SUPPLEMENTARY MATERIALS

SYNTHESIS OF NOVEL 2-(HET)ARYLPYRROLIDINE DERIVATIVES AND EVALUATION OF THEIR ANTICANCER AND ANTI-BIOFILM ACTIVITY

Andrey Smolobochkin, ${ }^{1}$ Almir Gazizov, ${ }^{1 *}$ Marina Sazykina, ${ }^{2}$ Nurgali Akylbekov, ${ }^{3}$ Elena Chugunova, ${ }^{1,4 *}$ Ivan Sazykin, ${ }^{2}$ Anastasiya Gildebrant, ${ }^{2}$ Julia Voronina, ${ }^{5}$ Alexander Burilov, ${ }^{1}$ Shorena Karchava, ${ }^{2}$ Maria Klimova, ${ }^{2}$ Alexandra Voloshina, ${ }^{1}$ Anastasia Sapunova, ${ }^{1}$ Elena Klimanova, ${ }^{6}$ Tatyana Sashenkova, ${ }^{6}$ Ugulzhan Allayarova, ${ }^{6}$ Anastasiya Balakina, ${ }^{6,7}$ Denis Mishchenko ${ }^{6,7}$
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russia, 420088, Kazan, Arbuzov str., 8
2 Southern Federal University, Russia, 344090, Rostov-on-Don, Stachki Avenue, 194/2
3 Institute of Chemical Research and Technology of Korkyt Ata Kyzylorda State University, The Republic of Kazakhstan, 120014, Kyzylorda, Aiteke bie str., 29A
4 Kazan Federal University, Russia, 420008, Kazan, Kremlyovskaya str., 18
5 N. S. Kurnakov Institute of General and Inorganic Chemistry, RAS, 31 Leninsky Av., 119991 Moscow, Russian
Federation
$6 \quad$ Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia
$7 \quad$ Scientific and Educational Center in Chernogolovka of Moscow Region State University, Mytishi, 141014, Russia
* Correspondence: chugunova.e.a@gmail.com, Tel.: +7 8432727324 (Elena Chugunova); agazizov@iopc.ru;
Tel.: +7 8432727324 (Almir Gazizov)

Contents

Anti-biofilm activity studies.. 2
X-ray studies .. 9
In vivo anti-cancer activity... 11
In vitro anti-cancer activity.. 11
Copies of NMR spectra .. 12

Anti-biofilm activity studies

Figure S 1. Antibiofilm activity of pyrrolidine $\mathbf{6 a}$ against V. aquamarinus DSM 26054: $1 \mathbf{- 6 a}\left(1 \times 10^{-9} \mathrm{M}\right) ; 2-6 \mathbf{a}\left(1 \times 10^{-8}\right.$ $\mathrm{M}) ; 3-6 \mathrm{a}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathrm{a}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathrm{a}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 2. Antibiofilm activity of pyrrolidine 6a against A. calcoaceticus VKPM B-10353: $1 \mathbf{- 6 a}\left(1 \times 10^{-9} \mathrm{M}\right)$; $\mathbf{2} \mathbf{- 6 a}$ $\left(1 \times 10^{-8} \mathrm{M}\right) ; 3-6 \mathrm{a}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathrm{a}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathrm{a}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 3. Antibiofilm activity of pyrrolidine $\mathbf{6 b}$ against V. aquamarinus DSM 26054 : $1 \mathbf{- 6 b}\left(1 \times 10^{-9} \mathrm{M}\right) ; 2-6 b\left(1 \times 10^{-}\right.$ $\left.{ }^{8} \mathrm{M}\right) ; 3-6 \mathrm{~b}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathrm{~b}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-\mathbf{6 b}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 4. Antibiofilm activity of pyrrolidine $\mathbf{6 b}$ against A. calcoaceticus VKPM B-10353: $1 \mathbf{- 6 b}\left(1 \times 10^{-9} \mathrm{M}\right)$; $2 \mathbf{- 6 b}$ $\left(1 \times 10^{-8} \mathrm{M}\right) ; 3-6 \mathbf{b}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathbf{b}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathbf{b}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 5. Antibiofilm activity of pyrrolidine $\mathbf{6 c}$ against V. aquamarinus DSM 26054: $\mathbf{1 - 6 c}\left(1 \times 10^{-9} \mathrm{M}\right) ; 2-6 \mathbf{c}\left(1 \times 10^{-8}\right.$ $\mathrm{M}) ; 3-6 \mathbf{c}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathbf{c}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathbf{c}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 6. Antibiofilm activity of pyrrolidine $\mathbf{6 c}$ against A. calcoaceticus VKPM B-10353: $1 \mathbf{- 6 c}\left(1 \times 10^{-9} \mathrm{M}\right) ; 2-6 \mathrm{c}\left(1 \times 10^{-}\right.$ $\left.{ }^{8} \mathrm{M}\right) ; 3-6 \mathrm{c}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathrm{c}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathrm{c}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 7. Antibiofilm activity of pyrrolidine $\mathbf{6 d}$ against V. aquamarinus DSM 26054: $1 \mathbf{- 6 d}\left(1 \times 10^{-9} \mathrm{M}\right) ; 2 \mathbf{- 6 d}\left(1 \times 10^{-}\right.$ $\left.{ }^{8} \mathrm{M}\right) ; 3-6 \mathbf{d}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathbf{d}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathbf{d}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 8. Figure 4 - Antibiofilm activity of pyrrolidine 6d against A. calcoaceticus VKPM B-10353: $1-6 \mathbf{d}\left(1 \times 10^{-9} \mathrm{M}\right)$; $2-6 \mathbf{d}\left(1 \times 10^{-8} \mathrm{M}\right) ; 3-\mathbf{6 d}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-\mathbf{6 d}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-\mathbf{6 d}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 9. Antibiofilm activity of pyrrolidine $6 \mathbf{e}$ against V. aquamarinus DSM 26054: $1-6 \mathbf{e}\left(1 \times 10^{-9} \mathrm{M}\right)$; $2-6 \mathbf{e}\left(1 \times 10^{-8}\right.$ $\mathrm{M}) ; 3-6 \mathbf{e}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathbf{e}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathbf{e}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 10. Antibiofilm activity of pyrrolidine $6 \mathbf{e}$ against A. calcoaceticus VKPM B-10353: $1-6 \mathbf{e}\left(1 \times 10^{-9} \mathrm{M}\right) ; \mathbf{2 - 6 e}$ $\left(1 \times 10^{-8} \mathrm{M}\right) ; 3-6 \mathrm{e}\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-6 \mathrm{e}\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-6 \mathrm{e}\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 11. Antibiofilm activity of phenol 4 against V. aquamarinus DSM 26054: $1-4\left(1 \times 10^{-9} \mathrm{M}\right) ; 2-4\left(1 \times 10^{-8} \mathrm{M}\right) ; 3$ $-4\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-4\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-4\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean + SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $\mathrm{p}<0.05$.

