New artificial biomimetic enzyme analogues based on iron(II/III) Schiff Base complexes: an effect of (benz)imidazole organic moieties on phenoxazinone synthase and DNA recognition

Aleksandra Bocian ${ }^{1 \#}$, Martyna Szymańska ${ }^{1 \#}$, Daria Brykczyńska ${ }^{1}$, Maciej Kubicki ${ }^{1}$, Monika WałęsaChorab ${ }^{1}$, Giovanni N. Roviello ${ }^{2}$, Marta A. Fik-Jaskółka ${ }^{1 *}$, Adam Gorczyński ${ }^{*}$, Violetta Patroniak ${ }^{1}$
${ }^{1}$ Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
${ }^{2}$ Institute of Biostructures and Bioimaging - CNR, via Mezzocannone 16, 80134 Napoli, Italy
*co-authors contributed equally
* adam.gorczynski@amu.edu.pl; martafik@amu.edu.pl

Table of contents

1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of ligands and complexes.. 2
2. ESI-MS spectra of ligand and complexes .. 10
3. Crystal data and structure of complexes.. 19
4. Spectra of the oxidation reactions ... 24
5. Biological spectra ... 28

1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of ligands and complexes

Fig. S1a. ${ }^{1} \mathrm{H}$ NMR spectra for ligand \mathbf{L}^{1} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{1} \mathrm{H}$ NMR ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-12.38\left(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{NH}_{(\mathrm{ij})}\right) ; 11.53\left(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{NH}_{(\mathrm{ij})}\right) ; 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hh}) ;$ 7.78 (s, 1H, Hf); $7.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Hb}_{\mathrm{b}, \mathrm{s})}\right) ; 7.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}, \mathrm{d}}\right) ; 4.37\left(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{NH} \mathrm{i}_{(\mathrm{ij})}\right) ; 3.56\left(\mathrm{~s}, \mathrm{Me}_{(\mathrm{e})}\right)$.

Fig. S1b. ${ }^{1} \mathrm{H}$ NMR spectra for ligand \mathbf{L}^{1} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$.

${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+\mathrm{K}_{2} \mathrm{CO}_{3}, 400 \mathrm{MHz}\right) \delta=7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hh}) ; 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ; 7.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right) ; 7.32-7.28$ (dd, 2H, J = 5.8, 3.2 Hz, Hb, c); 7.00-6.96 (dd, 2H, J = 5.9, 3.2 Hz, Ha,d); 3.56 (s, Me(e)).

Fig. S1c. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra for ligand L^{1} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectra for ligand \mathbf{L}^{1} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+\mathrm{K}_{2} \mathrm{CO}_{3}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})-154.5,138.7,137.3,131.9(2 \mathrm{C}), 128.9,125.2,119.9(2 \mathrm{C})$, 112.7 (2C), 31.1.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectra for ligand \mathbf{L}^{2} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-12.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{(\mathrm{i})}\right) ; 11.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{(\mathrm{j})}\right) ; 7.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ; 7.45-$ 7.28 (m, 3H, Hb, c, g); 7.10-6.99 (m, 3H, Ha, d, h); 3.59 (s, Me(e)).

Fig. S4. ${ }^{13} \mathrm{C}$ NMR spectra for ligand \mathbf{L}^{2} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{13} \mathrm{C}$ NMR ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})-154.2,144.9,143.3,134.1,129.8,127.8,121.2,120.4,118.2,116.9$, 109.7, 31.7.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectra for ligand L^{3} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-11.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{(\mathrm{j})}\right), 7.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{(\mathrm{f})}\right)$, 7.36-7.29 (m, 3H, Hb, c, h), 7.04-6.99 (m, 3H, Ha, d, i), 4.01 (s, $\mathrm{Me}_{\mathrm{g}(\mathrm{s})}$), 3.65 ($\left.\mathrm{s}, \mathrm{Me}_{(\mathrm{e})}\right)$.

Fig. S6. ${ }^{13} \mathrm{C}$ NMR spectra for ligand L^{3} measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.

${ }^{13} \mathrm{C}$ NMR ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})-153.4,142.6,144.1,134.1,129.8,128.4,124.3,120.8,119.8,116.2$, 110.1, 35.1, 31.6.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectra for ligand L^{4} measured in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-8.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right) ; 7.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ; 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hh}_{\mathrm{h}}\right) ; 7.56-$ $7.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}, \mathrm{d}}\right) ; 7.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hg}_{\mathrm{g}}\right) ; 6.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{Hb}) ; 6.40\left(\mathrm{~s}\right.$, broad, NH); $3.59\left(\mathrm{~s}, \mathrm{Me}_{(\mathrm{e})}\right)$.

