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Abstract: Tubulin inhibitors have been considered as potential drugs for cancer therapy. However,
their drug resistance and serious side-effects are the main reasons for clinical treatment failure.
Therefore, there is still an urgent need to develop effective therapeutic drugs. Herein, a structure-based
pharmacophore model was developed based on the co-crystallized structures of the tubulin with a high
resolution. The model including one hydrogen-bond acceptor feature, two aromatic features, and one
hydrophobic feature was further validated using the Gunner–Henry score method. Virtual screening
was performed by an integrated protocol that combines drug-likeness analysis, pharmacophore
mapping, and molecular docking approaches. Finally, five hits were selected for biological evaluation.
The results indicated that all these hits at the concentration of 40 µM showed an inhibition of more
than 50% against five human tumor cells (MCF-7, U87MG, HCT-116, MDA-MB-231, and HepG2).
Particularly, hit 1 effectively inhibited the proliferation of these tumor cells, with inhibition rates
of more than 80%. The results of tubulin polymerization and colchicine-site competition assays
suggested that hit 1 significantly inhibited tubulin polymerization by binding to the colchicine site.
Thus, hit 1 could be used as a potential chemotherapeutic agent for cancer treatment. This work also
demonstrated the potential of our screening protocol to identify biologically active compounds.
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1. Introduction

Cancer is a fatal disease caused by uncontrolled cell proliferation, which has led to the deaths of
9.6 million people in 2018, and 18.1 million cases are newly diagnosed [1]. Microtubules (MTs) consist
of typically 13 or 14 parallel protofilaments arising from the end-to-end aggregation of the tubulin
α/β-dimers [2]. MTs play a number of significant and diverse roles in all eukaryotic cells, such as cell
motion, mitosis, and intracellular organelle transport [3]. By inhibiting the polymerization of tubulin
or promoting microtubule depolymerization, most microtubule interfering agents (MIAs) show a very
good therapeutic effect toward various cancer cells [4–6]. Therefore, microtubules can be an excellent
target in the process of anticancer drugs design.

Most tubulin inhibitors bind to one of the three characterized tubulin ligand sites including taxol,
vinca, and colchicine sites [7,8]. Among these sites, only drugs that interact with the colchicine site
on tubulin can inhibit the process of angiogenesis (formation of new blood vessels) [8–14]. Currently,
various types of colchicine binding site inhibitors (CBSIs) have been developed [15–20]. However, there
are no FDA-approved drugs of this class on the market, because of their toxicity. For example, colchicine
can cause impairment of renal and gastrointestinal functions and has a direct toxic action on myocardial
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cells [21–23]; ZD6126, a colchicine analogue, has significant cardiotoxicity even at normal doses [24–26];
fosbretabulin has many side effects, such as tumor pain, lymphopenia, blood pressure, and heart
rate changes [27,28]. In addition, most CBSIs show low water solubility and poor pharmacokinetic
properties [29]. Therefore, there is an urgent need to develop effective therapeutic drugs.

In our study, we used a combination of drug-likeness analysis, pharmacophore mapping,
and molecular docking studies to find novel tubulin inhibitors. The pharmacophore model was
constructed based on the two crystal structures of the tubulin with a high resolution. After validation
by the Gunner–Henry score method, the model was used as a 3D query to screen potential drug-likeness
molecules from the Specs database. The retrieved molecules were further filtered by molecular docking
experiments. Finally, five structurally diverse hits were identified as potential leads for biological testing.

2. Results and Discussion

2.1. Pharmacophore Modeling

To obtain all available chemical and structural information on the inhibitor binding of the tubulin,
a pharmacophore model was generated using a structure-based modeling approach, based on the
four crystal structures of the tubulin (Table 1). This model was composed of four features (Figure 1):
One hydrogen-bond acceptor feature (F1: Acc), two aromatic features (F2 and F3: Aro), and one
hydrophobic feature (F4: Hyd). These features represented essential interaction points of the inhibitor
binding of the tubulin: (i) Two Acc and Aro features (F1 and F2) corresponding to Leu240, Ala248,
Leu253, and water molecules; (ii) two Aro and Hyd features (F3 and F4) corresponding to Met257,
Ala314, Val181, and Lys350.

