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Abstract: The membrane electrode assembly (MEA) plays an important role in the proton exchange
membrane fuel cell (PEMFC) performance. Typically, the structure comprises of a polymer electrolyte
membrane sandwiched by agglomerate catalyst layers at the anode and cathode. Optimization of
various parameters in the design of MEA is, thus, essential for reducing cost and material usage,
while improving cell performance. In this paper, optimization of MEA is performed using a validated
two-phase PEMFC numerical model. Key MEA parameters affecting the performance of a single
PEMFC are determined from sensitivity analysis and are optimized using the response surface
method (RSM). The optimization is carried out at two different operating voltages. The results show
that membrane thickness and membrane protonic conductivity coefficient are the most significant
parameters influencing cell performance. Notably, at higher voltage (0.8 V per cell), the current
density can be improved by up to 40% while, at a lower voltage (0.6 V per cell), the current density
may be doubled. The results presented can be of importance for fuel cell engineers to improve the
stack performance and expedite the commercialization.

Keywords: PEM fuel cell; membrane electrode assembly (MEA); response surface method;
computational fuel cell dynamics

1. Introduction

As a clean energy device, a proton exchange membrane (PEM) fuel cell is a promising
power-generating technology that has received increasing attention over the last decade. Fuel
cell is an electrochemical device that converts chemical energy into electrical energy. Due to its
high energy-conversion efficiency and zero-emission potential, the fuel cell is considered as the best
power-generating device, especially in transportation applications. Among the different kinds of
fuel cells, PEM fuel cell (PEMFC) offers desirable features, such as low operational temperature and
high-power density, which makes it the most promising alternative technology for power production.

In order for the fuel cell technology to be competitive with conventional power systems, some
challenges associated with it, including reliability, longevity, and cost, must be overcome. A better
understanding of the system is required to achieve the ideal price-performance balance. Studies
have been carried out to characterize the behavior of the PEMFC system as affected by different
parameters. Wang et al. [1] conducted parametric experiments to study the effect of various operating
parameters on the performance of a single PEMFC and used the results to validate the 3D model they
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developed. The parameters studied were pressure, fuel cell temperature, and anode and cathode
relative humidity. It was observed that, generally, increasing the fuel cell temperature and pressure
increases its performance, except when the temperature is higher than the gas stream humidification
temperatures, especially at a low current density region. Cathode humidification temperature was
found to have no significant impact on fuel cell performance, while increasing anode humidification
temperature increases performance at the low current density region. These results are in accordance
with the results obtained by Ferng et al. [2] and Amirinejad et al. [3] who concluded that operation at
higher pressure and elevated temperature can improve the electrode kinetic performance and increase
the ionic conductivity in membrane and electrodes, which results in high power density in the PEMFC
system. Santarelli and Torchio [4] experimentally analyzed the performance of a PEMFC by varying
cell temperature, anode and cathode flow temperatures in both saturation and dry conditions, and
reactant pressure. The results showed that, in addition to cell temperature, an increase in reactant
saturation temperature also leads to a better performance and the best improvements due to a pressure
increase are observed when both anode and cathode are humidified. Yan et al. [5] extended the study
of the effects of operating conditions to PEMFC with interdigitated flow field. Nafion-based PEM
fuel cell performance analysis with various reactant humidification levels, which varied from no
external humidification to a fully saturated anode and cathode, was carried out by Williams et al. [6].
Klika et al. [7] have developed a thermodynamically-consistent model based on polynomial functions
to study the behavior of water sorption in Nafion membranes. A three-dimensional multiphase
numerical model was developed by Fan et al. [8] to study the PEMFC performance at low external
humidification. It was found that the dependency on external humidification of a PEMFC can be cut
down at high current density, due to the water produced in the cathode catalyst layer that is sufficient
to be employed to humidify both the cathode and anode polymer electrolyte.

In addition to operating conditions, there are other parameters affecting the fuel cell performance.
Bayrakçeken et al. [9] found that membrane thickness, hot-pressing conditions of the gas diffusion
layer (GDL), and the Teflon to carbon ratio in the GDL, are also significant parameters to provide good
PEMFC performance. The study showed that thinner membrane thickness and higher Teflon:carbon
ratio in the GDLs give better performances. Jiang et al. [10] implemented an effective “elementary
effect” (EE) method based on Monte Carlo random experiments to analyze 22 uncertain parameters
involved in their two-phase 1D analytical PEMFC model. Among all of the parameters, membrane
thickness and volume fractions were found to be the most important factors influencing the cell
performance. The effect of catalyst layer microstructure was recently investigated numerically by
Carcadea et al. [11]. A CFD model was used to study the behavior of a PEMFC as a function of Pt
loading, Pt particle radius, ionomer volume fraction, and carbon support, and to establish the optimum
range of these parameters. It was observed that increasing the ionomer volume fraction in the catalyst
layer (CL) leads to better performance due to the fact that the ionomer acts as a network for the mass
and charge transport. Moreover, higher Pt loading and a lower particle radius are recommended to
achieve better PEMFC performance. Lee et al. [12] investigated the performance improvement of a
PEMFC as a function of gas diffusion layer porosity and impregnation of the Nafion solution.

