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Abstract: Acute myeloid leukemia (AML) is a neoplastic disorder resulting from clonal proliferation
of poorly differentiated immature myeloid cells. Distinct genetic and epigenetic aberrations are key
features of AML that account for its variable response to standard therapy. Irrespective of their
oncogenic mutations, AML cells produce elevated levels of reactive oxygen species (ROS). They
also alter expression and activity of antioxidant enzymes to promote cell proliferation and survival.
Subsequently, selective targeting of redox homeostasis in a molecularly heterogeneous disease, such as
AML, has been an appealing approach in the development of novel anti-leukemic chemotherapeutics.
Naphthoquinones are able to undergo redox cycling and generate ROS in cancer cells, which have
made them excellent candidates for testing against AML cells. In addition to inducing oxidative
imbalance in AML cells, depending on their structure, naphthoquinones negatively affect other
cellular apparatus causing neoplastic cell death. Here we provide an overview of the anti-AML
activities of naphthoquinone derivatives, as well as analysis of their mechanism of action, including
induction of reduction-oxidation imbalance, alteration in mitochondrial transmembrane potential,
Bcl-2 modulation, initiation of DNA damage, and modulation of MAPK and STAT3 activity, alterations
in the unfolded protein response and translocation of FOX-related transcription factors to the nucleus.

Keywords: acute myeloid leukemia (AML); naphthoquinone; reactive oxygen species (ROS);
apoptosis; mechanism of action

1. Introduction

1.1. Chemistry of Naphthoquinones

Naphthoquinones (C10H6O2) are oxidized naphthalenes (C10H8), and similar to other quinones,
such as benzoquinone and anthraquinone, as they possess a conjugated electron system that can participate
in chemical reactions transporting electrons to other molecules [1]. These reactions can result in the
generation of free radicals, including highly active oxygen radicals called reactive oxygen species (ROS) [1].
Production of ROS occurs when quinones are reduced to semiquinones and subsequently to hydroquinones
by one- or two-electron reductions via different enzymes [2–4]. While ROS, at low and highly regulated
intracellular levels, contribute to normal cellular signaling function; excess ROS plays an important
role in damaging cellular components, including proteins, lipids and nucleic acids [5]. Agents with
similar structures to naphthoquinones have been approved for use by the FDA. For example, Mitomycin,
a benzoquinone, is used in the clinic for intravesical therapy after transurethral resection of bladder
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tumor for non-invasive (stage 0) or minimally invasive (stage I) bladder cancers, and in combination with
5-fluorouracil (5-FU) and radiation for treatment of stage I-III anal cancer [6,7]. Anthraquinones, such as
daunorubicin, idarubicin, doxorubicin, epirubicin and mitoxantrone are commonly used for the treatment
of many hematologic and solid neoplasms [8,9].

Natural and synthetic, oligomeric substituted and heterocyclic naphthoquinone derivatives
have shown promising anti-neoplastic activities against epithelial, mesenchymal and hematopoietic
malignancies [2,10–12]. Notwithstanding fifty years of basic, translational, and clinical studies,
the mechanism by which naphthoquinone-containing agents induce cancer cell death remains somewhat
unclear. The apparent redox-cycling and electrophilic properties of naphthoquinones culminating in
ROS generation and induction of apoptosis have subjugated the field of mechanistic investigations of
these compounds [13,14]. Nevertheless, several other mechanisms, including covalent alkylation of
DNA, DNA intercalation, inhibition of topoisomerase II, epigenetic modulation, to name a few, might
be significantly contributing to the cause of death in different cancer cells.