Table 1. Basic information of receptor–ligand complexes of the tubulin from the Protein Data Bank
(PDB) database.

PDB_ID Resolution (Å) Ligand_ID

6F7C 1.81 CVT
5EYP 1.9 LOC
5YL2 2.09 8WU
4O2B 2.3 LOC
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Figure 1. Generated pharmacophore model. Pharmacophore features are color-coded: Red,
one hydrogen-bond acceptor feature (F1: Acc); yellow, aromatic features (F2 and F3: Aro); blue,
one hydrophobic feature (F4: Hyd). The protein backbone and active site residues (green) are shown
in line form; red balls mean water molecules; a gray pocket represents the shape of the binding site
in tubulin.
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2.2. Validation and Database Screening

An internal database was used as a testing set to validate the pharmacophore model. The database
included 970 inactive molecules and 30 known inhibitors with experimental activity. To validate the
ability of the model to distinguish the active from inactive molecules, the pharmacophore model was
used as a 3D query to perform virtual database searching. Some valuable parameters such as total hits
(Ht), active hits (Ha), % yield of actives, % ratio of actives, enrichment factor (E), and goodness-of-hit
score (GH) were calculated (Table 2).

Table 2. Pharmacophore model validation using goodness-of-hit score (GH) score method.

Serial No. Parameter Pharmacophore Model

1 Total molecules in database (D) 1000
2 Total number of actives in database (A) 30
3 Total hits (Ht) 36
4 Active hits (Ha) 26
5 % Yield of actives[(Ha/Ht) × 100] 72%
6 % Ratio of actives [(Ha/A) × 100] 87%
7 Enrichment factor (E) [(Ha × D)/(Ht × A)] 24
8 False negatives [A − Ha] 4
9 False positives [Ht − Ha] 10

10 Goodness of hit score (GH) a 0.75
a (Ha(3A + Ht)/4HtA)(1 − (Ht − Ha)/(D − A)); GH score of 0.7–0.8 indicates a very good model.

The higher the E value, the greater the ability of a model in identifying the active compounds.
The E value for the model was 24 as it had identified 26 active hits from 36 screened compounds,
suggesting that the model had a good ability to distinguish the active molecules from the inactive ones.
A GH score of 0.7–0.8 indicates a very good model. It was observed to be 0.75 for the pharmacophore
model. These validated results indicate that the model was very efficient for database screening.

Figure 2 shows the virtual screen scheme used in this study. Firstly, the 202,919 molecules in the
Specs database were filtered by using Lipinski’s rule for the refinement of drug likeness. The model
was then used as a filtrating tool in virtual screening to identify potential hits from 168,911 drug-like
compounds. Based on a root of the mean square distance (RMSD) value less than 1 Å, the 3135 selected
molecules were docked into the colchicine-binding site in tubulin. According to the calculation of
docking score and interaction analysis, 5 compounds, termed as hits 1–5, were finally selected for
further biological evaluation (Table 3). Figure 3 depicts a good pharmacophore mapping of 5 hits on
the model.
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Figure 3. Pharmacophore mapping of five hits on model. Pharmacophore features are color-coded:
Red, one hydrogen-bond acceptor feature (F1: Acc); yellow, aromatic features (F2 and F3: Aro); blue,
one hydrophobic feature (F4: Hyd). The hits are shown in stick form; protein backbone and active site
residues (green) are shown in line form; red balls mean water molecules; a gray pocket represents the
shape of the binding site in tubulin.
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Table 3. Hit compounds selected from Specs database.