The previously mentioned studies confirm the significance of various parameters on the
operation of the PEMFC. It is, therefore, crucial to select the optimum values in order to achieve
a high-performance fuel cell. Efforts have been made by researchers toward the optimization of
critical parameters influencing the PEMFC operation using different approaches. Salva et al. [13]
developed a one-dimensional analytical model and used it to obtain the operating conditions under
which a single PEMFC provides the maximum power output for different current intensities. The
optimization was carried out for every value of current intensity by solving the parametric table
consisting of all possible combinations obtained from modifying the stoichiometry in the cathode and
anode, relative humidity in the anode and cathode, and the operating temperature, while keeping
the pressure constant. Wu et al. [14] employed a multi-resolution approach and the radial basis
function (RBF) surrogate model for simulation and optimization of operating conditions for hydrogen
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polymer electrolyte fuel cells. Zervas et al. [15] performed a phosphoric acid fuel cell (PAFC) system
optimization study based on meta-models that were derived by applying the linear regression and
the RBF neural network methodology on the results produced by a CFD model. The optimization
of different operating and design parameters on PEMFC using the Taguchi method was performed
by Karthikeyan et al. [16], Solehati et al. [17], and Sasmito et al. [18]. Grujicic and Chittajallu [19]
utilized a single-phase two-dimensional electrochemical model, coupled with a nonlinear constrained
optimization algorithm, which was solved using sequential quadratic programming (SQP) to obtain
the operational and geometric parameters for achieving the maximum electric current in a PEMFC.
The parameters investigated include air inlet pressures and cathode thickness, cathode length for each
shoulder segment of flow channel, and a fraction of cathode length associated with the flow channel.
Similarly, Na and Gou [20] used SQP to optimize the fuel cell system efficiency and cost. Guo et al. [21]
proposed an optimization algorithm that combines the teaching–learning based optimization (TLBO)
with a differential evolution (DE) algorithm, known as the TLBO-DE method, to promote the efficiency
of PEMFC. Behrou et al. [22] demonstrated the use of density-based topology optimization for the
practical design of flow fields for PEMFCs, with goals to maximize both the output power and
homogeneity of the current density distribution, as well as permit reduced costs and higher durability.
The response surface methodology (RSM) has been employed by Kanani et al. [23] and Xuan et al. [24]
to maximize the performance of a PEMFC system. Recently, a comprehensive evaluation of different
optimization scenarios for a PEMFC is provided by Sohani et al. [25].

Optimization of controlling parameters at the fuel cell system level, like membrane thickness, size
of cathode catalyst particle, and protonic conductivity coefficient of the membrane, however, have been
very limited. This can be attributed to the fact that they cannot be changed during the cell utilization [4],
which makes it tedious and uneconomical to perform these studies experimentally. Moreover, the
complex structure of MEA, comprising of polymer electrolyte membrane sandwiched by agglomerate
catalyst layers at both the anode and cathode, adds complexity for the design of experiments due
to a multiscale nature of the system. In addition, none of the research studies had focused on the
membrane electrode assembly coupled with agglomerate catalyst layer parameters. This paper aims
to develop a numerical model to simulate a polymer electrolyte membrane fuel cell with detailed
multiscale MEA with an agglomerate catalyst layer model, and determine the optimum values of
the previously mentioned parameters that provide maximum current density for various voltage
values in the ideal range of operation. The study focuses on sensitivity analysis of design parameters
of the membrane electrode assembly, including membrane thickness, membrane equivalent weight,
the radius of the cathode catalyst particle, catalyst ionomer resistance, cathode catalyst porosity, a
membrane protonic conductivity coefficient, a cathode catalyst hydrophobic angle, ionomer tortuosity,
and a cathode catalyst volume fraction. The parameters which have significant impact on the current
density magnitude are considered. Once the model is validated, it is used to carry out parameter
optimization for better cell performance. In the optimization, the response surface methodology
is employed for meta-modelling. RSM is a collection of statistical and mathematical methods for
optimizing and predicting responses with limited experimental data at various input factors, as well
as performing sensitivity analysis [23]. It is extensively used in the industrial world, particularly in
situations where the output is swayed by several input parameters. This method has been widely used
in different fields and applications such as metals removal [26], chemical extraction [27,28], and the
chemical and environmental engineering field [29–31]. As compared to other methods, RSM being
a collection of mathematical and statistical techniques, gives a better understanding into the role of
different parameters at play and generates a continuous model for visualizing the effect of parameters
on the entire range as opposed to the average value of the response [32]. This study pioneers the
sensitivity analysis of parameters of MEA coupled with agglomerate catalyst layers using the design
of the experiment RSM method, along with the validated three-dimensional numerical model. The
total numbers of simulations for combinations of 10 parameters would have been computationally
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very expensive and could not have been done using traditional parametric studies. The RSM method
reduces the number of simulations significantly.

2. Methodology

2.1. Mathematical Formulation

The schematic figure of a typical PEMFC and its functional layers is illustrated in Figure 1. The
system consists of a proton exchange membrane (m), sandwiched between two catalyst layers (cl), two
gas diffusion layers (gdl), two porous metal foam flowfields (ff), and two terminal plates (tp). The
main assumptions/approximations adopted in the model are:

• Thermal equilibrium: Local thermal equilibrium between all the phases.
• Membrane: The membrane model takes into account the water flux due to electro-osmatic drag

and diffusion.
• Catalyst layers: A cathode particle/agglomerate model is implemented to account for the mass

transfer inside the cathode catalyst layer. It is assumed that the particle is spherical and covered
by a thin layer of ionomer and water film [33–36]. The Butler-Volmer equation is employed to
calculate the volumetric current transfer or exchange current density.
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Figure 1. Schematic view of a single PEMFC: (a) components of PEMFC, (b) computational domains
with boundaries: I—insulation/wall, II—anode inlet, III—cathode inlet, and IV—outlets.

The mathematical model is comprised of governing equations for the conservation of mass,
momentum, species, energy, charge, and water transport in the membrane. The physical parameters,
geometry, and operating conditions for two different PEMFC experimental data sets that are used later
for validation purposes can be found in Tables 1 and 2.

Table 1. Geometrical and operating parameters for two PEMFC experimental data sets.

Case a Segmented Cell Case Single-Gas Diffusion Layer [37]

Physical parameters
κcl,κgdl 7.3 × 10−13 m2 6.1 × 10−11 m2

εff 0.9 0.635
εgdl 0.4 0.77
σs,gdl 500 S m−1 491 S m−1

σs,cl 500 S m−1 491 S m−1

ragg 10−7 m 5 × 10−6 m (adapted)
jref
c,0 103 A m−3 (adapted) 3.5 × 104 A m−3 (adapted)
αc 2 (adapted) 0.65
βm 0.9 (adapted) 0.2 (adapted)
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Table 1. Cont.