1.2. Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a neoplastic disorder characterized by rapidly proliferating
myeloblasts in bone marrow, blood and occasionally other organs resulting in a very poor clinical
outcome, particularly in elderly and medically unfit patients. The diverse cytogenetics and molecular
mutations of myeloblasts among patients and even within one patient makes AML an extremely
heterogeneous blood cancer [15,16]. Irrespective of their genetic characteristics, AML cells generate
excess ROS [17]. In turn, these cells have prominent antioxidant machinery to mitigate the effects
of additional ROS and maintain cellular oxidative states compatible with cell survival [17,18]. With
this in mind, it was hypothesized that naphthoquinone-induced ROS augmentation in myeloblasts
could cause an imbalance to the already stressed redox balance, overwhelming the ROS buffering
capacity of the AML cells and cause cell death [13]. However, depending on the chemical structures of
the naphthoquinone, certain derivatives might negatively affect other cellular machinery involved
in the initiation and propagation of neoplastic phenomenon seen in AML. In this article, we aimed
to analyze the entire publically available mechanism of actions of naphthoquinone-based anti-AML
chemotherapeutics. We believe this will help chemists to synthesize new generations of anti-cancer
naphthoquinones and also assist biologists and clinicians to design naphthoquinone-based combination
chemotherapies rationally.

2. Results

2.1. Anti-Proliferative Activity

Table 1 shows the naphthoquinone derivatives that have been reported to have anti-AML
activity. Mono- or di-substituted monomeric naphthoquinones, including menadione [19], juglone [20],
lawson [21], glycinyl-1,4-naphthoquinone [22], plumbagin [23–27], lapachol (and nor-lapachol) [21,28,29],
atovaquone [30,31], ramentaceone [32], cordiaquinone J [33], and TW-92 [34] showed anti-AML activity
in different AML cell lines and primary cells from AML patients with wide IC50s ranging from 0.6 to
100 micromolar (µM), Table 1. Atovaquone was found to have an additive effect when combined with
standard induction chemotherapy (cytarabine and daunorubicin) in AML cell lines [31]. Multi-substituted
naphthoquinones, including shikonin [35–39] and its derivative SH-7 [40], and other dihydroxy or dimethoxy
1,4-naphthoquinones [41,42], compared with mono- or di-substituted naphthoquinones, demonstrated
superior in vitro activity against AML cells with IC50s ranging 0.1–4 µM. Heterocyclic monomeric
naphthoquinones included furanonaphthoquinones FNQ3 [43] and FN6-one [44], β-lapachone [45–49]
and nor-β-lapachone [45,46,50,51], dunnione [47], and pterocarpanquinone LQB-118 [28,52]. FNQ3 was
significantly more effective than low dose cytarabine in reducing cell viability (p < 0.001) and combining
the two drugs led to an even greater reduction in cell viability in NB4 and U937 cells (p < 0.01) [43].
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Table 1. Anti-acute myeloid leukemia (AML) naphthoquinones.

Structure AML Cell Lines IC50 (µM) In Vivo References

Mono- or di-substituted monomeric naphthoquinones

Molecules 2019, 24 FOR PEER REVIEW  4 

Table 1. Anti-acute myeloid leukemia (AML) naphthoquinones. 

Structure AML Cell Lines IC50 (µM) In Vivo References 
Mono- or di-substituted monomeric naphthoquinones 
 

 
 
Menadione 
2-methyl-1,4-naphthoquinone 

HL-60, U937 
Not reported 
directly 

Not tested Yeo HS, et al. 2012 

 

 
 
Juglone 
5-hydroxyl-1,4-naphthoquinone 

HL-60 8 Not tested Xu HL, et al., 2010 

 

 
 
Lawsone 
2-hydroxyl-1,4-naphthoquinone  

HL-60 >50 Not tested Esteves-Souza A, et al., 2008 

 HL-60 3 Not tested de Moraes TA, et al., 2014 

Menadione
2-methyl-1,4-naphthoquinone

HL-60, U937 Not reported directly Not tested Yeo HS, et al. 2012

Molecules 2019, 24 FOR PEER REVIEW  4 

Table 1. Anti-acute myeloid leukemia (AML) naphthoquinones. 