Fig. S8. ${ }^{13} \mathrm{C}$ NMR spectra for ligand \mathbf{L}^{4} measured in CDCl_{3}.

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})-157.4,147.0,137.7,136.0,131.6,125.6,125.4,115.6,109.7,29.7$.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR spectra for ligand \mathbf{L}^{5} measured in $\mathrm{CD}_{3} \mathrm{OD}$.

${ }^{1} \mathrm{H}$ NMR (CD $\left.3 \mathrm{OD}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-8.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right) ; 7.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Hd}) ; 7.67(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right) ; 7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ; 7.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{H}_{\mathrm{h}}\right) ; 6.87\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{Hb}_{\mathrm{b}}\right) ; 3.61\left(\mathrm{~s}, \mathrm{Me}_{(\mathrm{e})}\right)$.

Fig. S10. ${ }^{13} \mathrm{C}$ NMR spectra for ligand \mathbf{L}^{5} measured in $\mathrm{CD}_{3} \mathrm{OD}$.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectra for complex 10 measured in $\mathrm{CD}_{3} \mathrm{CN}$.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-10.85(\mathrm{~s}, 2 \mathrm{H}) ; 9.12(\mathrm{~s}, 2 \mathrm{H}) ; 7.64-7.40(\mathrm{~m}, 6 \mathrm{H}) ; 7.10(\mathrm{~s}, 2 \mathrm{H}) ; 7.01$ (d, 2H); 6.71 (t, 2H); 4.18 (s, 6H).

Fig. S12. ${ }^{1} \mathrm{H}$ NMR spectra for complex 11 measured in $\mathrm{CD}_{3} \mathrm{CN}$.

${ }^{1} \mathrm{H}$ NMR (CD3 $\left.{ }_{3} \mathrm{CN}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-9.28(\mathrm{~s}, 2 \mathrm{H}) ; 7.69-7.52(\mathrm{~m}, 4 \mathrm{H}) ; 7.06(\mathrm{~d}, 2 \mathrm{H}) ; 7.01(\mathrm{~s}, 2 \mathrm{H}) ; 6.77(\mathrm{t}$, 2H); 6.37 (s, 2H); 4.28 (s, 6H).

Fig. S13. ${ }^{1} \mathrm{H}$ NMR spectra for complex 12 measured in $\mathrm{CD}_{3} \mathrm{CN}$.

${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{CN}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})-9.26(\mathrm{~s}, 2 \mathrm{H}) ; 7.69(\mathrm{t}, 2 \mathrm{H}) ; 7.56(\mathrm{~d}, 2 \mathrm{H}) ; 7.03(\mathrm{~d}, 2 \mathrm{H}) ; 6.89(\mathrm{~s}, 2 \mathrm{H})$; 6.75 (t, 2H); 6.29 (s, 2H); 4.28 (s, 6H); 3.92 (s, 6H).

2. ESI-MS spectra of ligand and complexes

Fig. S14. ESI-MS spectra for ligand \mathbf{L}^{1}.

ESI-MS(+) m/z (\%): 241 (100) [$\left.\mathrm{HL}^{1}\right]^{+}, 263(10)\left[\mathrm{NaL}^{1}\right]^{+} ;$ESI-MS(-): 239 (100) [L¹-H].

Fig. S15. ESI-MS spectra for ligand \mathbf{L}^{2}.

ESI-MS(+) m/z (\%): 241 (40) [$\left.\mathrm{HL}^{2}\right]^{+}, 263$ (100) [$\left.\mathrm{NaL}^{2}\right]^{+}$; ESI-MS(-): 239 (100) [$\left.\mathrm{L}^{2}-\mathrm{H}\right]$.

Fig. S16. ESI-MS spectra for ligand \mathbf{L}^{3}.

ESI-MS(+) m/z (\%): 255 (30) [$\left.\mathrm{HL}^{3}\right]^{+}, 277$ (100) $\left[\mathrm{NaL}^{3}\right]^{+} ;$ESI-MS(-): 253 (100) [$\left.\mathrm{L}^{3}-\mathrm{H}\right]^{-}$.

Fig. S17. ESI-MS spectra for ligand \mathbf{L}^{4}.