Case a Segmented Cell Case Single-Gas Diffusion Layer [37]

Geometry
hcc 5 × 10−4 m 6 × 10−4 m
hff 5 × 10−4 m 6 × 10−4 m

hgdl 3 × 10−4 m 1.1 × 10−4 m
hcl 10−5 m 2 × 10−5 m
hm 3 × 10−5 m 5.1 × 10−5 m
L 0.09 m 0.015 m

Operating conditions
ηa,c 95%, 95% 100%, 100%
Tin

a,c 333 K, 333 K 338 K, 328 K
pref 101,325 Pa 1.5 bars
ξa,c 3.35, 2.3 −

Uout
a,c − 0.03, 0.16 m s−1

Ecell 0.15−0.85 V 0−0.95 V

Table 2. Additional parameters for all cases.

Parameter Value

cF 0.55 [38]
cref

H2
40.88 mol m−3 [39]

cref
O2

1
HO2,pol

mol m−3 [40]

D0
H2

, D0
H2O , D0

O2
(11.03, 7.35, 3.23) × 10−5 m2 s−1 [39]

D0
O2,m 3.1 × 10−7e(−

1768
T ) m2 s−1 [40]

Ea 73,269 J mol−1 [41]
E0

rev 1.23 V [39]
F 96,487 A s mol−1

HO2,pol, HO2,liq 1.33 exp(−666/T), 5.08 exp(−498/T) atm m3 mol−1 [40]
jref
a,0 109 A m−3 [39]

kcc, kcl, kff, kgdl, km 16.3, 1.5, 13.3, 1.5, 0.1 W m−1K−1 [42–45]
kH2 , kH2O , kN2 , kO2 (20.285, 2.16, 2.82, 2.89) × 10−2 W m−1K−1 [46]

MH2 , MH2O , MN2 , MO2 (2, 18, 28, 32) × 10−3 kg mol−1

Mm 1.1 kg mol−1 [39]
mpol 10−2 kg m−2 [37]

R 8.314 J mol−1K−1

αa 1 K [39]
γgd,γld 0.5
ϑ 1

kff, km 10−8 , 10−18 m2 [47]
µ 1.9 ×10−5 kg m−1s−1 [45]

µH2
,µH2O ,µN2

,µO2 (9.656, 10.98, 19.39, 22.62) ×10−6 kg m−1s−1 [46]
ρC ,ρm ,ρPt (1.8, 2, 21.45) ×103 kg m−3 [39,40]
σs,cc ,σs,ff (1.37, 0.1) ×106 S m−1 [42,45]

c1, c2, c3, c4
−2.1794, 2.953×10−2, −9.1837
×10−5, 1.4544 × 10−7 ;−, K−1, K−2, K−3 [47]

T0 , T1, T2 273.15, 353.15, 298.15 K [39]

2.1.1. Governing Equations

Conservation of Mass [34]:
∂ρ

∂t
+ ∇ ·

(
ρ
→
v
)
= Sm (1)

where Sm is the mass source added from the continuous phase to the dispersed second phase and any
other user-defined sources.
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Conservation of Momentum [34]:

∂
∂t

(
ρ
→
v
)
+∇·

(
ρ
→
v
→
v

)
= −∇ p +∇·

(=
τ
)
+ ρ

→
g + Smom (2)

where p denotes pressure,
=
τ is the stress tensor, ρ

→
g denotes the gravitational body forces, and Smom is

the momentum source term for porous media, which includes the gas diffusion layer, catalyst layer,
and membrane. The stress tensor

=
τ is given by the equation below [34].

=
τ = µ

[(
∇
→
v +∇

→
v

T)
−

2
3
∇ ·
→
v I

]
(3)

where µ is the molecular viscosity and I is the unit tensor. The second term in the right-hand side of
the equation represents the effects of volume dilation.

Species Transport [34]:

∂
∂t
(ρ Yi) + ∇·

(
ρ
→
v Yi

)
= −∇·Di,e f f∇Yi + Sm (4)

where Yi denotes the local mass fraction of species i and Di,e f f is the effective diffusivity of the species.
Note that the total species mixture should conserve the total mass, and, thus, the source terms in the
conservation of mass should be equal to the source terms in the conservation of species [48].

Electric Potential [34]:
∇ ·(σ ∇ ψ) + S = 0 (5)

where ψ is the electric potential, σ is the electric conductivity in a solid zone or ionic conductivity in a
fluid zone, and S is a source term.

Conservation of Energy [34]:

∂
∂t
(ρ E) +∇·

(
ρCp

→
v T

)
= ∇·

(
ke f f ∇T

)
+ Sh (6)

where Cp is the specific heat capacity and ke f f is the effective thermal conductivity. The first term on
the right-hand side of the equation represents the energy transfer due to conduction.

Volumetric source terms (Sm) for H2 and O2 and the dissolved water content λ in the triple-phase
boundaries (catalyst layers) due to electrochemical reactions are shown below [34].

SH2 = −
MwH2

2F
Ran < 0 (7)

SO2 = −
MwO2

2F
Rcat < 0 (8)

Sλ = −
MwH2O

2F
Rcat > 0 (9)

where MwH2 , MwH2O, and MwH2 are the molecular mass of hydrogen, oxygen, and water, respectively,
and F is the Faraday constant.

Mass transfer and water transport occurring in the PEMFC model is considered to be in two
different phases, which are discussed below.

1. Dissolved phase

The dissolved phase exists in the catalyst layers (ionomers) and in the membrane. The generation
and transport of the dissolved water is described by the equation below [49].

∂
∂t

(
εiMw,H2O

ρi

EW
λ
)
+ ∇·

(
→
ı m

ηd

F
Mw

)
= ∇·

(
MwDi

w ∇ λ
)
+ Sλ + Sgd + Sld (10)
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where εi denotes the porous media porosity, λ denotes the dissolved water content, η is the osmotic
drag coefficient, and

→
ı m is the ionic current density, calculated as

→
ı m = −βmσmem ∇ φmem. In the right

hand-side of the equation, Di
w represents the diffusion coefficient of the water content, Sλ denotes

the water generation rate due to the cathode side reaction in the catalyst layer, Sgd is the rate of mass
change between gas and dissolved phases, and Sld is the rate of mass change between the liquid and
the dissolved phases. The mass change rates are shown in the equations below [50].