Structure AML Cell Lines IC50 (µM) In Vivo References 
Mono- or di-substituted monomeric naphthoquinones 
 

 
 
Menadione 
2-methyl-1,4-naphthoquinone 

HL-60, U937 
Not reported 
directly 

Not tested Yeo HS, et al. 2012 

 

 
 
Juglone 
5-hydroxyl-1,4-naphthoquinone 

HL-60 8 Not tested Xu HL, et al., 2010 

 

 
 
Lawsone 
2-hydroxyl-1,4-naphthoquinone  

HL-60 >50 Not tested Esteves-Souza A, et al., 2008 

 HL-60 3 Not tested de Moraes TA, et al., 2014 

Juglone
5-hydroxyl-1,4-naphthoquinone

HL-60 8 Not tested Xu HL, et al., 2010

Molecules 2019, 24 FOR PEER REVIEW  4 

Table 1. Anti-acute myeloid leukemia (AML) naphthoquinones. 

Structure AML Cell Lines IC50 (µM) In Vivo References 
Mono- or di-substituted monomeric naphthoquinones 
 

 
 
Menadione 
2-methyl-1,4-naphthoquinone 

HL-60, U937 
Not reported 
directly 

Not tested Yeo HS, et al. 2012 

 

 
 
Juglone 
5-hydroxyl-1,4-naphthoquinone 

HL-60 8 Not tested Xu HL, et al., 2010 

 

 
 
Lawsone 
2-hydroxyl-1,4-naphthoquinone  

HL-60 >50 Not tested Esteves-Souza A, et al., 2008 

 HL-60 3 Not tested de Moraes TA, et al., 2014 

Lawsone
2-hydroxyl-1,4-naphthoquinone

HL-60 >50 Not tested Esteves-Souza A, et al., 2008

Molecules 2019, 24 FOR PEER REVIEW  5 

 

 
 
2-glycinyl-1,4-naphthoquinone 
 

 
 
Plumbagin 
5-hydroxy-2-methyl-1,4-naphthoquinone 

Kasumi-1, HL-60, 
U937 

0.6-1.4 

Activity: Tumor volume reduction 
Tolerability: No significant weight 
loss, tissue damage or behavior 
change (Xu KH, et al.) 

Kawiak A, et al., 2007 
Xu KH, et al., 2010 
Gaascht F, et al., 2014 
Kong X, et al., 2017 
Zhang J, et al., 2017 
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2-hydroxy-3-(3-methyl-2-butenyl)-1,4-
naphthoquinone 

Kasumi-1 
Primary cells from 
patients 
 
HL-60 

Not reported 
directly 
 
 

>50 

Not tested 
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MOLM13, MV4-11, 
THP-1, NB4, Kasumi-
1, HL-60, KG1, HEL 

13.7-98.9 

Decreased diseased burden and 
prolonged survival in the treatment 
group compared to the control 
group (Stevens AM, et al.) 

Xiang M, et al., 2016 
Stevens AM, et al., 2017 

2-glycinyl-1,4-naphthoquinone

HL-60 3 Not tested de Moraes TA, et al., 2014
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TW-92 
2-chloro-3-(3-amino-4-methyl-phenylamino)-1,4-
naphthoquinone 

U937, peripheral 
blood mononuclear 
cells from AML 
patients 

3.2 Not tested Hallak M, et al., 2009 

Multi-substituted monomeric naphthoquinones 
 

 
 
Shikonin 
5,8-dihydroxy-2[(1R)-hydroxy-4-methylpent-3-en-1-
yl]-3-methyl-1,4-naphthoquinone  

