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Abstract: Ab initio Møller–Plesset perturbation theory (MP2)/aug’-cc-pVTZ calculations have been
carried out in search of complexes, molecules, and transition structures on HN(CH)SX:SCO potential
energy surfaces for X = F, Cl, NC, CCH, H, and CN. Equilibrium complexes on these surfaces have
C1 symmetry, but these have binding energies that are no more than 0.5 kJ·mol–1 greater than the
corresponding Cs complexes which are vibrationally averaged equilibrium complexes. The binding
energies of these span a narrow range and are independent of the N–C distance across the tetrel
bond, but they exhibit a second-order dependence on the S–S distance across the chalcogen bond.
Charge-transfer interactions stabilize all of these complexes. Only the potential energy surfaces
HN(CH)SF:SCO and HN(CH)SCl:SCO have bound molecules that have short covalent N–C bonds
and significantly shorter S . . . S chalcogen bonds compared to the complexes. Equation-of-motion
coupled cluster singles and doubles (EOM-CCSD) spin-spin coupling constants 1tJ(N–C) for the
HN(CH)SX:SCO complexes are small and exhibit no dependence on the N–C distance, while 1cJ(S–S)
exhibit a second-order dependence on the S–S distance, increasing as the S–S distance decreases.
Coupling constants 1tJ(N–C) and 1cJ(S–S) as a function of the N–C and S–S distances, respectively,
in HN(CH)SF:SCO and HN(CH)SCl:SCO increase in the transition structures and then decrease in
the molecules. These changes reflect the changing nature of the N . . . C and S . . . S bonds in these
two systems.

Keywords: noncovalent interactions; structures; binding energies; charge-transfer energies;
EOM-CCSD spin-spin coupling constants

1. Introduction

The field of intermolecular interactions has expanded dramatically from the hydrogen bond
described in detail in Pimentel’s classic book [1], to other types of intermolecular interactions that
occur as an electron-pair in one molecule is donated to another molecule through its σ- or π-hole.
These bonds have been named by the group in the Periodic Table that contains the electron-acceptor
atom. Thus, intermolecular interactions include halogen bonds involving group 17 atoms as the
acids [2–4], chalcogen bonds for group 16 [5–8], pnicogen bonds for group 15 [9–11], and tetrel bonds
for group 14 [12–14]. Legon and Resnati, et al. have emphasized the similarities among these bonds
and suggested that they should be considered as arising when a σ-hole [15,16] or a π-hole associated
with an E atom in one molecular entity interacts with a nucleophilic region such as a pair of nonbonding
or π electrons in another, or the same, molecular entity [17].

Our continuing interest in the types of noncovalent bonds described above has led us to
systematically explore intermolecular bonds that involve O=C=O and O=C=S. We have examined tetrel
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bond formation involving O=C=O with a series of bases, as well as tetrel and chalcogen bond formation
involving HN(CH)SX and O=C=O, for a series of substituents X [18–22]. These studies have led us to
investigate a related series of complexes involving O=C=S and nitrogen bases, and subsequently O=C=S
and HN(CH)SX in complexes stabilized by N . . . C tetrel bonds and O . . . S chalcogen bonds [23,24].
The molecule HN(CH)SX is quite interesting as a simple model of pyridine-2-thiol (shown in Scheme 1)
and 2-(Xthio)pyridines, compounds that have useful chemical and pharmacological properties [25,26].
The formation of tetrel and chalcogen bonds involving HN(CH)SX with S=C=O is illustrated in
Scheme 1.
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In the present study, we have extended our investigation of the interaction of HN(CH)SX with
O=C=S in order to examine N . . . C tetrel bonds and S . . . S chalcogen bonds, as illustrated in Scheme 1.
The HN(CH)SX:OCS complex shown in Scheme 1 could be described as a “trans” complex to indicate
that the C–S bond of O=C=S is trans to the N4–C5 bond of the HN(CH)SX molecule with respect to
the C1–N4 bond. In such complexes, the chalcogen bond is an O . . . S bond. In the HN(CH)SX:SCO
complexes, the se same two bonds have a cis orientation. For ease of discussion, we refer to the “cis”
complexes as HN(CH)SX:SCO to emphasize the presence of an S . . . S chalcogen bond. The “trans”
complexes with which they are compared are written as HN(CH)SX:OCS to indicate the presence
of an O . . . S chalcogen bond. In this paper, we present the equilibrium complexes and molecules
found on the HN(CH)SX:SCO potential energy surfaces, as well as the transition structures that
interconvert the complexes and molecules. We discuss the structures and binding energies of these
complexes, molecules, and transition structures; selected properties including charge-transfer energies
in the complexes; and spin-spin coupling constants across tetrel and chalcogen bonds for complexes,
molecules, and transition structures. Finally, we compare the properties of the HN(CH)SX:SCO
complexes, molecules, and transition structures with those of the isomers HN(CH)SX:OCS [24].