ESI-MS(+) m/z (\%): $202(20)\left[\mathrm{HL}^{4}\right]^{+}, 224$ (25) [NaL4] ${ }^{4}$; ESI-MS(-): $200(100)\left[\mathrm{L}^{4}-\mathrm{H}\right]^{-}$.

Fig. S18. ESI-MS spectra for ligand \mathbf{L}^{5}.

ESI-MS(+) m/z (\%): 202 (30) [$\left.\mathrm{HL}^{5}\right]^{+}, 224$ (100) [NaL5] ${ }^{+}$; ESI-MS(-): 200 (100) [L5 $\left.{ }^{5}-\mathrm{H}\right]^{-}$.

Fig. S19. ESI-MS spectra for ligand \mathbf{L}^{6}.

ESI-MS(+) m/z (\%): 216 (100) [HL $\left.{ }^{6}\right]^{+}$.

Fig. S20. ESI-MS spectra for complex 1.

ESI-MS(+) m/z (\%): 241 (100) [HL¹] ${ }^{+}$; ESI-MS(-) m/z (\%): 239 (100) [L¹-H].

Fig. S21. ESI-MS spectra for complex 2.

ESI-MS(+) m/z (\%): 241 (70) [$\left.\mathrm{HL}^{2}\right]^{+}, 366$ (30) $\left[\mathrm{FeL}^{2} \mathrm{Cl}_{2}\right]^{+}$; ESI-MS(-) m/z (\%): 198 (100) [$\left.\mathrm{FeCl}_{4}\right]^{-}$.

Fig. S22. ESI-MS spectra for complex 3.

ESI-MS(+) m/z (\%): 255 (40) $\left[\mathrm{HL}^{3}\right]^{+}, 277(5)\left[\mathrm{NaL}^{3}\right]^{+}, 344(30)\left[\mathrm{Fe}\left(\mathbf{L}^{3}-\mathrm{H}\right) \mathrm{Cl}\right]^{+}$.

Fig. S23. ESI-MS spectra for complex 4.

ESI-MS(+) m/z (\%): 202 (100) [HL4]+; ESI-MS(-) m/z (\%): 200 (100) [L$\left.^{4}-H\right]^{-}$.

Fig. S24. ESI-MS spectra for complex 5.

ESI-MS(+) m/z (\%): $202(40)\left[\mathrm{HL}^{5}\right]^{+}, 327(20)\left[\mathrm{FeL}^{5} \mathrm{Cl}_{2}\right]^{+} ;$ESI-MS(-) m/z (\%): 198 (40) [$\left.\mathrm{FeCl}_{4}\right]$.

Fig. S25. ESI-MS spectra for complex 6.

ESI-MS(+) m/z (\%): 216 (100) [HL $\left.{ }^{6}\right]^{+}$.

Fig. S26. ESI-MS spectra for complex 7.

ESI-MS(+) m/z (\%): 241 (40) [HL¹] ${ }^{+}, 263$ (5) [$\left.\mathrm{NaL}^{1}\right]^{+}, 268$ (80) [FeL $\left.{ }^{1}{ }^{2}\right]^{2+}, 535(35)\left[\mathrm{FeL}^{1}\left(\mathrm{~L}^{1}-\mathrm{H}\right)\right]^{+} ;$ESI-MS(-): 149 (100) $\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$.

Fig. S27. ESI-MS spectra for complex 8.

ESI-MS(+) m/z (\%): 241 (75) [$\left.\mathrm{HL}^{2}\right]^{+}, 263(5)\left[\mathrm{NaL}^{2}\right]^{+}, 268(80)\left[\mathrm{FeL}^{2}\right]^{2+}, 535(95)\left[\mathrm{FeL}^{2}\left(\mathrm{~L}^{2}-\mathrm{H}\right)\right]^{+}$.

Fig. S28. ESI-MS spectra for complex 9.

ESI-MS(+) m/z (\%): 282 (95) [FeL3 $\left.{ }^{3}\right]^{2+}, 563(70)\left[\mathrm{FeL}^{3}\left(\mathbf{L}^{3}-\mathrm{H}\right)\right]^{+}$; ESI-MS(-): 149 (100) [$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$.

Fig. S29. ESI-MS spectra for complex 10.

ESI-MS(+) m/z (\%): 229 (100) [FeL $\left.{ }^{4}\right]^{+}, 457(35)\left[\mathrm{FeL}^{4}\left(\mathbf{L}^{4}-\mathrm{H}\right)\right]^{+}$; ESI-MS(-): 149 (100) [$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$.