HL-60, U937,  
primary AML cells 

3.8 
Prolonged survival observed in the 
treatment group compared to the 
control group (Yang H, et al.) 

Yang H, et al., 2009 
Zhang B, et al. 2012 
Zhao Q, et al., 2015 
Trivedi, et al., 2016 
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Cordiaquinone J
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Table 1. Cont.
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By inhibiting HIV integrase, the hydroxylated dimeric naphthoquinones were originally synthesized
as anti-HIV agents [53,54]. Redox modulating ability of these compounds resulted in studies to determine
their potency against AML cells, as well as their therapeutic indices in relation to normal hematopoietic
stem cells [4,55]. The IC50 values (µM) of 3-bromo-3′-hydroxyl-dimeric 1,4-naphthoquinone (BiQ1)
against AML cell lines MOLM-14, THP1, and one primary AML cells from patients, as well as normal
bone marrow cells were 5.5 ± 0.8, 4.2 ± 1.9, 0.4 and 14.5, respectively [55]. Bis-aziridinyl dimeric
naphthoquinone containing two nitrogen mustard alkylating groups was synthesized to improve
the potency and bioavailability of dimeric naphthoquinones [56]. This compound showed a potent
anti-leukemic activity (IC50 range 0.18–2 µM) against three AML cell lines and four primary AML
cells from patients [56]. Of note, the patient-derived AML cells had a heterogeneous cytogenetic and
molecular mutation profile. In addition to inducing a decrease in cell survival and viability, exposure to
the bis-aziridinyl dimeric naphthoquinone at concentrations relative to the respective IC50 values for
24 h resulted in a marked reduction in clonogenic activity—an in vitro assay to assess the capability
of a single AML cell in the population to generate a colony—the quintessential anti-cancer in vitro
assay [56]. Dimeric naphthoquinones had favorable therapeutic indices as demonstrated by their more
potent IC50 values in AML cells compared to normal hematopoietic cells.

2.2. In Vivo Tolerability and Efficacy Studies

A few studies tested the tolerability and safety of naphthoquinone derivatives in vivo as wells
as their anti-AML activity [4,24,35,40,56]. Plumbagin dosed 2 mg/kg via intraperitoneal injection, IP)
daily for three weeks significantly reduced tumor volume in NB4 tumor xenograft in NOD/SCID mice;
153 mm3 in plumbagin versus 194 mm3 in control after one week of treatment and approximately
65% tumor volume reduction at the completion of the study [24]. In the same study using the same
xenograft model, tumors of mice treated with doxorubicin (1 mg/kg thrice weekly) demonstrated
greater regression in tumor volume than those treated with plumbagin (p < 0.05). However, doxorubicin
at the doses tested was toxic to heart and liver (pathologic findings), whereas plumbagin treated mice
did not show any obvious tissue changes.

Our group tested tolerability of a different naphthoquinone containing a compound called BiQ1
in mice dosed via IP and subcutaneous (SC) injections [4]. Mice tolerated eight days of IP injections
dosed at 10 mg/kg with no overt weight loss or physical complications. However, mice were unable to
ambulate, eat or drink with just two doses of 25 mg/kg IP injections. Interestingly, mice were able to
tolerate SC doses of 25 mg/kg with the only overt side effect being irritation at the injection site.
The poorer tolerability of IP versus SC at higher dose might be related to the acidity of BiQ1 injected in
intra-abdominal cavity of mice causing peritonitis.

Carter-Cooper et al. reported that 3,3′-bis-aziridinyl dimeric naphthoquinone was well tolerated
by NOD SCID gamma (NSG) mice after five consecutive days of 5, 10, and 15 mg/kg (IP) without
significant weight loss [56]. Finally, Nestal de Moraes et al. reported that naphthoquinone derivatives
may be safe against normal bone marrow-derived cells by testing compound LQB-118 IP in mice with
normal bone marrow cells [52].