2. Methods

The structures of HN(CH)SX:SCO complexes and molecules for X = F, Cl, NC, CCH, H, and CN
that are stabilized by N . . . C tetrel bonds and S . . . S chalcogen bonds were optimized at second-order
Møller–Plesset perturbation theory (MP2) [27–30] and the aug’-cc-pVTZ basis set [31]. This basis set
was derived from the Dunning aug-cc-pVTZ basis set [32,33] by removing diffuse functions from H
atoms. No basis set superposition error correction has been made because it has been demonstrated
that the aug’-cc-pVTZ basis set reduces the basis set superposition error, and aug’-cc-pVXZ basis sets
have improved convergence properties compared to the full aug-cc-pVXZ basis sets [31]. Transition
structures that interconvert equilibrium complexes and molecules were also optimized. Frequencies
were computed to establish that the equilibrium structures have no imaginary frequencies and that
the transition structures have one imaginary frequency along the coordinate that interconverts the
two equilibrium structures. Optimization and frequency calculations were performed using the
Gaussian 16 program [34]. The binding energies of the binary complexes, molecules, and transition
structures were computed as (–∆E) for the reaction that forms these moieties from the corresponding
isolated monomers.

The natural bond orbital (NBO) method [35] has been used to obtain the stabilizing charge-transfer
interactions in complexes using the NBO-6 program [36]. The charge-transfer interactions were
computed using the B3LYP functional with the aug’-cc-pVTZ basis set at the MP2/aug’-cc-pVTZ
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complex geometries so that at least some electron correlation effects could be included. The atoms
in molecules (AIM) methodology [37–40] was used to produce the molecular graphs of complexes,
molecules, and transition structures employing the AIMAll [41] program. The molecular graph
identifies the location of electron density features of interest, including the electron density (ρ) maxima
associated with the various nuclei and saddle points which correspond to bond critical points (BCPs).
The zero gradient line which connects a BCP with two nuclei is the bond path.

Coupling constants were evaluated using the equation-of-motion coupled cluster singles and
doubles (EOM-CCSD) method in the CI (configuration interaction)-like approximation [42,43] with all
electrons correlated. For these calculations, the Ahlrichs [44] qzp basis set was placed on 13C, 15N, 17O,
and 19F, the qz2p basis set on 33S and 35Cl, and the Dunning cc-pVDZ basis on 1H atoms. All terms,
namely, the paramagnetic spin orbit (PSO), diamagnetic spin orbit (DSO), Fermi contact (FC), and spin
dipole (SD) were evaluated. The EOM-CCSD calculations were performed using ACES II [45] on the
HPC cluster Owens at the Ohio Supercomputer Center.

3. Results and Discussion

The results obtained in this study are presented below in five sections. Section 1 addresses the
equilibrium HN(CH)SX:SCO complexes that have C1 symmetry. In the second section, corresponding
complexes that have Cs symmetry are discussed. In Section 3, the molecules found on the potential
surfaces, and the transition structures that interconvert complexes and molecules are presented.
Section 4 presents spin-spin coupling constants for complexes, molecules, and transition structures.
In the fifth section, some comparisons are made between HN(CH)SX:SCO complexes that are stabilized
by N . . . C tetrel and S . . . S chalcogen bonds, and HN(CH)SX:OCS complexes that have N . . . C tetrel
and O . . . S chalcogen bonds.

3.1. HN(CH)SX:SCO Complexes with C1 Symmetry

Searches of the HN(CH)SX:SCO potential energy surfaces yielded equilibrium complexes
containing N . . . C tetrel and S . . . S chalcogen bonds. The structures, total energies, and molecular
graphs of these complexes are given in Table S1 of Supporting Information. In the molecular graphs,
the se complexes appear to have planar Cs symmetry, but they do not. Rather, the y have C1 symmetry,
as illustrated in Figure 1 for complexes with X = F, NC, and H. In this figure, the S=C=O molecule has
been oriented so that it is perpendicular to the N . . . C tetrel bond, and the view is along that bond. This
orientation illustrates the deviation of these complexes from Cs symmetry. The complexes with X = F,
Cl, CCH, H, and CN have dihedral S–C–N–C angles between 39 and 49◦, and they are represented by
HN(CH)SF:SCO and HN(CH)SH:SCO in Figure 1a,b, respectively. The dihedral angle is reduced to 20◦

