Table 1S. Structures of the ligands. Hydrogen in light grey, carbon in grey, nitrogen in blue, sulfur in yellow and oxygen in red. Coordinates obtained from the Cambridge Structural Database, image created with Mercury3.5.

CCDC-Refcode	Structures	Ligand	
Reference			
BECVUC		TMA	
K. Igawa, N. Toshinari, T. Kolino, Acta	L 📥 🔍		
Crystallogr.,Sect.C:Cryst.Struct.Commun.	· · · · · · · · · · · · · · · · · · ·		
68 (2012) 6332			
JUBFER	 Line 	DMSA	
G.J.Pyrka, N.Scott, Q.Fernando, Acta	Y		
Crystallogr. Sect.C:Cryst.Struct.Commun.			
48 (1002) 2007			
40 (1772) 2007	<u></u>		
CEDFAS		DPEN	
H.E. Howard-Lock, C.J.L. Lock, P.S. Smalley, J.Crystallogr.Spectrosc.Res., 13 (1983) 333			
HAXJIB	P-0	LA	
CP.Racz, G.Borodi, M.M.Pop, I.Kacso, S.Santa, M.Tomoaia-Cotisel, Acta Crystallogr.,Sect.B:Struct.Sci., 68 (2012) 164			

Table 2S. Structures of Hg^{2+} with different ligands bearing mercapto groups. Hydrogen in light grey, carbon in grey, nitrogen in blue, sulfur in yellow, oxygen in red and mercury in light blue. Coordinates obtained from the Cambridge Structural Database, image created with Mercury3.5.

CCDC-Refcode	Hg ²⁺ Structures	Complex	Ligand
Reference			
AQONOJ	e .	HgL_2	TGA
J.M. Bramlett, Hee-Jung Im, Xiang-Hua Yu, Tianniu Chen, Hu Cai, L.E. Roecker, C.E. Barnes, Sheng Dai, Zi-Ling Xue, Inorg. Chim. Acta, 317 (2004) 243	**************************************		COOHCH ₂ -SH
BEPQAO		HgL ₂	CH ₃ (CH ₂) ₃ CH ₂ SH
G.G. Hoffmann, I. Steinfatt, W. Brockner, V. Kaiser, Z. Naturforsch. B:Chem.Sci., 54 (1999) 887			
CAYFUD		HgL ₂	HCOO-CH ₂ -NH-CO-CH-
Z. Popovic, D. Matkovic-Calogovic, J. Hasic, M. Sikirica, D. Vikic-Topic, Croat. Chem. Acta, 72 (1999) 279			(CH ₃)-SH
HAYOEE		HgL ₂	NH ₂ -CH ₂ -CH ₂ -SH
H.Fleischer, Y.Dienes, B.Mathiasch, V.Schmitt, D.Schollmeyer, Inorg. Chem., 44, (2005) 8087			
MERSET01	8-0°	HgL ₂	CH ₃ -CH ₂ -SH
K.A. Fraser, W. Clegg, D.C. Craig, M.L. Scudder, I.G. Dance, Acta Crystallogr. ,Sect.C:Cryst. Struct. Commun., 51 (1995) 406			
AHOQOE	00-000	HgL ₂	R-CH ₂ -NH-CH ₃ -CH ₂ -SH
Kuan-Yi Wu, Chang-Chih Hsieh, Yih-Chern Horng, J.Organomet.Chem., 694 (2009) 2085			

MECBHG C. Perchard, G. Zuppiroli, P. Gouzerh, Y. Jeannin, F. Robert, J. Mol. Struct., 72 (1981) 119 MERMES		HgL ₂ HgL ₂	CH ₃ -NH-CO-CH ₂ -CH ₂ .SH ⁻ CH ₃ -SH
D.C. Bradley, N.R. Kunchur, J. Chem. Phys., 40 (1964) 2258			
TEVQOA01 R.D.Schluter, G.Krauter, W.S.Rees Junior, J.Cluster Sci., 8 (1997) 123		HgL ₂	Φ-CH ₂ -SH
VOLFOR I. Casals, P. Gonzalez-Duarte, W. Clegg, Inorg. Chim. Acta, 184 (1991) 167		HgL ₂	N(CH ₃) ₃ -CH ₂ -CH ₂ -CH ₂ S
XIJKOQ Chong-Hyeak Kim, S. Parkin, M. Bharara, D. Atwood, Polyhedron, 21 (2002) 225		HgL ₂	NH ₃ -CH ₂ -CH ₂ S
DAXPUN G. Henkel, P. Betz, B. Krebs, Chem. Comm.,(1985) 1498		Hg ₃ L ₄	HS-CH ₂ -CH ₂ -SH
WACXAZ N. Govindaswamy, J. Moy, M. Millar, S.A. Koch, Inorg. Chem., 91 (1992) 5343	- S.	HgL ₂	C ₆ H ₁₂ S2