Hits ID Number Structure RMSD [Å] a Docking Score [kcal·mol−1] b

1 AG-690/11549747
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2.3. Biological Activities of Retrieved Molecules

To further investigate the antiproliferative activity of hits 1–5 against five
tumor cells including MCF-7, U87MG, HCT-116, HepG2, and MDA-MB-231,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed.
The results revealed that all the hits at the concentration of 40 µM had an inhibition rate of more than
50% (Figure 4). Particularly, hit 1, as the most potent inhibitor, exhibited inhibition rates of more than
80% against all five tumor cells including MCF-7, U87MG, HCT-116, HepG2, and MDA-MB-231. These
results indicated that hit 1 could be developed as an effective anticancer drug with a broad spectrum of
anticancer activity.
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2.4. Effect of Hit 1 on Tubulin Polymerization and [3H] Colchicine Binding

To further explore the mechanism of action of hit 1, tubulin polymerization and [3H] colchicine
binding inhibition assays were performed. A known tubulin inhibitor, combretastatin A-4 (CA-4),
was used as the positive control. As shown in Table 4, hit 1 (IC50 = 3.7 ± 0.5 µM) showed significant
inhibition of tubulin polymerization close to that of the positive control drug CA-4 (IC50 = 3.3 ± 0.6 µM).
In addition, hit 1 showed a 91% inhibition of [3H] colchicine binding at a 20 µM concentration. In order
to further predict a reasonable binding mode, hit 1 was docked into the colchicine-binding site of
tubulin. As shown in Figure 5, hit 1 forms hydrogen-bonding interactions with Ala180 and H2O.
In addition, hit 1 was engaged in a strong hydrophobic interaction with some key amino acids,
including Leu248, Ile318, Ala250, Ala316, Leu255, Lys352, Val181, and Ala180, which was crucial for
the inhibitor binding of the tubulin. These results show that hit 1 was a potent tubulin inhibitor and
could be used as a promising anti-tumor agent.

Table 4. Inhibition of tubulin polymerization and [3H] colchicine binding inhibition.

Hits ID Number Tubulin IC50 [µM] a [3H] Colchicine Binding Inhibition (% ± SD)
b

1 AG-690/11549747 3.7 ± 0.5 91 ± 5.5
CA-4 3.3 ± 0.6 96 ± 3.1
a Inhibition of tubulin polymerization. The tubulin concentration was 10 µM. b Inhibition of colchicine binding.
The compound concentration was 20 µM. The results are representative of three independent experiments and are
expressed as mean ± SD.
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3. Materials and Methods

3.1. Pharmacophore Model Generation

Four X-ray crystallographic structures of the tubulin domain with a high resolution were obtained
from the Protein Data Bank (PDB) database (Table 1). These structures were firstly preprocessed and
used for the generation of pharmacophore models. Hydrogen was added, Gasteiger partial charges
were computed, and then energy minimization was carried out using the Merck molecular force field
94× (MMFF94×) forcefield [30]. Based on these preprocessed crystal structures, the pharmacophore
generation protocol of the Molecular Operating Environment (MOE) (Chemical Computing Group Inc.,
Montreal, Quebec, Canada) was applied to generate the most representative features of the tubulin
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active site, which are indicated as spheres that represent the essential interaction points with key
residues on the ligand binding of the tubulin.

3.2. Pharmacophore Model Evaluation

An internal database was constructed with a total of 1000 compounds with 30 actives collected
from the reported literature [9,31–33]. The database was used to evaluate the discriminative ability
of the pharmacophore model in distinguishing active compounds from the inactive compounds.
The database screening was performed using the pharmacophore search protocol available in MOE.
The Gunner–Henry (GH) scoring method was applied to quantify the model selectivity precision of
hits and the recall of actives from a dataset containing known actives and inactives. This method
includes the total hits (Ht), % yield of actives, % ratio of actives, enrichment factor (E), false negatives,
false positives, and goodness-of-hit score (GH), which were calculated [34]. The GH score ranges from
0 to 1, which indicates a null model and an ideal model, respectively.