in the complex with X = NC, which is illustrated in Figure 1c. The planar HN(CH)SH:SCO Cs complex
is shown in Figure 1d. Figure 1 also provides insight into the values of the S–S–A angles in these
complexes. Complexes X = F, Cl, and NC have values of this angle between 166 and 169◦. These values
are consistent with a traditional S . . . S chalcogen bond, in which a lone pair on S3 is directed toward
the σ-hole on S6. Complexes with X = CCH, H, and CN have S–S–A angles of 123, 131, and 124◦,
respectively, which is not an optimum orientation for the formation of an S . . . S chalcogen bond.
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Table 1 provides structural and energetic data for complexes with C1 symmetry, including binding
energies; N–C and S–S distances across the tetrel and chalcogen bonds, respectively; the N–C–S
and S–S–A angles; and the dihedral S–C–N–C angles. In the tables, atoms are given numbers that
correspond to Figure 1, but in the text, numbers are not used unless there might be some ambiguity.
The binding energies of these complexes span a small range from 13.3 to 15.6 kJ·mol–1, and they
decrease with respect to X in the order F > Cl > NC = CCH > H ≈ CN. Thus, the complexes with the
stronger electron-withdrawing substituents have the greater binding energies.

Further insight into these complexes can be gained by examining their S–S and N–C distances.
The three most strongly bound complexes have S–S distances between 3.10 and 3.50 Å, with the
most strongly bound complex having the shortest S–S distance. As noted previously, the se three
complexes have S–S–A angles of 169, 166, and 166◦, respectively, values consistent with a chalcogen
bond. In contrast, the S–S distance is much longer in the complexes with X = CCH, H, and CN, varying
between 3.78 and 3.81 Å. These complexes also have reduced S–S–A angles of 123, 131, and 124◦,
respectively. These data indicate that the chalcogen bonds in the latter complexes are very weak or
perhaps nonexistent.

The most strongly bound complex with X = F has an N–C distance of 3.01 Å. The N–C distances in
the complexes with X = Cl and NC are 3.06 Å. This distance in the remaining complexes with X = CCH,
H, and CN is shorter, with values between 3.02 and 3.04 Å. These short N–C distances suggest that
in the complexes with the weaker S . . . S chalcogen bonds, the N . . . C tetrel bonds may be stronger.
The values of the N–C–S angle are consistent with the formation of a tetrel bond at C through its local
π-hole.

Figure 2 provides plots of the binding energies of the HN(CH)SX:SCO complexes versus the N–C
and S–S distances. It is evident from this figure that the binding energies are essentially independent
of the N–C distance. Moreover, the re is not a good correlation between these binding energies and the
S–S distance. This lack of correlation may be attributed to the differences primarily in the S . . . S bonds
in complexes with X = F, Cl, and NC compared to those having X = CCH, H, and CN.

Table 1. Binding energies (–∆E, kJ·mol–1), N–C and S–S distances (R, Å), N–C–S and S–S–A angles
(<, o), and dihedral angles S–C–N–C (dih<, ◦) for C1 HN(CH)SX:SCO complexes.

X = –∆E R(N4–C1) R(S3–S6) <N4–C1–S3 <S3–S6–A7 a dih<S3–C1–N4–C5

F 15.6 3.006 3.310 93 169 46
Cl 14.8 3.059 3.467 95 166 49

NC 14.1 3.064 3.498 96 166 20
CCH 14.1 3.034 3.782 97 123 43

H 13.5 3.016 3.810 97 131 39
CN 13.3 3.041 3.798 98 124 44

a A is the X atom directly bonded to S6.
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Figure 2. Binding energies of C1 and Cs HN(CH)SX:SCO complexes vs. the N4–C1 and S–S
distances, respectively.

The nature of the charge-transfer interactions and their energies for the C1 complexes are reported
in Table 2. There are two lone pairs of electrons on S3, and each can be involved in charge-transfer.
The strongest S3lp1 → σ*S6–A interactions are found for the complexes with X = F, Cl, and NC,
with values of 12.2, 8.0, and 5.9 kJ·mol–1, respectively. The charge-transfer energies drop to less than
1 kJ·mol–1 for the complexes with X = CCH, H, and CN. The second charge-transfer interaction has a
value of about 2 kJ·mol–1 for the complexes with X = F, Cl, and NC, and it is less than 0.1 kJ·mol–1 for
the complexes with X = CCH, H, and CN. Thus, the se data for the S . . . S bonds are consistent with
the previous statements that chalcogen bonds in complexes with X = CCH, H, and CN are very weak
or nonexistent.

There are also two charge-transfer interactions across the tetrel bonds. The dominant interaction
arises from the donation of the lone pair on N to the local in-plane antibonding π C–O orbital.
The charge-transfer energies range from 2.5 to 5.9 kJ·mol–1 and decrease in the order F > Cl = NC >

H > CCH ≈ CN. There is also a second charge-transfer in the complexes with X = F, Cl, NC, and H
arising from electron donation from the lone pair on N to the local π*C–S orbital, with energies of only
0.3 kJ·mol–1.

