	3.27(45)	3.14(47)	83	47
Asp61	OD2	Lys71	(NZ)HZ1	1.82(33)	1.92(75)	98	93
Glu64	OE1	Arg42	(NH1)HH11	2.18(60)	2.36(88)	85	80
Asn65	OD1	Arg42	(NH1)HH12	1.87(16)	1.85(13)	100	100
Asn65	(ND2)HD22	Gln70	(C)O	2.05(24)	2.16(32)	100	98
Asn65	(CB)HB1	Thr73	(CH)HG23	2.34(21)	2.44(21)	100	99
Asn65	(CB)HB1	Tyr134	(OH)HH	3.52(51)	3.57(1.26)	15	45
Ile68	(CD)HD2	Lys41	(CG)HG1		2.64(47)		85
Ile68	(CG2)HG21	Lys41	(CD)HD2	2.37(25)		98	
Ile68	(CD)HD2	Arg42	NH2		3.25(58)		35
Ile68	(CD)HD3	Arg42	(CD)HD1	3.12(61)		50	
Ile68	(CG2)HG21	Thr73	OG1		3.19(40)		35
Ile68	(CG2)HG23	Thr73	(OH1)HG1	3.11(45)		48	
Ile68	(CG2)HG21	Val75	(CB)HB		2.44(25)		97
Ile68	(CG2)HG22	Val75	(CG2)HG22	2.81(37)		74	
Leu69	(CD2)HD21	Thr73	(CB)HB		2.87(89)		73
Leu69	(CB)HB2	Thr73	(CG2)HG23	2.58(33)		88	
Leu69	(CD)HD12	Thr74	(OG1)HG1	3.53(1.63)		51	
Leu69	(CA)HA	Val75	(CG2)HG22	2.46(36)	2.44(32)	90	94
Leu69	(CD1)HD12	Tyr134	(OH)HH		4.30(2.28)		34
Asp72	(CB)HB2	Val75	(CG1)HG12		2.35(21)		99

Table S4. Residues, atoms and corresponding distances and percentage of presence along the simulation time for the interface contacts predicted by the MD simulations for the IL-15/ γ c complex in the trimeric and tetrameric receptors. The lines colored in yellow and blue correspond respectively to the contacts observed in the crystallographic structures and revealed by the MD simulations. The distances reported are average distances for the last 100 ns of the MD simulation, meaning that for a given interatomic distance, the value has been inferior to 3.0 Å during a certain time of the simulation. When a given average was superior to the limit of 3.0, it has been reported in italic in the table.

				Trimer	Tetramer	Trimer	Tetramer
IL-15		γς		d(HA) Å	d(HA) Å	Percentage (%)	Percentage (%)
Residue	Atom	Residue	Atom				
Val3	(CA)HA	Leu208	(CD2)HD22		2.83(62)		67
Val3	(CG2)HG22	Leu208	(CD2)HD22	3.05(91)		63	
Ile6	(CG2)HG21	Pro207	(CB)HB2		4.13(1.46)		33
Ile6	(CD1)HD1	Leu208	(CA)HA		3.95(1.53)		39
Val31	0	Asn71	(ND2)HD21		5.64(2.07)		11%
Val31	0	Asn71	(CB1)HB1	4.01(1.67)		32%	
His32	(CA)HA	Asn71	(CB1)HB1	3.12(1.57)		71%	
Pro33	(CD2)HD2	Gln104	(NE2)HE21	3.78(1.40)		42%	
His105	(CE1)HE1	Thr105	0	3.20(1.64)		69%	
His105	NE2	Lys125	(CE)HE1		3.63(1.08)		37%
His105	NE2	Lys125	(NZ)HZ1	3.95(1.99)		45%	
His105	(ND1)HD1	Gln127	OE1	3.63(1.64)		51%	
His105	NE2	Asn128	(ND2)HD21		4.02(2.30)		52%
Gln108	(CB)HB1	Tyr103	(CE1)HE1	3.08(87)	7.56(2.81)	55%	13%
Gln108	(CB)HB1	Gln127	(NE2)HE22		3.33(1.17)		49%
Gln108	OE1	Gln127	(NE2)HE22	2.42(61)		85%	
Gln108	(NE2)HE22	Pro207	0	4.50(1.47)	3.61(1.68)	11%	48%
Gln108	(CG)HG2	Leu208	0	3.02(95)	3.00(1.21)	63%	76%
Gln108	(CB)HB1	Cys209	(CA)HA		3.60(1.22)		36%

Bridged amino	Bridged amino acid residues						
IL-15	IL-15Ra	% in the dimer	% in the tetramer				
Glu53	Ser41	76	83				
Glu93	Arg35		48				
Glu53	Glu44		42				
Asp24	Arg26		28				
Glu53	Arg24	52	26				
Asp22	Arg24	34					
Asp22	Arg26	31					
Glu89	Ala37	22	19				
Glu89	Lys34	22	15				
Glu93	Arg35	19					
Glu89	Lys36	18	20				
Glu92	Lys34	16					
Glu89+Leu91	Lys34	14					
Glu90	Pro67	13					
Tyr26+Glu93	Arg35	11					
IL-15	IL-2β	% in the trimer	% in the tetramer				
Glu64	Arg43	63					
Asn4	Tyr134	47	19				
Asp8	Tyr134		40				
Asn1	Thr74	38	17				
Ile68	Arg41	36					
Glu64	Trp44	26					
Lys11	His133	26	38				
Glu64	Arg41		35				
Lys11	Asp68	23					
Asp61 + Glu64	Arg42		16				
Asn4	Gln188		13				
Asp8	His133		13				
Ser7	His133	15	13				
Asn1+Asn4	Thr74	15					
Asn72	Arg41	14					
Asp8	Gln70	14					
Glu64	Arg42	13					
Asp61	Arg42	12					
Asp61	Ser69	12	12				
Asp61	Lys71	11	13				
Glu64	Lys71	11					
Asp61	Ala66	11					
Thr62	Gln70	10	12				
Asp61	Gln70		11				
Glu64	Arg42		11				
IL-15	γc	% in the trimer	% in the tetramer				
Gln108	Leu208	14					
Gln108	Pro207	13	18				
His105	Gln104	12					
Gln108	Gln127	12	12				

Table S5. Percentage, along the simulation time, of water molecules in hydrogen-bond interactions with amino acid residues across the various interfaces of IL-15.

His105	Tyr103	11	
His105+Gln108	Gln127	10	
Gln108	Ser211		11
Val31	Asn71		11
His107	Gln127		11