Atovaquone is an FDA-approved, anti-microbial drug that has been well tolerated, even
in immunosuppressed patients with organ dysfunction. In a retrospective study of adult AML
patients who underwent allogeneic hematopoietic stem cell transplant (HSCT), patients who received
atovaquone for longer duration had lower rates of AML relapse over three years compared to those
with lower atovaquone exposure (13% versus 23%, p = 0.037) [30]. In vivo, female mice treated with
atovaquone 200 mg/kg daily demonstrated decreased disease burden compared to the control mice [31].
Furthermore, prolonged atovaquone survival of male xenografted mice compared to the control mice
(median survival of 63 days in control mice versus only one mouse succumbing to disease by day 70 in
the atovaquone group, p = 0.0048).
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2.3. Mechanisms of Anti-AML Action

2.3.1. Induction of Apoptosis

The primary mechanism by which naphthoquinones reduce AML cell survival is via apoptosis.
A dose- and time-dependent increase in apoptosis was observed with several naphthoquinone-based
compounds. Induction of apoptosis rather than necrosis as the cause of cell death was evident by
changes observed in cell morphology, cell cycle progression, and caspase activation. Interestingly,
5,8-dihydroxy-2-(1-hydroxy-2-nitroethyl)naphthalene-1,4-dione [41] and LQB-118 [52] induced apoptosis
without significant changes observed in cell cycle. The anti-AML activity of these naphthoquinones
appeared to be mediated through a combination of ROS enhancement and topoisomerase inhibition that
ultimately led to DNA damage and cell death.

2.3.2. Alteration in Mitochondrial Membrane Potential

Naphthoquinone derivatives reduce mitochondrial membrane potential (MMP) by the opening
of the mitochondrial permeability transition pore resulting in cytochrome C release into the cytosol
and activating caspase-3; key features of the intrinsic pathway of apoptosis [57,58]. Hallak et al.
reported that TW-74, a chloronaphthoquinone with a methyl group at the meta position, effectively
killed U937 myeloid leukemia cells via early reduction of MMP, cytochrome C release and caspase
activation [59]. We reported that hydroxylated dimeric naphthoquinone BiQ1 effectively inhibited
induced depolarization of the mitochondrial transmembrane potential (∆Ψm) as measured by flow
cytometry with MitoPotential Red [4].

2.3.3. Reduction-Oxidation Imbalance

ROS are derived from the metabolism of oxygen, and they normally exist in balance with
antioxidants in all cells. Oxidative stress occurs when this balance is disrupted, due to excess production
of ROS and/or antioxidant diminution. Generation of ROS and the consequent increase in oxidative
stress has proven to be fundamental in the cytotoxic activity of naphthoquinone derived compounds.
Given the high proliferative index, most AML cells, compared with non-malignant cells, have a higher
level of endogenous ROS, lower activities in respiratory chain complex and lower spare reserve
capacity [60,61]. This phenomenon, as well as lower compensatory reserves that handle additional
oxygen radicals [13,60], make AML cells particularly sensitive to oxidative stress [62]. Several studies
have demonstrated that the presence of antioxidants significantly attenuates mitochondrial-dependent
apoptosis and cell cycle arrest in naphthoquinone-treated tumor cells [24,34,63]. While antioxidants,
such as N-acetyl cysteine (NAC) may serve to lessen naphthoquinone cytotoxicity by neutralizing ROS
through increased glutathione production, they also could exert their actions by chemically interacting
directly with naphthoquinones or their derivatives to reduce their cytotoxicity [1,64,65].