Table 2. Charge-transfer energies (CT, kJ·mol–1) for C1 and Cs HN(CH)SX:SCO complexes. a

X = S3lp1→ σ*S6–A S3lp2→ σ*S6–A Nlp → π*C–O Nlp → π*C–S3

F 12.2 (12.8) 1.9 (1.7) 5.9 (6.6) 0.3 (0.3)
Cl 8.0 (9.5) 1.5 (0.8) 4.9 (5.4) 0.3 (0.3)

NC 5.9 (7.5) 1.6 (1.0) 4.9 (5.0) 0.3 (0.3)
CCH 0.5 (4.7) —b (0.5) 2.6 (4.8) —b (0.3)

H 0.9 (4.0) —b (0.4) 3.6 (5.1) 0.3 (0.3)
CN 0.5 (3.5) —b (0.5) 2.5 (5.2) —b (0.4)
a Values for Cs complexes are given in parentheses; b CT energies are less than 0.1 kJ·mol–1.

3.2. HN(CH)SX:SCO Complexes with Cs Symmetry

The structures, total energies, and molecular graphs of the optimized HN(CH)SX:SCO complexes
with Cs symmetry are reported in Table S2 of Supporting Information. Table 3 reports their binding
energies, N–C and S–S distances, and N–C–S and S–S–A angles, and Figure 3a depicts the planar
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HN(CH)SF:SCO complex. The Cs complexes have one imaginary frequency and are thus the transition
structures that connect the two equivalent C1 complexes. However, the difference between the binding
energies of corresponding Cs and C1 structures does not exceed 0.5 kJ·mol–1, found for the complexes
with X = CCH and H. When X = NC, the binding energies of the C1 and Cs structures are the same.
From these data, it is apparent that the potential energy surfaces are very flat in the region surrounding
the equilibrium and transition structures. Thus, the Cs structures may be viewed as vibrationally
averaged structures, and these structures will be discussed below in this and the following sections.

Figure 2 also provides plots of the binding energies of the complexes with Cs symmetry versus
the N–C and S–S distances. Once again, it is apparent that these binding energies are essentially
independent of the N–C distance, but they do depend on the S–S distance. The correlation coefficient
of the second-order trend line for the complexes with Cs symmetry is 0.922. This plot also shows the
similarities between the binding energies and S–S distances for the C1 and Cs complexes when X = F,
Cl, and NC, as well as the relatively small but noticeable differences when X = CCH, H, and CN.

Table 3. Binding energies (–∆E, kJ·mol–1), N–C and S–S distances (R, Å), N–C–S and S–S–A angles. (<,
o), and spin-spin coupling constants a 1cJ(S–S) for Cs HN(CH)SX:SCO complexes.

X = –∆E R(N4–C1) R(S3–S6) <N4–C1–S3 <S3–S6–A7 b 1cJ(S–S)

F 15.3 3.004 3.348 95 169 5.7
Cl 14.7 3.051 3.489 96 166 3.8

NC 14.1 3.060 3.508 97 168 3.6
CCH 13.6 3.067 3.663 97 169 2.1

H 13.0 3.064 3.747 97 174 1.4
CN 13.2 3.075 3.628 97 169 2.3

a 1tJ(N–C) = −0.3 Hz for all complexes; b A is the X atom directly bonded to S6.
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It is interesting to compare the corresponding N–C and S–S distances across tetrel and chalcogen
bonds, respectively, in the C1 and Cs complexes. The N–C distances in the Cs complexes with X = F, Cl,
and NC are slightly shorter than in the corresponding C1 complexes, but the difference does not exceed
0.008 Å. In contrast, the se distances are longer by 0.03–0.05 Å in the Cs complexes with X = CCH, H,
and CN. For the complexes with X = F, Cl, and NC, the S–S distances in the Cs structures are longer
by 0.01–0.04 Å compared to the corresponding C1 complexes, but this distance is shorter in the C1

complexes with X = CCH, H, and CN by 0.06–0.17 Å. The N4–C1–S3 angles in all of the complexes
are consistent with tetrel-bond formation through the π-hole at C of S=C=O. The S–S–A angles are
indicative of S . . . S chalcogen-bond formation in the all of the Cs complexes and in the C1 complexes
with X = F, Cl, and NC through the σ-hole on S6, but indicate that this bond is distorted when X = CCH,
H, and CN.