3.3. Virtual Screening

To find effective anti-cancer drugs with diverse scaffolds, the Specs database containing more
than 200,000 molecules was used for virtual screening because of their structural diversities [35].
Currently, all the compounds of the commercially available Specs database are two-dimensional (2D)
planar structures. Therefore, before virtual screening, every compound in the Specs database needs to
be transformed into a three-dimensional (3D) structure. The Energy Minimize application in MOE
performs potential energy minimization on each molecule in the Specs database. All planar structures
were minimized in MOE using the MMFF94x force field, until a root-mean-square gradient of 0.01 kcal
mol−1 was reached. In addition, all hydrogen was initially added and the forcefield partial charges
computed. In the first screening, Lipinski’s rule derived from the statistics of oral drugs was used to
find drug-like molecules from the Specs database, because of unique structural characteristics of the
colchicines-binding site. Then, based on the established pharmacophore model, the pharmacophore
search protocol of the MOE was used to screen hits from these drug-like molecules. According to the
manual of the MOE software [36], RMSD means the root of the mean square distance between the
query features of the model and their matching ligand annotation points. The matched conformer for
each ligand in the database is listed by sorting on a key RMSD. In MOE, lower RMSD values indicate
better mapping of ligand annotation points and the query features; better mapping indicates that the
ligand has a better binding affinity to its target. An RMSD value of 0 indicates a perfect mapping
between the features of the model and their matching ligand annotation points. Based on a RMSD
value less than 1 Å, the selected hits were used for molecular docking studies.

3.4. Structure-Based Molecular Docking

The MOE program was used to perform various steps involved in the docking simulation.
The screening hits with a RMSD value of less than 1 Å were docked into the tubulin active site by means
of the default triangle matcher algorithm. The dG docking scoring function of MOE estimates the
binding free energy between tubulin and a ligand (lower values indicate a better binding affinity) [36,37].
Based on the binding free energies, the final hits were chosen for in vitro evaluation.

3.5. Cell Proliferation Inhibition Assay

Cancer cells (5 × 103 cells/well) were seeded in 96-well culture plates (Coring) and incubated
overnight. Then, cells were exposed to 40 µM of inhibitors and incubated at 37 ◦C for 48 h. After
that, MTT stock solution (0.5 mg/mL) was added into each well and cultured for an additional 4 h.
The MTT-treated cells were fixed with 150 µL of dimethylsulfoxide (DMSO). The absorbance in each
individual well was measured at 490 nm on a microplate spectrophotometer. All assays were performed
in triplicate.
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3.6. Tubulin Polymerization

According to a previously reported method [38], at 350 nm, tubulin polymerization was
turbidimetrically followed in the Beckman model spectrophotometers equipped with electronic
temperature controllers. The tubulin concentration was 10 µM. All assays were performed in triplicate.

3.7. [3H] Colchicine Binding Assay

According to a previously reported method [39], the binding of [3H] colchicines to tubulin
was measured. The tubulin and [3H] colchicine concentrations were 1.0 and 5.0 µM, respectively.
Compounds were tested at 20 µM. All assays were performed in triplicate.

4. Conclusions

In conclusion, we have successfully constructed an integrated protocol that combines drug-likeness
analysis, pharmacophore mapping, and molecular docking studies. Biological validation revealed that
five hits identified by the protocol had obvious inhibitory effects on five cancer cells (MCF-7, U87MG,
HCT-116, MDA-MB-231, and HepG2), with an inhibition rate of more than 50% at a concentration of
40 µM. Our results demonstrated that this integrated protocol can be used as a 3D query to efficiently
identify diverse active compounds prior to biological testing, suggesting a great potential for anticancer
drug discovery. It is possible that the searching of other commercial databases might find more
potential active inhibitors.
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