Much evidence exists in the literature linking redox imbalance and anti-AML activity. Treatment of
leukemic cell lines with bis-aziridinyl dimeric naphthoquinone resulted in a dose-dependent increase in
intracellular production of ROS within two hours of exposure [56]. Plumbagin similarly demonstrated
increased intracellular ROS in NB4 cells that peaked after 1.5 h of exposure with a decline after two
hours [66]. Xu and colleagues further demonstrated that ROS production was significantly increased
in NB4 cells treated with plumbagin compared to healthy control cells, indicative of selective toxicity
against neoplastic cells [24]. The chloro-amino-phenyl naphthoquinone TW-92 induced apoptosis
in U937 cells, which was preceded by accumulation of intracellular hydrogen peroxide that was
abolished by an inhibitor of NADPH oxidase [34]. U937 cells treated with TW-92 versus untreated cells
showed a rapid decline in endogenous glutathione levels (65%) [34]. This depletion of glutathione
may have contributed to the intracellular accumulation of hydrogen peroxide. Chau et al. compared
intracellular H2O2 concentration in HL-60 cells treated with β-lapachone (a naphthoquinone) and
camptothecin (a non-quinone topoisomerase inhibitor) [67]. The study found a seven-fold increase in
H2O2 production in HL-60 cells treated with β-lapachone compared to a less than two-fold increase
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in cells treated with camptothecin. This increase in H2O2 was markedly reduced in the presence of
NAC, which corresponded with reduced β-lapachone-induced apoptosis as evidenced by reduced
DNA fragmentation and sub-G1 hypodiploid cells. These results suggest that intracellular increase in
H2O2 may be one mechanism by which naphthoquinones induce cell death.

2.3.4. DNA Damage

Quinones are able to induce DNA damage, as shown by the increase in histone H2Ax
phosphorylation, a step which always follows double-stranded DNA breaks to activate apoptosis [68].
Quinones have also been shown to exert antitumor effects by inhibiting nuclear enzyme topoisomerases
I and II [69]. Topoisomerase mediated DNA damage of leukemic cells was observed in the activity of
a synthetic naphthoquinone derivative of alkannin and shikonin against HL-60 cells [41]. β-Lapachone
(3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione) is also a topoisomerase I inhibitor [63],
by the proposed mechanism of locking the enzyme onto the DNA and blocking replication fork
movement [48].

Shikonin has been shown to inhibit both topoisomerases I and II in different cancer cells [70–72].
To overcome the poor solubility of Shikonin, its derivative SH-7 was synthesized [40]. SH-7 displayed
significant cytotoxicity against HL-60 cells with IC50 of 2 µM and showed significant inhibition of
topoisomerase II via stabilization of the topoisomerase II-DNA cleavable complex [40]. Bey et al. suggested
that the anti-tumor activity of topoisomerases inhibitors may be attributed to the overexpression of the
enzymes and associated deficiency of protective mechanism against DNA damage in cancer cells or to the
increase in topoisomerase bioactivation by the NAD(P)H:quinone oxidoreductase (NQO1) [73].

2.3.5. Bcl-2 Modulation

Bcl-2 family of proteins are integral to the mitochondria-dependent pathway of apoptosis [74].
Cell death is regulated by a complex interaction between the pro-apoptotic and pro-survival members
of the Bcl-2 family. Pro-apoptotic members of the Bcl-2 family, such as Bax or Bak translocate from the
cytosol to the mitochondria, leading to the release of cytochrome C into the cytosol [75]. Anti-apoptotic
proteins, Bcl-2 [76] and Mcl-1 [77] have been studied extensively, given their ability to induce
chemo-resistance in different cancers, including AML. Venetoclax, a Bcl-2 inhibitor, in combination with
azacitidine or decitabine or low-dose cytarabine is approved (conditionally) by the US Food and Drug
Administration (FDA) for treatment of adult patients with newly-diagnosed AML who are age 75 years
or older, or who have comorbidities that preclude use of intensive induction chemotherapy [78].

The antitumor activities of naphthoquinones may be mediated by their ability to up- or
down-regulate the proteins in the Bcl-2 family [4,79,80]. Shikonin down-regulated antiapoptotic
proteins, such as Bcl-2 and Bcl-XL in AML cells and induced apoptosis [79]. Plumbagin-treated NB4
cells had increased expression of Bax and Bak with a decrease in Bcl-XL within 8 h of treatment [24].
TW-92 decreased expression of Mcl-1, increased Bax expression without change in expression of Bcl-2
and induced apoptosis in U937 cells [34]. Chau and colleagues reported ectopic overexpression of Bcl-2
in HL-60 cells acquired resistant phenotype to β-lapachone with decreased intracellular H2O2 [67].