Table 2 reports the charge-transfer energies for the Cs complexes. The dominant charge-transfer
interaction across the tetrel bond arises from electron donation by N to the local in-plane antibonding
π C–O orbital. The charge-transfer energy is 6.6 kJ·mol–1 for the complex with X = F which has an N–C
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distance of 3.004 Å, and 5.4 kJ·mol–1 at an N–C distance of 3.051 Å when X = Cl. In the remaining
complexes, the charge-transfer energies are between 4.8 and 5.2 kJ·mol−1 at N–C distances between
3.060 and 3.075 Å. There is also a second charge-transfer of about 0.3 kJ·mol–1 across the tetrel bond
from the lone pair on N to the local in-plane π antibonding C–S orbital.

There are two lone pairs of electrons on S3, and there are therefore two charge-transfer interactions
across the S3 . . . S6 chalcogen bonds. The primary charge transfer arises from donation of one of
the lone pairs on S3 to a σ antibonding S–A orbital. These charge-transfer energies vary from 3.5 to
12.8 kJ·mol–1 and decrease with respect to X in the same order as the binding energies. A plot of these
energies versus the S–S distance has a second-order trend line with a correlation coefficient of 0.935. It is
noteworthy that all of these energies are greater than the charge-transfer energies in the corresponding
C1 complexes, particularly for the complexes with X = CCH, H, and CN. The second charge-transfer
interaction across the chalcogen bond is much weaker, with values between 0.4 and 1.7 kJ·mol–1.

3.3. HN(CH)SX:SCO Molecules and Transition Structures

Searches of the potential energy surfaces led to the identification of HN(CH)SX:SCO transition
structures and molecules, which are illustrated by HN(CH)SF:OCS in Figure 3b,c, respectively.
The structures, total energies, and molecular graphs of the molecules and transition structures are
given in Tables S3 and S4, respectively, in Supporting Information. The binding energies, N–C and
S–S distances, and N–C–S and S–S–A angles of the molecules are reported in Table 4. The molecules
have a significantly reduced N–C covalent bond distance of 1.44 Å when X = F, Cl, and NC. In the
complexes with X = CCH, H, and CN, this distance is longer, varying between 1.52 and 1.55 Å. The S–S
distances are also much shorter in the molecules than they are in the complexes, with a value of
approximately 2.30 Å for the molecules with X = F, Cl, and NC, and values are between 2.67 and 2.89 Å
in the remaining molecules. The reduced values of the S–S distance indicate that the chalcogen bonds
have acquired increased covalent character in the molecules relative to the complexes. The data also
suggest that the N–C covalent bond and the S . . . S chalcogen bond are significantly weaker in the
molecules when the substituents are CCH, H, and CN.

Table 4. Binding energies (–∆E, kJ·mol–1), N–C and S–S distances (R, Å), and N–C–S and S–S–A angles
(<, o) for molecules HN(CH)SX:SCO.

X = –∆E R(N4–C1) R(S3–S6) <N4–C1–S3 <S3–S6–A7 a

F 48.1 1.436 2.292 131 175
Cl 24.3 1.438 2.314 131 177

NC –9.6 1.443 2.294 131 174
CCH –65.1 1.536 2.803 137 175

H –64.0 1.548 2.885 137 170
CN –69.9 1.523 2.672 136 174

a A is the X atom directly bonded to S6.

The data of Table 4 illustrate that the distance changes are also accompanied by angular changes in
the molecular geometries. The N4–C1–S3 angle increases dramatically from about 96◦ in the complexes
to between 131 and 137◦ in the molecules. This is as expected as the N . . . C tetrel bond becomes an
N–C covalent bond. Except for HN(CH)SH:SCO, the S–S–A angle increases relative to its value in the
complexes and approaches 180◦ in the molecules, the idealized value for a chalcogen bond.

The binding energies of the molecules are also reported in Table 4. Only the molecules
HN(CH)SF:SCO and HN(CH)SCl:SCO are bound relative to the corresponding isolated monomers,
with binding energies of 48 and 24 kJ·mol–1, respectively. HN(CH)S(NC):SCO is unbound but by only
−10 kJ·mol–1. The remaining molecules with X = CCH, H, and CN are unbound by between −64 and
−70 kJ·mol–1. Thus, the covalent N–C bond and the S . . . S chalcogen bond are sufficiently strong
to overcome the distortion energies of the monomers only when X = F and Cl. Figure 4 illustrates
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the stabilization energies of complexes, transition structures, and molecules as a function of the S–S
distance. A similar plot can be obtained as a function of the N–C distance.
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Figure 4. Binding energies of complexes, transition structures, and molecules as a function of the S–S
distance. The points at 5 Å represent the noninteracting monomers HN(CH)SX and S=C=O.