Fig. S30. ESI-MS spectra for complex 11.

ESI-MS(+) m/z (\%): 229 (100) [FeL $\left.{ }^{5}\right]^{2+}, 457$ (20) $\left[\mathrm{FeL}^{5}\left(\mathbf{L}^{5}-\mathrm{H}\right)\right]^{+}$; ESI-MS(-): 149 (100) [$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$.

Fig. S31. ESI-MS spectra for complex 12.

ESI-MS(+) m/z (\%): 243 (100) $\left[\mathrm{FeL}^{6}\right]^{2+}, 635(30)\left[\mathrm{FeL}^{6}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]^{+}$; ESI-MS(-): 149 (100) [CF3 $\left.\mathrm{SO}_{3}\right]^{-}$.

3. Crystal data and structure of complexes

Fig. S32. Anisotropic-ellipsoid representation of the complex 1 the ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Fig. S33. Anisotropic-ellipsoid representation of the complex 7 the ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Fig. S34. Anisotropic-ellipsoid representation of the complex 8 the ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Fig. S35. Anisotropic-ellipsoid representation of the complex 10 and 12 the ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Table S1. Relevant geometrical data (\AA, \underline{o}); "angles" are three largest angles around Fe center, A, B and C denote mean planes of benzimidazole or pyridine ring, chain linker and imidazole ring, respectively.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$
Fe1-N3 (N1)	$2.043(15)$	$2.0736(19)$	$2.137(5)$	$2.1161(18)$
Fe1-N12	$2.234(15)$	$2.226(2)$	$2.172(5)$	$2.1911(17)$
Fe1-N15	$2.090(15)$	$2.096(2)$	$2.087(5)$	$2.0786(18)$
Fe1-Cl	$2.234(6)$	$2.2518(7)$	$2.2538(17)$	$2.2584(6)$
	$2.318(6)$	$2.2883(7)$	$2.3045(17)$	$2.3365(6)$
	$2.543(6)$		$2.4771(17)$	$2.3890(6)$
Fe1-O	$174.7(4)$	$169.43(5)$	$173.34(7)$	$178.07(5)$
angles	$173.0(2)$	$169.00(6)$	$172.20(15)$	$171.30(2)$
	$147.1(6)$	$146.11(8)$	$147.2(2)$	$147.17(7)$
A/B	$7.1(12)$	$2.14(13)$	$7.3(3)$	$6.52(9)$

B/C	$6.9(15)$	$4.50(16)$	$8.3(4)$	$3.05(10)$
A/C	$10.7(9)$	$3.80(14)$	$10.4(4)$	$6.31(12)$

	7	8	9	10	12
Fe1-N3 (N1)	2.152(3) 2.140(3)	1.987(5) 2.003(5)	2.164(2) 2.132(2)	1.9571(14)	1.941(7) 1.956(7)
Fe1-N12	$\begin{aligned} & 2.184(3) \\ & 2.183(3) \end{aligned}$	$\begin{aligned} & 1.957(4) \\ & 1.976(4) \end{aligned}$	$\begin{aligned} & \hline 2.173(3) \\ & 2.199(3) \end{aligned}$	1.9521(14)	$\begin{aligned} & 1.888(6) \\ & 1.891(7) \end{aligned}$
Fe1-N15	2.191(3) 2.173(3)	1.997(5) 2.008(5)	2.207(3) 2.132(2)	1.9014(13)	1.984(7) 1.996(7)
angles	$\begin{aligned} & 166.00(10) \\ & 145.85(11) \\ & 143.14(11) \end{aligned}$	$\begin{aligned} & 171.91(18) \\ & 158.22(19) \\ & 158.13(19) \end{aligned}$	$\begin{aligned} & \hline 163.79(9) \\ & 146.17(9) \\ & 146.09(9) \end{aligned}$	1.8988(13)	$\begin{aligned} & \hline 177.5(3) \\ & 162.1(3) \\ & 161.9(3) \end{aligned}$
				1.9715(14)	
A/B	$\begin{aligned} & 9.55(15) \\ & 10.20(14) \end{aligned}$	$\begin{aligned} & 6.7(3) \\ & 3.3(3) \end{aligned}$	$\begin{aligned} & 14.05(7) \\ & 6.67(9) \end{aligned}$	1.9558(14)	$\begin{aligned} & 1.9(3) \\ & 3.4(3) \end{aligned}$
B/C	$\begin{aligned} & \hline 14.34(17) \\ & 8.8(2) \end{aligned}$	$\begin{aligned} & 8.2(4) \\ & 3.5(4) \end{aligned}$	$\begin{aligned} & \hline 5.97(12) \\ & 7.02(14) \end{aligned}$	176.05(6)	$\begin{aligned} & 1.1(3) \\ & 5.3(3) \end{aligned}$
A/C	$\begin{aligned} & 15.90(17) \\ & 18.69(18) \end{aligned}$	$\begin{aligned} & 6.1(4) \\ & 3.1(4) \end{aligned}$	$\begin{aligned} & 17.88(8) \\ & 13.55(12) \end{aligned}$	161.93(6)	$\begin{aligned} & 1.9(4) \\ & 7.8(4) \end{aligned}$
A/A ${ }^{\prime}$	86.41(7)	83.36(10)	74.65(6)	161.82(6)	88.3(2)
Voids	17.0	12.4	14.4		5.8