Sgd =
(
1− sθ

)
γgdMw,H2O

ρi

EW

(
λeq − λ

)
(11)

Sld =
(
sθ

)
γldMw,H2O

ρi
EW

(
λeq − λ

)
(12)

where ρi is the dry ionomer or membrane density, EW is the equivalent weight of the membrane, s
denotes the liquid saturation, λeq denotes the equilibrium water content, θ is the exponential liquid
coverage, and γgd, γld are the gas and liquid mass exchange rate constants and are user-specified
parameters. The equilibrium water content λeq can be calculated using the equation below [50].

λeq = 0.3 + 6a(1− tanh(a− 0.5)) + 0.69( λa=1 − 3.52)a0.5
(
1 + tanh

(
a−0.89

0.23

))
+s.(λs=1 − λa=1)

(13)

where a is the water activity, defined as:

a =
pwv

psat
(14)

where pwv is the water vapour partial pressure and psat is the saturation pressure. Both λs=1 and λa=1

in Equation (13) are user-specified parameters.

2. Liquid Phase

Liquid is present in all the porous electrodes and gas channels. The driving force of the liquid
water transport is the liquid pressure gradient ∇ pl, as shown in the liquid water transport equation
below [50].

∂
∂t
(εiρl s) = ∇ ·

(
ρlKKr

µl
∇pl

)
+ Sgl − Sld (15)

In Equation (15), ρl is the liquid water density, µl is the liquid dynamic viscosity, K is the absolute
permeability, Kr is the relative permeability, pl is liquid pressure, and Sgl is the rate of mass change
between the gas and liquid phases. Replacing the liquid pressure with the sum of capillary pressure pc

and gas pressure p, Equation (15) can be written as the equation below.

∂
∂t
(εiρl s) = ∇ ·

(
ρlKKr

µl
∇(pc + p)

)
+ Sgl − Sld (16)

The mass transfer rate between the gas and liquid phases can be calculated based on the
unidirectional diffusion theory [50,51].

Sgl

 γgl ε sDgl
Mw,H2O

RT pln
( p−psat

p−pwv

)
, pwv ≤ psat

γgl ε (1− s)Dgl
Mw,H2O

RT pln
( p−psat

p−pwv

)
, pwv > psat

(17)

where ε is porosity, γgl is the geometric factor of the droplet size, and Dgl
[
m2/s

]
, in the function of

temperature [K] and pressure [Pa], takes the following form.

Dgl

 0.365·10−4
(

T
343

)2.334
·

(
105

p

)
, cathode

1.79·10−4
(

T
343

)2.334
·

(
105

p

)
, anode

(18)
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Equation (16) is solved in all the regions from the anode GDL-channel interface to the cathode
GDL-channel interface. At both interface boundaries, the liquid water flux is considered to leave
the gas diffusion layers into the gas channel only. The flux is assumed to be driven by the capillary
pressure [50].

fliq = max[Θε spc, 0] (19)

where Θ is the coefficient of liquid water removal.
Liquid saturation in the channels is calculated from the Leverett function.

pc

 σ cosθc

√
ε
K J (1− s), θc < 90

◦

σ cosθc

√
ε
K J s, θc > 90

◦
(20)

where
J(x) = 1.417x− 2.12x2 + 1.263 x3 (21)

Liquid water transport in the gas channels is determined to predict the pressure drop increase
using the following correlation.

∂
∂t
(ρl s) +∇ ·

(
pl
→
v ls

)
= ∇·

(
Dliq ∇s

)
(22)

where Dliq is the liquid water diffusion coefficient in the gas channel and the liquid velocity
→
v l is

assumed to be a fraction of the gas velocity
→
v g, i.e.,

→
v l = χ

→
v g.

Since the flow-channels (ff) in our model are porous in nature, user-defined function (UDF) is
used to add the corresponding source term to X, Y, and Z momentum for the inertial losses.

Si = −
(µ
α

vi + C2
1
2
ρ |v| vi

)
(23)

where Si denotes the source for the ith (x, y, or z) momentum equation, |v| denotes the magnitude of
the velocity, α is the permeability, and C2 is the inertial resistance factor.

In laminar flows through porous media, the pressure drop is typically proportional to the velocity
and the constant C2 can be considered zero. Ignoring the convective acceleration and diffusion, the
porous media model is reduced to Darcy’s law.

Si = −
µ

α
vi (24)

The volumetric heat sources in various zones can be found in Table 3, where the variables is and
im represent the magnitudes of the solid phase and membrane phase current density, respectively, and
L (<0) is the latent heat due to water condensation.

Table 3. Energy source terms for the governing equations of conservation energy [50].

Zone Additional Source Terms

GDL+MPL i2s
σsol
− Sgl ·L

Anode catalyst layer Ran
(
ηan −

T∆San
2F

)
+

i2s
σsol

+
i2m
σmem
−

(
Sdl + Sgl

)
·L

Cathode catalyst layer Rcat
(
−ηcat −

T∆Scat
2F

)
+

i2s
σsol

+
i2m
σmem
−

(
Sdl + Sgl

)
·L

Membrane (solid) i2m
σmem

Current collector (solid) i2s
σsol

Gas channels -



Molecules 2019, 24, 3097 9 of 25

2.1.2. Electrochemistry and Cathode Particle/Agglomerate Model

The driving force of these reactions is the surface overpotential, which is the difference between
the phase potential of the solid and of the electrolyte or membrane. The phenomenon is accounted for
in two equations: one for the electron transport in the catalyst layer, solid grids of porous media, and
the current collector, and the other for the protonic conduction or transport of H+ at the catalyst and
the membrane [52,53].

∇·(σsol ∇ φsol) + Rsol = 0 (25)

∇·(βmσmem ∇ φmem) + Rmem = 0 (26)

where σ denotes the electrical conductivity in ohm-m−1, φ denotes the electric potential in volts, and R
denotes the volumetric transfer current in A·m−3, which is also known as exchange current density,
expressed as:

Ran = ( ζan jan (T))

 [A]

[A]re f

γan (
eα

an
anFηan/RT

− e−α
an
catFηan/RT

)
(27)

Rcat = ( ζcat jcat (T))

 [C]
[C]re f

γcat (
−eα

cat
an Fηcat/RT + e−α

cat
catFηcat/RT

)
(28)

In the above equations, j (T) is the reference exchange current density per active surface area
[A·m−2], ζ is the specific active surface area [m−1], [ ] and [ ]re f are the species local concentration and
its reference value [kmol·m−3], γ is the concentration dependence, αan

an and αan
cat are anode and cathode

dimensionless transfer coefficients of the anode electrode, respectively, αcat
an and αcat

cat are the anode and
cathode dimensionless transfer coefficients of cathode electrode, ηan is the surface overpotential, F is
the Faraday constant (9.65 × 107 C·kmol−1), R is the universal gas constant, and T is the temperature.