2.3.6. MAPK Pathway

Mitogen-activated protein kinase (MAPK) pathways are involved in the regulation of cellular
stress response by transducing extracellular signals to the cell nucleus to impact transcription factors
important for cell proliferation, differentiation, survival, and apoptosis [81]. Constitutive activation of
the MAPK cascades drives the oncogenic transformation of normal fibroblasts and is commonly detected
in cancers. Inappropriate activation of these pathways may play a role in leukemic transformation
of myeloid cells and their ability to proliferate and escape programmed cell death [82]. Several
naphthoquinones have shown the ability to impact the MAPK pathways to induce apoptosis in
leukemic cells [34,37], which may be a promising therapeutic strategy for AML. In the shikonin and
shikonin derivative study [37], these agent’s influence on MAPK and AKT signaling cascades led to
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apoptosis of AML cells in vitro by direct interaction, and down-regulation of c-MYC, a transcription
factor integral to cell cycle regulation and proliferation [37]. More investigations are warranted on the
role of MAPK cascades on naphthoquinone-induced apoptosis as it has been established that MAPK
cascades converge to the mitochondria and promote mitochondrial-induced apoptosis by complex
interplay with Bcl-2 family [83].

2.3.7. STAT3 Inhibition

Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that
is often dysregulated in AML and can be used as a valid target for AML treatment [84]. Atovaquone is
an anti-microbial drug that has recently been discovered to have antileukemic efficacy in vitro and
in vivo [31]. Xiang and colleagues found that atovaquone diminishes the expression of gp130, a key
protein involved in STAT3 activation which in turn potently inhibited STAT3 signaling from interleukin-6
(IL-6), a critical survival factor in AML [30]. The reduction of STAT3 activation consequently led to the
reduction of STAT3 target genes mediating cell survival and proliferation culminating in apoptosis.

2.3.8. Unfolded Protein Response Modulation

Unfolded protein responses (UPR) is a mechanism by which cells are able to combat adverse
effects of protein accumulation in the endoplasmic reticulum (ER) following ER stress by inducing
activation of this pro-apoptotic pathway [85]. UPR plays an important role in chemo-resistance in
cancer cells, including leukemia cells [86,87]. ERP57, a key protein situated on the ER, is involved in
the proper folding of newly synthesized polypeptides, and is overexpressed in AML cells compared to
healthy cells [36]. Overexpression of ERP57 significantly reduced Shikonin-induced apoptosis, though
its expression is downregulated by Shikonin itself [36].

2.3.9. Forkhead Box (Fox) Proteins

Fox proteins are a family of transcription factors that regulate the expression of genes involved in
cell proliferation, growth, and differentiation [88]. They recognize DNA breaks and initiate repair or
excision by binding to the Forkhead response element region (FHRE). Members of Fox class M and O
have been identified as essential components of oncogenic and tumor suppressive pathways and are
often deregulated in leukemia.

FOXO3A is a tumor suppressor transcription factor that is a member of the FoxO subfamily [89].
High levels of phosphorylated FOXO3A was identified as an independent, poor prognostic factor
in AML and was associated with increased leukemic cell proliferation, drug resistance, and shorter
duration of remission [90]. Phosphorylation leads to cytoplasmic localization and inactivation of
FOXO3A, which leads to the proliferation of leukemic cells in AML. Treatment of HL-60 cells with
naphthoquinone LQB-118 resulted in FOXO3A nuclear translocation with upregulation of Bim,
a pro-apoptotic member of the Bcl-2 family [52]. In contrast, U937 cells treated with LQB-118 had
FOXO3A nuclear exclusion and Bim downregulation [52] suggesting that LQB-118 promotes differential
modulation of FOXO3A localization in different AML subtypes.