It is informative to examine the changes that occur in the geometries of HN(CH)SF:SCO and
HN(CH)SCl:SCO as these complexes traverse the transition states and become molecules. For ease of
comparison, Table 5 presents the N–C, S–S, and S–A distances, as well as the N–C–S, S–S–A, and S–C–O
angles for the complexes, transition structures, and molecules. As the two complexes become molecules,
the N . . . C tetrel bond becomes an N–C covalent bond. Thus, the N–C distance decreases dramatically
from about 3.0 Å to 1.44 Å, the N–C–S angle increases from 95 to 109◦, and the S=C=O molecule
becomes nonlinear as the S–C–O angle decreases to 131◦. The values of these geometric descriptors in
the transition structure lie between the values found in the complex and corresponding molecule, except
for the S–S–A angle, which is similar in the molecule and transition structure. Significant changes are
also found for the S . . . S chalcogen bond. In particular, the S–S distance decreases dramatically from
3.35 and 3.49 Å in the complexes with X = F and Cl to 2.29 and 2.31 Å, respectively, in the molecules
as the S–S–A angle increases from 166 to about 176◦. It is noteworthy that the S–F distance increases
from 1.64 to 1.80 Å, while the S–Cl distance increases from 2.04 to 2.31 Å as the complexes become
molecules. This suggests that the formation of the molecule leads to a weakening of the S–A bond.

Table 5. Binding energies (–∆E, kJ·mol–1), N–C, S–S, and S–A distances (R, Å), and N–C–S, S–S–A,
and S–C–O angles (<, o) for the HN(CH)SF:SCO and HN(CH)SCl:SCO complexes, transition structures,
and molecules.

X = F –∆E R(N4–C1) R(S3–S6) R(S6–F7) <N4–C1–S3 <S3–S6–F7 <S3–C1–O2

complex 15.3 3.004 3.348 1.636 95 167 179
TS –18.8 2.036 2.614 1.683 100 178 154

molecule 48.1 1.436 2.292 1.798 109 175 131

X = Cl –∆E R(N4–C1) R(S3–S6) R(S6–Cl7) <N4–C1–S3 <S3–S6–Cl7 <S3–C1–O2

complex 14.7 3.051 3.489 2.037 96 166 179
TS –37.1 1.967 2.676 2.113 102 180 152

molecule 24.3 1.438 2.314 2.311 109 177 131
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The binding energies of the HN(CH)SF:SCO and HN(CH)SCl:SCO complexes, transition structures,
and molecules are also reported in Table 5. The binding energies increase to 48 and 24 kJ·mol–1 for the
molecules with X = F and Cl, respectively. The corresponding transition structures are unbound by
−19 and −37 kJ·mol–1. Thus, the barrier to convert the HN(CH)SF:SCO complex to the molecule is
34 kJ·mol–1, while the barrier for the reverse reaction is 67 kJ·mol–1. For HN(CH)SCl:SCO, the barrier
to convert the complex to the molecule is 52 kJ·mol–1, while the barrier for the reverse reaction
is 61 kJ·mol–1. These barriers are visible in Figure 4. These data suggest that at low temperatures,
the complexes would form as the two monomers approach each other. However, at higher temperatures,
the HN(CH)SF:SCO molecule would be the dominant species, while both the HN(CH)SCl:SCO complex
and molecule would have appreciable concentrations.

3.4. Spin-Spin Coupling Constants

Spin-spin coupling constants 1tJ(N–C) across the tetrel bonds and 1cJ(S–S) across the chalcogen
bonds have been computed for all of the complexes having Cs symmetry. For the transition structures
HN(CH)SF:SCO and HN(CH)SCl:SCO coupling constants 1tJ(N–C) across the tetrel bonds and 1cJ(S–S)
across the chalcogen bonds were evaluated. Coupling constants 1cJ(S–S) were computed for the
molecules as well as 1J(N–C) for coupling across the covalent N–C bond. The components of these
coupling constants are reported in Table S5 of Supporting Information. As is usually the case, coupling
constants 1tJ(N–C) across the tetrel bond and 1cJ(S–S) across the chalcogen bond for complexes and
transition structures are determined by the FC term. This is not generally the case for molecules due to
contributions from the PSO and SD terms.

Table S5 provides values of the coupling constants 1tJ(N–C) across the tetrel bonds and 1cJ(S–S)
across the chalcogen bonds for all HN(CH)SX:SCO complexes. The 1tJ(N–C) values are very small at
−0.3 Hz in all complexes. In contrast, 1cJ(S–S) values, which are reported in Table 3, vary from 1.4 to 5.7
Hz and decrease with respect to the substituent X in the order F > Cl ≈ NC > CN ≈ CCH > H. Figure 5
illustrates the strong dependence of this coupling constant on the S–S distance, with a correlation
coefficient of 0.999 for a second-order trend line.
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Figure 5. Coupling constants 1cJ(S–S) for the HN(CH)SX:SCO complexes and the absolute values of
1cJ(O–S) for the HN(CH)SX:OCS complexes versus the S–S and O–S distances, respectively.