Table 3S. Structures of Cd^{2+} with different ligands bearing mercapto groups. Hydrogen in light grey, carbon in grey, nitrogen in blue, sulfur in yellow, oxygen in red, cadmium in pink and chloride in green. Coordinates obtained from the Cambridge Structural Database, image created with Mercury3.5.

CCDC-Refcode	Cd ²⁺ Structures	Complex	Ligand
Kererence CAHGUN I.G.Dance, M.L.Scudder, R.Secomb, Inorg. Chem., 22 (1983) 1794		Cd ₃ L ₆	CH ₃ -CH ₂ -O-CO-CH ₂ SH
DETHOZ A.D. Watson, C.P. Rao, J.R. Dorfman, R.H. Holm, Inorg. Chem., 24 (1985) 2820		Cd ₂ L ₆	CH3-CH2-SH
DUFZAF C.P. Rao, J.R. Dorfman, R.H. Holm. Inorg. Chem., 25 (1986) 428		CdL ₂	SH-CH ₂ .CH ₂ -SH
HAZGAR H. Fleischer, Y. Dienes, B. Mathiasch, V. Schmitt, D. Schollmeyer, Inorg. Chem., 44 (2005) 8087		CdL ₂	SH-CH ₂ .CH ₂ -NH ₂
HEQMAT U. Florke, CSD Communication (Private Communication), 2013		Cd ₂ L ₆	(CH ₃) ₂ -CH-SH

JIZWIY I. Casals, P. Gonzalez-Duarte, W. Clegg, C. Foces-Foces, F.H. Cano, M. Martinez- Ripoll, M. Gomez, X. Solans, J. Chem. Soc., Dalton Trans., (1991) 2511		Cd ₄ L ₆ Cl ₂	(CH ₃) ₂ -N-CH-CH ₂ -SH
TUQREC H. Strasdeit, A. von Dollen, AK. Duhme, Z. Naturforsch., B:Chem.Sci., 52 (1997) 17	A CONTRACTOR	CdL ₂ 2H ₂ O	Lipoic acid
WACXED N. Govindaswamy, J. Moy, M. Millar, S.A. Koch, Inorg. Chem., 31 (1992) 5343		CdL ₂	Cicloesene-(SH) ₂
XICZEO M. Mikuriya, Xiao Jian, S. Ikemi, T. Kawahashi, H. Tsutsumi, A. Nakasone, Jong-Wan Lim, Inorg. Chim. Acta, 312 (2001) 183		Cd ₃ L ₄	NH2-CH2CH2CH2NHCH-CH2-SH

Table 4S. Structures of Pb²⁺ with different ligands bearing mercapto groups. Hydrogen in light grey, carbon in grey, nitrogen in blue, sulfur in yellow, oxygen in red, lead in light green and chloride in green. Coordinates obtained from the Cambridge Structural Database, image created with Mercury3.5.

CCDC-Refcode	Pb ²⁺ Structures	Complex	Ligand
Reference			
DISWIL P.A.W.Dean, J.J.Vittal, N.C.Payne, Inorg. Chem., 24 (1985) 3594		PbL	HS-CH ₂ -CH ₂ -SH
KEJCOS M.S. Bharara, S. Parkin, D.A. Atwood, Inorg. Chim. Acta, 359 (2006) 3375		Pb ₂ L ₂	CH ₂ SH-CH ₂ NH ₂
DPENPB01 A.C.Schell, M.Parvez, F.Jalilehvand, Acta Crystallogr.,Sect.E:Struct.Rep.Online, 68 (2012) m489		PbL	DPEN
NUFQEL01 V.N. Khrustalev, R.R. Aysin, I.V. Borisova, A.S. Peregudov, L.A. Leites, N.N. Zemlyansky, Dalton Trans., 39 (2010) 9480		PbL ₂	HS-CH ₂ -CH ₂ N(CH ₃) ₂

Fig. 1S. Speciation plots of the metal complexes whose stability constants are reported in Table 3, calculated with Hyss program at metal concentration 0.001 M and ligand concentration 0.002 M.