Table S2. Hydrogen bond data ($\mathrm{A}, \stackrel{\circ}{\circ}$)

D	H	A	D-H	H $\cdots \mathrm{A}$	D $\cdots \mathrm{A}$	D-H $\cdots \mathrm{A}$
$\mathbf{1}$						
N3	H3	Cl2 $^{\mathrm{i}}$	0.88	2.37	$3.145(16)$	147
N17	H17	$\mathrm{Cl2}^{2 i}$	0.88	2.41	$3.203(18)$	151
$\mathbf{2}$						

N3	H3	$\mathrm{Cl} 3{ }^{\text {i }}$	0.88	2.21	3.083(2)	174
N18	H18	$\mathrm{Cl3}^{\text {iii }}$	0.88	2.24	3.051(2)	154
O19	H19	Cl 3	0.86	2.10	2.9431(18)	171
4						
N14	H14	$\mathrm{Cl}^{\text {iv }}$	0.88	2.44	3.179(6)	142
7						
N1A	H1A	O2Cri	0.88	2.04	2.906(4)	166
N17A	H17A	O3C	0.88	1.93	2.812(4)	175
N1B	H1B	O3D	0.88	2.02	2.895(4)	173
N17B	H17B	O2D ${ }^{\text {vii }}$	0.88	2.05	2.914(4)	165
8						
N1A	H1A	O2D ${ }^{\text {viii }}$	0.88	2.16	2.904(6)	142
N18A	H18A	O3C	0.88	2.26	2.856(7)	125
N18A	H18A	O3D	0.88	2.28	3.007(6)	140
N1B	H1B	O1D ${ }^{\text {ix }}$	0.88	1.97	2.833(6)	166
N18B	H18B	O3D ${ }^{\text {x }}$	0.88	2.09	2.961(6)	173
9						
N1A	H1A	O3Cxi	0.88	1.97	2.814(3)	161
N1B	H1B	O3D ${ }^{\text {xii }}$	0.88	2.03	2.896(3)	166
10						
N14A	H14A	O2D	0.88	1.98	2.862(7)	179
N14B	H14B	O3C	0.88	1.95	2.811(7)	165
12						
C6A	H6A	O1E	0.95	2.35	3.196(12)	148
C10C	H10C	O3H ${ }^{\text {xiii }}$	0.95	2.23	3.158(11)	167
C6D	H6D	F2F	0.95	2.23	2.937(13)	130

Symmetrycodes: ${ }^{\text {i }} 1-x,-1-y, 1-z ;{ }^{\text {ii }} 1-x,-y, 2-z ;$ iii $3 / 2-x, 1 / 2+y, 1 / 2-z$; iv $-x, 1-y, 1-z$;
v $-1+x, y, z$; vi $1 / 2+x, 1 / 2+y, z$; vii $-1 / 2+x, 1 / 2+y, z ;$ viii $1-x, 1 / 2+y, 3 / 2-z ;{ }^{\text {ix }} x, 1+y, z$;
x $-x, 1 / 2+y, 3 / 2-z ;$ xi $-1+x, y, z ;$ xii; xiii $2-x, 1-y, 1-z$.

Table S3. Comparative table of ligands structure and features with some of their kinetic parameters.