The reference exchange current densities jan(T) and jcat(T) are dependent on a local temperature,
described as follows [52,53].

jan(T) = jre f
an e−Ean/RT(1−T/Tre f

an ) (29)

jcat(T) = jre f
cat e−Ecat/RT(1−T/Tre f

cat ) (30)

where E and Tre f are user-specified activation energy and reference temperature, respectively, and jre f
an

and jre f
cat are the associated exchange current densities at the specified reference temperature.
The driving force for the kinetics is the local surface overpotential η, also known as the activation

loss. It is defined as the difference between the solid and membrane potentials, φsol and φm.

ηan = φsol −φm −U0
an (31)

ηcat = φsol −φm −U0
cat (32)

The half-cell potentials at the cathode and anode, U0
an and U0

cat, can be calculated using the Nernst
equation [50].

U0
an = E0

an −
∆San

2F

(
T − T0

)
−

RT
2F

ln
pH2

p0 (33)

U0
cat = E0

cat −
∆Scat

2F

(
T − T0

)
−

RT
2F

ln
pH2o

psat
√

po2 /p0
(34)

where E0 denotes the reversible potential, ∆S denotes the reaction entropy, psat denotes the saturation
pressure of water, T0 and p0 are standard temperature and pressure, and pH2 , po2 , and pH2o are the
partial pressures of hydrogen, oxygen, and water vapor, respectively.

In computing the cathode transfer current using Equation (28), the mass transport resistance of
the microstructure is not taken into account in the equation [50]. The resistance consists of two parts,
which includes the resistance due to ionomer film Rion and the resistance due to liquid water film
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surrounding the particles Rliq. The volumetric transfer current in the cathode layer is represented by
the formula below.

Rcat = 4F
cO2

cO2 / jideal
O2

+ Rion + Rliq
(35)

where cO2 is the oxygen concentration at the wall, Rion is a user-specified value, and Rliq can be
calculated as the equation below.

Rliq =
ζcatr2

p

KwDw
·

3
√

1 + sε
1−ε

3(1− ε)
(36)

where ζcat is the specific active surface area for the cathode catalyst [m−1], s is the liquid saturation, ε is
the porosity, rp is the particle diameter, and KwDw is the product of oxygen solubility and diffusivity in
liquid water.

The parameter jideal
O2

in Equation (35) is defined as the equation below.

jideal
O2

=
R0

cat
4F

(37)

In this case, R0
cat is the ideal current transfer, computed using Equation (28) without considering

the resistances.

2.1.3. Constitutive Relations

The density of the gas is given by the equation below.

ρ =
p M
R T

where the mixture molecular weight, expressed in terms of molar fraction of individual species xi, is
given by the equation below.

M = MO2xO2 + MH2xH2 + MH2OxH2O + MN2xN2

The molar fractions are related to the mass fractions shown below.

ωi =
Mixi

M

Molar concentration of species i is defined as:

ci =
P

RT
× xi

and can be calculated as:
ci = xi

(
cO2 + cO2 + cH2O + cN2

)
The relative humidity percentage η is a function of water saturation pressure psat

H2O.

η =
pxH2O

psat
H2O

× 100

psat
H2O = 101325 × 10c1+c2(T−T0)+c3(T−To)

2+c4(T−T0)
3
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Assuming the ratio
xO2
xN2

= 21
79 , the oxygen molar fraction at the inlet can be determined from the

equation below.

xin
O2

= 1−
xin

H2O

1 + 79/21

while the mole fraction on the anode side is defined below.

x H2,a = 1− xH2O,a

The inlet velocities at the cathode and anode side are given by the following equations, respectively.

vin
a = ξin

a
iavg Amem

2FAinlet
×

1
cin

H2

vin
c = ξin

c
iavg Amem

4FAinlet
×

1
cin

O2

The average current density iavg is given by the equation below.

iavg =
1
L

∫ L

o
i ·ey dx

where L is the length of the fuel cell.

2.1.4. Boundary Conditions

The boundaries of the system as illustrated in Figure 1b are as follows.

I. At the side walls:

u(g) = 0,
∂ω

(g)
i
∂x

=
∂φ(s)

∂x
=
∂φ(m)

∂x
=
∂s
∂x

=
∂T
∂x

= 0

II. At the anode inlet:

.
m(g)

a =
.

min
a , ω(g)

H2
= ωin

H2,a , ω(g)
H2O = ωin

H2O,a , T = Tin , s = 0

III. At the cathode inlet:

.
m(g)

c =
.

min
c , ω(g)

H2
= ωin

H2,c , ω(g)
H2O = ωin

H2O,c , T = Tin , s = 0

IV. At the outlets:

p(g) = pre f ,
∂ω

(g)
i
∂x

=
∂φ(s)

∂x
=
∂s
∂x

=
∂T
∂x

= 0

V. At the anode wall terminal:
φ(s) = 0

VI. At the cathode wall terminal:

− σ(s)
∂φ(s)

∂n
= iset

The governing equations together with the constitutive relations and appropriate boundary
conditions are then solved numerically.
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2.2. Numerical Method

The developed mathematical model is implemented and customized in the commercial
computational software ANSYS Fluent and its PEMFC module together with user-defined functions.
The latter allows for changes in constitutive relations, parameters, and—to some extent—the governing
equations. Fluent solves all the equations throughout the domain, so variables in the layers that should
not be solved are set to zero.