The values of 1tJ(N–C) and 1cJ(S–S) for the HN(CH)SF:SCO and HN(CH)SCl:SCO complexes and
transition structures, as well as the values of 1cJ(S–S) and 1J(N–C) for the corresponding molecules,
are reported in Table 6. As the N–C distance decreases in going from the complex to the transition
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structure, 1tJ(N–C) increases to 18 and 21 Hz in transition structures with X = F and Cl, respectively.
In the molecules, the N–C bond becomes a covalent bond, and 1J(N–C) decreases dramatically to
−7.8 and −7.6 Hz, respectively, when X = F and Cl. Figure 6 illustrates these changes as a function of
the N–C distance. The correlation coefficient of the second-order trend line is 0.980.

Table 6. Spin-spin coupling constants (Hz) for the HN(CH)SF:SCO and HN(CH)SCl:SCO complexes,
transition structures, and molecules a.

X = Complex
1tJ(N1–C4) a

TS
1tJ(N1–C4)

Molecule
1J(N–C)

Complex
1cJ(S–S)

TS
1cJ(S–S)

Molecule
1cJ(S–S)

F –0.3 17.9 –7.8 5.7 22.7 13.1
Cl –0.3 21.0 –7.6 3.8 21.5 12.7

a Data are given for those systems having bound molecules.

A similar pattern can be observed for 1cJ(S–S) as a function of the S–S distance. This coupling
constant increases from 5.7 and 3.8 Hz in the complexes to 22.7 and 21.5 Hz in the transition structures
with X = F and Cl, respectively, as the S–S distance decreases. A further decrease in the S–S distance
leads to a decrease in these two coupling constants to 13.1 and 12.7 Hz, respectively, but these two
coupling constants do not change sign. The S···S bond gains covalent character in the transition
structures and again in the molecules, but it remains an intermolecular chalcogen bond. The correlation
coefficient is 0.939 for the second-order trend line in Figure 6, which illustrates these changes.
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1cJ(O–S) versus the O–S distance for HN(CH)SF:OCS, and 1tJ(N–C) versus the N–C distance for
corresponding complexes, transition structures, and molecules. Solid symbols refer to HN(CH)SF:SCO
and HN(CH)SCl:SCO, and open symbols refer to HN(CH)SF:OCS.

3.5. Comparison of Cs Complexes, Molecules, and Transition Structures HN(CH)SX:SCO and
HN(CH)SX:OCS

Data for the isomers HN(CH)SX:OCS with the same set of substituents X but which are stabilized
by O . . . S chalcogen bonds instead of S . . . S bonds have been reported in Reference [Error! Bookmark
not defined.]. The equilibrium HN(CH)SX:OCS complexes have Cs symmetry. The binding energies
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of HN(CH)SX:OCS and HN(CH)SX:SCO isomers with Cs symmetry are similar. Those with O . . . S
chalcogen bonds have binding energies between 12.2 and 15.1 kJ·mol–1, while those with S . . . S
chalcogen bonds have binding energies between 13.0 and 15.3 kJ·mol–1. In both series, the most
strongly bound complexes have X = F, Cl, and NC. The C1–N4 distances in these two series are similar,
with values of 3.03–3.09 Å in the complexes with O . . . S chalcogen bonds and 3.00–3.08 Å in complexes
with S . . . S bonds. The O–S distance in the complexes with O . . . S chalcogen bonds varies by 0.363
Å, while the S–S distance varies by 0.399 Å in complexes with S . . . S chalcogen bonds. In both series
of complexes, the binding energies are essentially independent of the N–C distance but exhibit a
second-order dependence on the O–S and S–S distances.

There is only one HN(CH)SX:OCS potential energy surface that has a bound molecule, namely
HN(CH)SF:OCS. The binding energy of this molecule is 15.2 kJ·mol–1 at the N–C and O–S distances of
1.431 and 1.948 Å, respectively. By comparison, the re are bound molecules on two HN(CH)SX:SCO
potential energy surfaces, those with X = F and Cl. The binding energies of these are 48.1 and
24.3 kJ·mol–1, respectively, at an N–C distance of 1.44 Å and an S–S distance of approximately 2.30 Å.
Thus, the two bound molecules with X = F and Cl that are stabilized by S . . . S chalcogen bonds are
significantly more stable than the HN(CH)SF:OCS molecule with an O . . . S chalcogen bond.