Ligand	$\begin{gathered} \text { 'Open' } \\ {\left[\mathrm{Fe}\left(\mathrm{~L}^{\mathrm{x}}\right) \mathrm{Cl}_{3}\right]} \\ \mathrm{Kм}\left[10^{-3} \mathrm{M}\right) / \\ \mathrm{TON}\left[\mathrm{~h}^{-1}\right] \end{gathered}$	$\begin{gathered} \text { 'Closed' } \\ {\left[\mathrm{Fe}\left(\mathbf{L}^{x}\right)_{2}\right](\mathrm{OTf})_{2}} \\ \text { Км }\left[10^{-3} \mathrm{M}\right) / \\ \text { TON }\left[\mathrm{h}^{-1}\right] \end{gathered}$	Number of H bonds in:			Dispositi on of H bonds
			Ligand	'Open' complex	'Closed' complex	
	$\begin{gathered} 1.45 / \\ 185.25 \end{gathered}$	$\begin{aligned} & 3.98 / \\ & 199.40 \end{aligned}$	2	2	4	a/e
	$\begin{aligned} & 2.16 / \\ & 127.30 \end{aligned}$	$\begin{aligned} & 1.96 / \\ & 97.68 \end{aligned}$	2	2	4	a/a

	$\begin{gathered} 1.95 \text { / } \\ 172.30 \end{gathered}$	$\begin{aligned} & 3.68 / \\ & 183.80 \end{aligned}$	1	1	2	a/-
	$2.02 \text { / }$ 134.05	$\begin{aligned} & 0.86 / \\ & 42.76 \end{aligned}$	1	1	2	-/e
	$\begin{gathered} 2.02 \text { / } \\ 103.34 \end{gathered}$	$\begin{aligned} & 1.30 / \\ & 65.14 \end{aligned}$	1	1	2	-/a
	$\begin{aligned} & 2.19 / \\ & 150.49 \end{aligned}$	$\begin{gathered} 2.13 / \\ 106.53 \end{gathered}$	0	0	0	-/-

4. Spectra of the oxidation reactions

Fig. S36. The spectral profile showing blank test with 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days. At 433 nm there is growth of 2-aminophenoxazine-3-one.

The spectra of the oxidation reaction of 2-aminophenol using complexes with a "open" system as catalysts:

Fig. S37. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 2 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 2 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 2 (right).

Fig. S38. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 3 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 3 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 3 (right).

Fig. S39. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 4 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 4 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 4 (right).

Fig. S40. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 5 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 5 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 5 (right).

Fig. S41. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 6 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 6 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 6 (right).

The spectra of the oxidation reaction of 2-aminophenol using complexes with a "closed" system as catalysts:

Fig. S42. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 8 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 8 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 8 (right).

Fig. S43. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 9 to 2-aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 9 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 9 (right).

Fig. S44. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 10 to 2-aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex $\mathbf{1 0}$ (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex $\mathbf{1 0}$ (right).

Fig. S45. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex $\mathbf{1 1}$ to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex $\mathbf{1 1}$ (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex 11 (right).

Fig. S46. The spectral profile showing the growth of 2-aminophenoxazine-3-one at 433 nm due to addition of complex 12 to 2 -aminophenol dissolved in methanol. The spectra were recorded under aerobic conditions during three days (left). Plot of rate vs concentration for complex 12 (middle). Linewear-Burk plot of phenoxazinone synthase like activity for complex $\mathbf{1 2}$ (right).

5. Biological spectra

Fig. S47. Absorption titration of $\mathbf{1}$ (left), 2 (middle) and $\mathbf{3}$ (right) with increasing concentrations of CTDNA $(0-100 \mu \mathrm{M})$.

Fig. S48. Absorption titration of $\mathbf{4}$ (left), 5 (middle) and 6 (right) with increasing concentrations of CTDNA (0-100 $\mu \mathrm{M})$.

Fig. S49. Absorption titration of $\mathbf{7}$ (left), $\mathbf{8}$ (middle) and 9 (right) with increasing concentrations of CTDNA $(0-100 \mu \mathrm{M})$.

Fig. S50. Stability test of complex compounds $\mathbf{1 2}$ (a), $\mathbf{1 1}$ (b) and ligands \mathbf{L}^{6} (c), \mathbf{L}^{5} (d) over time (0420min).

Fig. S51 Absorption titration of \mathbf{L}^{6} (left) and \mathbf{L}^{5} (right) with increasing concentrations of CT-DNA (0$100 \mu \mathrm{M})$.

Fig. $\mathbf{S 5 2}$ Absorption spectra of \mathbf{L}^{6} and $\mathbf{1 2}$ (left), \mathbf{L}^{5} and $\mathbf{1 1}$ (right) in Tris- HCl buffer ($\mathrm{pH}=7.4$).