The computational domains (Figure 1b) are created in the commercial software ANSYS Design
Modeller and ANSYS Meshing. The whole domain is defined porous, except for the current collectors
(cc) and the wall terminals. The whole domain is partitioned into smaller domains for running it in
a parallel mode. The computational model is partitioned using the Cartesian Z-direction method to
prevent any floating-point exceptions or errors. With convergence criteria of 10−6 for the residuals of
all the conservation equations, iterations are performed, after the mesh independence test to ensure an
accurate solution.

2.3. Response Surface Methodology

In general concern of a process or system involving a response y that depends on many other
controllable input variables ξ1, ξ2, ξ3, . . . , ξk , its relationship with y is given by the equation
below [54].

y = f (ξ1, ξ2, ξ3, . . . ξk) + ε

where ε represents other sources for variability unaccounted for in f . Treating ε as a statistical error,
we assume it to have a normal distribution with a mean zero and variance σ2.

2.4. Kriging-Based Response Surface Methodology

Design and analysis of computer experiments (DACE) is also called the kriging method of response
surface generation. It involves training points in estimating the unknown parameters α and predicting
new response points. It interpolates the model at all the training points. This method is used to
generate response surfaces for voltage values of 0.6 and 0.8 V. The response can be expressed by the
equation below [54].

ŷ(x) = f (x) + z(x)

where f (x) is a low-order polynomial that interpolates the design points. Typically, a constant value
is found in order to predict for modelling complex input-output relations. Hence, the output can be
viewed as:

ŷ(x) = β+ z(x)

z(x) is a Gaussian stochastic function representing the realization of a random process with zero mean,
variance σ2, and its covariance is given by the equation below.

Cov(Z) = σ2R
(
xi, x j

)
where R

(
xi, x j

)
is the correlation matrix, defined by the equation below.

R
(
xi, x j

)
= exp

[
−d

(
xi, x j

)]
d
(
xi, x j

)
=

k∑
l=1

θl

(∣∣∣∣xi
l − x j

l

∣∣∣∣p)
where i, j denote the two training points, l refers to the design parameter, θ is the positive weight
factor related to each design parameter, and k denotes the number of design parameters. The mean
parameter β is evaluated by the equation below.
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β =
[
AT R−1 A

]−1
AT R−1y

where A is an n × n matrix of training set points depending on the choice of the function f (x). The
parameters θ and p ensure best fit to the training data. They are evaluated by using a maximizing
likelihood estimation (MLE) [55].

−
1
2

[
n ln(2π) + n lnσ2 + ln|R|+

1
2σ2

(y−A β)TR−1(y−Aβ)
]

where the maximum likelihood σ2 is expressed by the equation below.

σ2 =
1
n
(y−Aβ)TR−1(y−Aβ)

The response at a new point x , ŷ(x) is directly evaluated by applying the equation below.

ŷ(x) = β+ rT(x)R−1(y−Aβ)

where r(x) is a correlation vector between x and all the training points.

3. Results and Discussion

3.1. Validation

Due to the complexity of the model being solved, model validation with experimental data is
imperative to prevent misleading conclusions in predicting the behavior of the fuel cell system. In this
work, we aimed to validate our model with two experimental single cells. The first experimental cell
was equipped with a Gore Primea 5510 membrane, which is a microscopically reinforced composite
membrane. The expressions for various phenomenological membrane models are generally based
on the Nafion membrane and so need to be adapted to account for the Gore membrane used in the
experiment. Two parameters have been, therefore, adapted to validate the model using both the
polarization curve and its iR-corrected counterpart.

The iR-corrected potential is given by the equation below.

EIR = Erev − ηa − ηc

where ηa (> 0) and ηc (< 0) are the corresponding overpotentials of the anode and the cathode catalyst
layers, respectively. In this case, we focused on parameter adaption of the cathode reference exchange
current density, jre f

cat , and the cathode transfer coefficient, αcat , and retained the anode counterparts
from the work of Wang and co-workers [39,56].

Two points from the experimentally determined iR-corrected polarization curve were chosen: one
at a low current density and the other at a higher current density. Initially, the membrane protonic
conductivity coefficient, βm, was set to one. Once a good agreement for the two points was obtained,
we predicted the complete iR-corrected polarization curve. A good agreement for the whole range was
achieved, as can be seen in Figure 2. Subsequently, βm was varied to finish the validation for the full
polarization curve, where the cell voltage is defined below.

Ecell = Erev − ηa − ηc −
∑

i(s)
(

1
σe f f

)
−

∑
i(m)

(
1
σe f f

)
In this case, the last two terms on the right-hand side of the equation account for the various

ohmic losses in the solid and membrane functional layers, respectively.
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] is the experimental power density, [— · ] is the predicted potential, [ — ] is the predicted
iR-corrected potential, and [··· ] is the predicted power density.

Furthermore, the predicted local current density distribution along the top of the anode terminal
was compared with the experimental counterpart. Figure 3 illustrates this local current density
distribution for each measured average current density in Figure 2. It can be observed that better
prediction is achieved at lower currents, while the model is less accurate at higher current densities,
with the most deviation observed near the inlet and outlet. This could be due to the inlet boundary
condition in the simulation that does not represent correctly the position of the inlet manifolds location
as in the experiments.
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The model is also validated against the second set of experimental polarization curve, especially
at a limiting current density to justify the MEA model with an agglomerate catalyst layer. The model
was validated with experimental fuel cells with a single-layered gas diffusion studied by Han et al. [37],
as depicted in Figure 4. It shows that the model has good agreement with the curve and is able to
predict the limiting current density due to mass transport limitations and the presence of two-phase
liquid water.
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3.2. Response Surface Generation and Optimization

To determine the dominant parameters affecting the PEMFC performance and optimize them,
response surface generation and local sensitivity analysis were carried out at medium (0.6 V) and
high (0.8 V) voltages. The response surfaces were created using the design of experiments (DOE)
method of central composite design (CCD) and the kriging method of response surface generation.
The CCD was employed to capture the non-linear interactions that cannot otherwise be described by
linear functions. Hence, experimental designs for quadratic response surfaces, like three-level factorial,
Box-Behnken, central composite, and Doehlert designs [57], should be used instead. The list of design
variables considered for the DOE and their upper and lower bounds are tabulated in Table 4. The
base case parameters correspond to case (a) in Table 1, which has been validated for both global and
local current densities (Figures 2 and 3). The inputs used for the base-case correspond to a current
density of 1 A/cm2, i.e., anode stoichiometry of 3.35 (vin

a = 0.173 m/s) and cathode stoichiometry of
2.3 (vin

c = 1.052 m/s), which are calculated from constitutive relations, as explained in the previous
section. The response surface generated was then carefully evaluated. If the response surface was
not within the desired limits of accuracy, determined by the “goodness of fit,” it was modified by
adding refinement points to the kriging method. Additional CFD simulations were run to generate the
response surface data to improve the confidence of the response surface. This iterative method was
done until a good fit and reliable response surface was achieved and is illustrated in Figure 5.
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Table 4. Design variable values for the DOE method.