It is also possible to compare the changes in the coupling constants 1tJ(C–N) and 1cJ(S–S) for
HN(CH)SX:SCO complexes with the changes in 1tJ(C–N) and 1cJ(O–S) for HN(CH)SX:OCS. In both
series, 1tJ(N–C) is independent of the nature of the substituent and the N–C distance. In contrast,
the second-order dependence of 1cJ(O–S) and 1cJ(S–S) on the O–S and S–S distances, respectively,
is illustrated in Figure 5. The correlation coefficients are greater than 0.990. This type of distance
dependence across intermolecular bonds in a related series of complexes is common when the nature
of this bond does not change significantly as the bond distance changes [20,22].

The effect of the changing nature of the O . . . S bond in HN(CH)SF:OCS, the S . . . S bonds in
HN(CH)SF:SCO and HN(CH)SCl:SCO, and the N . . . C bonds in these three complexes on C1–N4,
O–S and S–S coupling constants is dramatic, as is illustrated in Figure 6. 1tJ(N–C) increases in going
from the complex to the transition structure as the N–C distance decreases, and then it decreases and
changes sign in the molecule as a covalent N–C bond is formed. 1cJ(S–S) and 1cJ(O–S) show similar
patterns as functions of the S–S and O–S distances, respectively, although these coupling constants
do not change sign because the S . . . S and O . . . S bonds remain chalcogen bonds but with increased
covalent character. In Figure 6, the curve for 1cJ(S–S) is displaced to longer distances simply because
the S atom has a larger van der Waals radius than O.

4. Conclusions

Ab initio MP2/aug’-cc-pVTZ calculations have been carried out in search of equilibrium complexes
and molecules, as well as the transition structures that interconvert them on the HN(CH)SX:SCO
potential energy surfaces, for X = F, Cl, NC, CCH, H, and CN. The results of these calculations support
the following statements.

1. The equilibrium complexes on the HN(CH)SX:SCO surfaces have C1 symmetry, but these have
binding energies that are no more than 0.5 kJ·mol–1 greater than the corresponding Cs complexes,
which are the transition structures separating two C1 complexes. The flatness of the potential surfaces
in the region of these complexes suggests that the Cs structures are vibrationally averaged equilibrium
complexes. The binding energies of corresponding C1 and Cs complexes differ by no more than
0.5 kJ·mol–1. The following statements refer to the complexes with Cs symmetry.

2. The binding energies of the HN(CH)SX:SCO complexes span a narrow range from 13.2 to
15.3 kJ·mol–1. They are independent of the N–C distance across the tetrel bond but exhibit a second-order
dependence on the S–S distance across the chalcogen bond.

3. Charge-transfer interactions stabilize all of these complexes. They arise primary from electron
donation of the lone pair on N to the local in-plane antibonding π orbital of S=C=O, and from donation
of the lone pair on S of S=C=O to the antibonding σ S–A orbital of HN(CH)SX.
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4. Only the potential surfaces with X = F and Cl have bound HN(CH)SX:SCO molecules,
with binding energies of 48.1 and 24.3 kJ·mol–1, respectively. These molecules have short covalent
N–C bonds and significantly shorter S–S chalcogen bonds compared to the complexes. The barriers
for converting the complexes to the molecules are 34 and 52 kJ·mol–1 for X = F and Cl, respectively.
The barriers for the reverse reactions are 67 and 61 kJ·mol–1, respectively.

5. EOM-CCSD spin-spin coupling constants 1tJ(N–C) for the HN(CH)SX:SCO complexes have
a very small value of −0.3 Hz and are independent of the N–C distance. In contrast, 1cJ(S–S) values
exhibit a second-order dependence on the S–S distance, increasing as this distance decreases.

6. For complexes with X = F and Cl, spin-spin coupling constants 1tJ(N–C) and 1cJ(S–S) as functions
of the N–C and S–S distances, respectively, increase in going from the complex to the transition structure
and then decrease in the molecules. These changes reflect the changing nature of the N . . . C and S . . . S
bonds. At the shorter distances in the transition structures, the N . . . C bond gains covalency, and then
becomes a covalent N–C bond in the molecule. The S . . . S bond has increased covalent character in the
transition structure and even more so in the molecule, but it remains a chalcogen bond.

Supplementary Materials: The following are available online, Table S1: Structures (Å), total energies (a.u.) and
molecular graphs of HN(CH)SX:SCO complexes with C1 symmetry, Table S2: Structures (Å), total energies (a.u.)
and molecular graphs of HN(CH)SX:SCO complexes with Cs symmetry, Table S3: Structures (Å), total energies
(a.u.) and molecular graphs of HN(CH)SX:SCO molecules, Table S4: Structures (Å), total energies (a.u.) and
molecular graphs of HN(CH)SX:SCO transition structures, Table S5: PSO, DSO, FC, and SD components of 1tJ(N-C)
and 1cJ(S-S) for complexes, bound molecules, and transition structures with Cs symmetry.
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