Fox protein M1 (FOXM1) is a regulator of cell cycle progression and was found to be abnormally
expressed in AML blasts [91]. LQB-118-treated U937 cells had progressively decreasing FOXM1 expression,
with concurrent downregulation of Survivin [52]. Of note, Survivin is an anti-apoptotic protein that is
correlated with poor prognosis in AML and is known to be regulated by FOXM1 [92].

3. Methods and Materials

3.1. Search Strategy and Inclusion Criteria

An electronic search was conducted on the MEDLINE database for articles published up to
7 August 2018, using the combined search terms acute, leukemia, and naphthoquinone. Seventy-eight
articles were preliminarily identified. Studies that investigated the activity of naphthoquinone
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derivatives against AML were selectively reviewed. Twenty-one publications reported that anti-AML
efficacy, in addition to at least one proposed mechanism of action of the studied naphthoquinone(s)
were included for this analysis. The reference lists of these selected articles were also examined to
include any relevant publications not captured in the initial search. In this report, we will not compare
or comment on the study designs of the included articles. Additionally, in studies that synthesized and
analyzed multiple naphthoquinone derivatives with the same core structure, only the compound with
the strongest activity against AML cells, as determined by their IC50 (i.e., concentration that decreases
viable cell numbers by 50%) values, were included for discussion.

3.2. Cell Cultures

In the included studies, in vitro activities of the naphthoquinone derivatives were examined in
AML cell lines, and myeloblasts isolated from peripheral blood (PB) and bone marrow (BM) of AML
patients. Often, the cytotoxicity of the compounds was studied in normal human cell lines and primary
cells from healthy donors as comparators. Just a few in vivo studies have been conducted to examine
the safety and tolerability of naphthoquinone-based agents.

3.3. Cell Proliferation and Cell Survival Assays

Inhibition of cell growth was assessed by measuring cell metabolic activity by MTT-like assays,
including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), (3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (XTT), and water-soluble tetrazolium
salts (WST) assays. Cell viability was determined using trypan blue exclusion.

3.4. Analysis of Apoptosis

Apoptosis was measured using the Annexin V flow cytometric kits, or acridine orange/ethidium
bromide stains. Means of cell death were further evaluated with cell cycle progression (propidium
iodide), mitochondrial membrane potential, Western Blot analyses, nuclei staining, or caspase activation.

4. Conclusions

The ability of naphthoquinone analogs to affect multiple steps in the apoptotic pathway
and cellular signaling pathways play a role in their anti-AML activity. The simple mono- and
di-substituted naphthoquinones have the ability to inhibit cell growth of various AML cell lines at
low micromolar concentrations with the most potent derivatives being the 5-hydroxy-substituted
derivative plumbagin (0.6–1.4 µM). Consequently, plumbagin also increases intracellular ROS
and decreases expression of Bcl-2, indicating that the increased potency may be due to multiple
mechanisms of action. From the multi-substituted naphthoquinones, this same pattern is observed
with the shikonin derivatives demonstrating low micromolar (shikonin and SH-7) and in one case,
(5,8-dihydroxy-2-(1-hydroxy-2-nitroethyl)-1,4-naphthoquinone, 0.14 µM) sub-micromolar potency
against AML cell lines. Most likely multiple mechanisms of action for these derivatives provides
the robust activity, including inhibition of topoisomerase, down-regulation of Bcl-2/BclxL, and down
regulation of c-Myc and maybe the unfolded protein response. Thus, depending on the oxidoreductases
or other bases for altered electron donation, present in AML cells and a few other neoplastic cells,
the electron-accepting potential of quinones could in principle be “tuned” to yield selective cytotoxicity
for cells with a particular “redox” environment, allowing initiation of a cascade of electron transport
only in malignant cells, with dysregulated redox state, and not in normal cells, with the consequent
increase in ROS producing selective cell killing. The dimeric naphthoquinones represent some of the
most potent compounds against AML cell lines, and they have the ability to increase intracellular ROS
like plumbagin.
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