Design Variable Base Case Lower Bound Upper Bound

Proton Exchange Membrane thickness 0.03 mm 0.005 mm 0.05 mm
Equivalent weight of membrane 1100 kg kmol−1 700 kg kmol−1 1500 kg kmol−1

Radius of cathode catalyst particle 10−7 m 10−8 m 10−7 m
Cathode Catalyst Ionomer resistance 25 s m−1 10 s m−1 100 s m−1

Porosity of the cathode catalyst layer 0.4 0.2 0.7
Protonic conduction coefficient of the membrane 0.9 0.5 1.5
Hydrophobic angle of the cathode catalyst layer 95◦ 90◦ 180◦

Ionomer tortuosity of the cathode catalyst layer 1 0.7 1.5
Ionomer volume fraction of the cathode catalyst layer 1 0.5 1.0
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Goodness of fit was used to determine the reliability of the response surface predicted, i.e., how
close the predicted values are to the observed values. The predicted values from the response surface
were compared against the values observed from design points for both 0.6 and 0.8 V. The results
demonstrate good agreement for both voltage values, which is shown in Figure 6.
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3.3. Local Sensitivity

In determining which variables influence the output current density the most, the following
relation was used.

local sensitivity =
Outputmax −Outputmin

Outputaverage

The local sensitivity analysis was carried out using outputs obtained from the DOE.
Figures 7a and 8a illustrate the relative impacts of the different input parameters on the local
sensitivity for the 0.6 and 0.8 V, respectively. The corresponding sensitivity curves (Figures 7b and 8b)
show the output variation with changes in one input parameter, while keeping the other parameters
constant. The results show that, for both voltage values, parameters that have the most impact are
the membrane protonic conductivity coefficient and the membrane thickness. The cathode catalyst
ionomer volume fraction, cathode catalyst porosity, cathode catalyst ionomer tortuosity, volume
fraction, cathode catalyst hydrophobic angle, and the radius of cathode agglomerate particles have a
minor impact on the output that can be considered negligible when compared to these two parameters.
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Based on these results, the membrane thickness and the membrane protonic conductivity coefficient
are chosen as the varying parameters to study the interrelated response, as well as to perform the
optimization. The three-dimensional response charts illustrating how the two variables affect the
current output are depicted in Figures 9 and 10 for both medium and high voltages, respectively. These
response surfaces are used for the system optimization.
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Figure 10. Three-dimensional response surface plot at 0.8 V.

3.4. Optimization

Optimization was carried out using the non-linear programming through a quadratic Lagrangian
(NLPQL) approach based on the response surfaces generated previously. NLPQL is a gradient-based
algorithm that provides a refined local optimization result. It supports a single constraint on the output
parameter and is limited to continuous parameters. The NLPQL approximates derivatives by a central
difference scheme and finds candidate points by iterations. This approach was used to determine the
optimum values of the variables considered.

Table 5 shows the optimization result that provides maximum current output for three candidate
points at 0.8 V. It can be observed that the response surface prediction agrees well with the CFD model,
with a maximum error of approximately 0.17%, occurred at candidate point 1 (case i). The current
density output increased from 0.18 A cm−2 at the base to an average of 0.2472 A cm−2, which indicates
almost a 40% increase. This increase is attributed to the change in the protonic conductivity coefficient
from 0.9 to 1.45 and attributed to the decrease in membrane thickness from 0.03 mm to the lowest
bound value of 0.005 mm.

Similarly, a good agreement between the response surface and the computational fluid dynamics
(CFD) model is obtained for the medium-voltage case, as shown in Table 6. At 0.6 V, the error is
slightly higher, with a maximum error of 0.57%, which occurred at candidate point 1. As in the case at
a high voltage value, the protonic conduction coefficient increased from 0.9 to 1.5 m and the membrane
thickness reduced to the lowest bound value. However, the current density output for the 0.6 V almost
doubled, from 1.23 A cm−2 at the base case to 2.4 A cm−2, which gives approximately a 96% increase.
This large improvement demonstrates the significance of optimization at medium voltage levels, as
compared to high voltage values.
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Table 5. Optimization result for three candidate points at 0.8 V.

Parameter Range of Values Case i Case ii Case iii

Membrane thickness 0.005–0.05 mm 0.005 mm 0.005 mm 0.005 mm

Equivalent weight of membrane 700–1500 kg
kmol−1 700 kg kmol−1 746.65 kg kmol−1 824.12 kg kmol−1

Radius of the cathode catalyst particle 10−8–10−7 m 10−7 m 9.4613 × 10−8 m 86,287 × 10−8 m
Cathode catalyst ionomer resistance 10–100 s m−1 10 s m−1 10 s m−1 10 s m−1

Porosity of cathode catalyst layer 0.2–0.7 0.7 0.7 0.7
Protonic conduction Coefficient of the membrane 0.5–1.5 1.4537 1.443 1.4533
Hydrophobic angle of the cathode catalyst layer 90◦–180◦ 180◦ 180◦ 180◦

Ionomer tortuosity 0.7–1.5 0.7 1.0354 1.07
Ionomer volume fraction 0.5–1.0 1 1 1

Current density magnitude
Response
Surface

Numerical
Simulation

Response
Surface

Numerical
Simulation

Response
Surface

Numerical
Simulation

2477 A m−2 2472.8 A m−2 2475.2 A m−2 2471.9 A m−2 2474.6 A m−2 2472.7 A m−2

Error % 0.1698% 0.1335% 0.0768%
% Increase from base case output (1780.6 A m−2) 38.87% 39% 38.87%

Table 6. Optimization result for three candidate points at 0.6 V.

Parameter Range of Values Case i Case ii Case iii

Membrane thickness 0.005–0.05 mm 0.005 mm 0.005 mm 0.005 mm

Equivalent weight of membrane 700–1500 kg
kmol−1 1500 kg kmol−1 1420.1 kg kmol−1 1301.1 kg kmol−1

Radius of the cathode catalyst particle 10−8–10−7 m 10−8 m 10−8 m 10−8 m
Cathode catalyst ionomer resistance 10–100 s m−1 100 s m−1 100 s m−1 100 s m−1

Porosity of the cathode catalyst layer 0.2–0.7 0.2 0.2 0.2
Protonic conduction coefficient of the membrane 0.5–1.5 1.5 1.5 1.5
Hydrophobic angle of the cathode catalyst layer 90◦–180◦ 90◦ 90◦ 90◦

Ionomer tortuosity 0.7–1.5 1.5 1.5 1.5
Ionomer volume fraction 0.5–1.0 1 1 1

Current density magnitude
Response
Surface

Numerical
Simulation

Response
Surface

Numerical
Simulation

Response
Surface

Numerical
Simulation

24166 A m−2 24029 A m−2 24154 A m−2 24029 A m−2 24140 A m−2 24029
Error % 0.57% 0.52% 0.46%

% Increase from the base case output (12273 A m−2) 95.78% 95.78% 95.78%
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It can be observed that the extent of optimization required increased greatly when the voltage
is reduced from a high to a medium level. This is due to the fact that an increase in current density
requires better conductivity of the H+ ions through the membrane to maintain system net neutrality.
In addition, the reduction in membrane thickness decreases the resistance offered by the membrane for
the hydrogen ions to move from the anode to the cathode side. The sensitivity analysis also shows that
the influence of membrane thickness on the output is greater than that of the protonic conductivity
coefficient and rises slightly when the voltage is reduced from 0.8 to 0.6 V. Furthermore, the different
values of parameters, other than the two mentioned, in Tables 5 and 6, confirms the insignificance of
these variables to the current output and, hence, varying them would not affect the output largely.

In short, it can be deduced that, in designing high performance PEMFC, one needs to aim
for thinner MEA with higher membrane protonic conductivity, which can be achieved by using
carbon-reinforced membrane or water absorbent materials including polytetrafluoroethylene (PTFE),
polyvinylidene fluoride (PVDF), and fluorinated ethylene propylene (FEP) or silica gels.

4. Conclusions

A numerical study of the two-phase PEMFC with a detailed multiscale agglomerate catalyst layer
model was developed and validated against two sets of experimental data for iR-corrected and full
polarization curves, including at limiting current densities due to mass transport limitation and the
local current density distributions. The model is then extended and coupled with response surface
methodology to optimize the design of the membrane electrode assembly (MEA), i.e., membrane
thickness, equivalent weight of membrane, radius of agglomerate catalyst particle, cathode catalyst
ionomer resistance, porosity of the catalyst layer, a membrane protonic conductivity coefficient, a
hydrophobic angle of the catalyst layer, ionomer tortuosity, and a catalyst layer, at high and medium
voltages. From sensitivity analysis, it was found that the membrane thickness and membrane protonic
conductivity coefficient yield the most significant factor. Reducing the membrane thickness by 40%
and increasing protonic conductivity by 50% gives rise to a current density of up to 40% at a higher
voltage and up to 100% at a medium voltage. This finding could help fuel cell engineers and designers
to carefully manufacture MEA with optimum parameters for a high-performance fuel cell system.

Future work will focus on a combined optimization of design and operating parameters
simultaneously for better MEA design, thermal, water, and gas management. A more advanced
optimization algorithm including artificial intelligence and machine learning will be considered as well.
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Nomenclature

Acl catalyst area, m2

c(g)
i

molar concentration of species i, mol m−3

C(g)
i,re f reference molar concentration of species i, mol m−3

c(g)
p specific heat capacity, J kg−1 K−1

c1, c2, c3, c4 constants for saturation pressure of water, -, K−1, K−2, K−3

D(c) capillary diffusion, m2 s−1
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Di diffusivity of species i, m2 s−1

Ecell cell voltage, V
Ea activation energy, J mol−1

Erev reversible cell potential, V
F Faraday constant, C mol−1

h j height of layer j, m

H(l)
O2

, H(p)
O2

Henry’s constant for air-water and air-polymer interfaces, Pa m3 mol−1

ηa,c relative humidity, %
i current density, A m−2

jre f
a,c anode and cathode volumetric reference exchange current density, A m−3

J volumetric reference current density, A m−3

L length of channel, m
mH2O interphase mass transport, kg m−3 s−1

M (g) mean molecular mass of the gas phase, kg mol−1

Mi molecular mass of species, kg mol−1

M(m) equivalent weight of the dry membrane, kg mol−1

nd electroosmotic drag coefficient
psat

H2O saturation pressure of water, Pa
R gas constant, J mol−1 K−1

s liquid saturation
S source term
T0, T1, T2 constants, K
T temperature, K
V volume, m3

ω
(g)
i

mass fraction of species i
Greek symbols
α transfer coefficient
βm membrane modification coefficient
γ volume fraction
δ thickness of film, m
ε porosity
η overpotential, V
θ wetting angle
κ permeability, m2

λ membrane water content
µ dynamic viscosity, kg m−1 s−1

ξ stoichiometry
ρ density, kg m−3

τ surface tension, Pa
σ total stress tensor, Pa
φ potential, V
Superscripts
sat saturation
(g) gas phase
(m) membrane
(l) liquid phase
(s) solid
in inlet
ref reference
(c) capillary
Subscripts
α,β index for species
a anode
c cathode
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cc current collector
cl catalyst layer
ff flow field
gdl gas diffusion layer
H2 hydrogen
H2O water
i species i
j functional layer j
m membrane
N2 nitrogen
O2 oxygen
pot potential
ref reference
o standard condition
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