Figure S 12. Figure 12 - Antibiofilm activity of phenol 4 against A. calcoaceticus VKPM B-10353: $1-4\left(1 \times 10^{-9} \mathrm{M}\right)$; 2 $4\left(1 \times 10^{-8} \mathrm{M}\right) ; 3-4\left(1 \times 10^{-7} \mathrm{M}\right) ; 4-4\left(1 \times 10^{-6} \mathrm{M}\right) ; 5-4\left(1 \times 10^{-5} \mathrm{M}\right)$. The solutions of appropriate solvent in ethanol with the same concentration were used as controls. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean \pm SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 13. Antibiofilm activity of azithromycin against V. aquamarinus DSM 26054: 1 - control; 2 - azithromycin $\left(1 \times 10^{-9} \mathrm{M}\right) ; 3$ - azithromycin $\left(1 \times 10^{-8} \mathrm{M}\right) ; 4$ - azithromycin $\left(1 \times 10^{-7} \mathrm{M}\right) ; 5$ - azithromycin $\left(1 \times 10^{-6} \mathrm{M}\right) ; 6$ - azithromycin $\left(1 \times 10^{-5} \mathrm{M}\right)$. Deionized $\mathrm{H}_{2} \mathrm{O}$ was used as control. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean + SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 14. Antibiofilm activity of azithromycin against A. calcoaceticus VKPM B-10353: 1 - control; 2 - azithromycin $\left(1 \times 10^{-9} \mathrm{M}\right) ; 3$ - azithromycin ($1 \times 10^{-8} \mathrm{M}$); 4-azithromycin $\left(1 \times 10^{-7} \mathrm{M}\right) ; 5$ - azithromycin $\left(1 \times 10^{-6} \mathrm{M}\right) ; 6$ - azithromycin $\left(1 \times 10^{-5} \mathrm{M}\right)$. Deionized $\mathrm{H}_{2} \mathrm{O}$ was used as control. Each experiment was performed in triplicate and repeated in six different occasions. The values were expressed as mean + SD. Student's T-test was used to compare these values. *Differences were considered statistically significant at $p<0.05$.

Figure S 15. Crystal packing of compound $\mathbf{8 f}$ (molecules of different symmetry equivalents are shown in different colors).

Table S 1. Torsion angles in pyrrolidine and hexane substituents in compound $\mathbf{8 f}$.

Torsion angle	\mathbf{a}	\mathbf{b}	\mathbf{c}	Torsion angle	\mathbf{a}	\mathbf{b}	\mathbf{c}
N1-C2-C3-C4	$18.0(3)$	$21.0(3)$	$36.1(3)$	C16-N17-C18-C19	$83.4(3)$	$98.6(3)$	$90.2(3)$
C2-C3-C4-C5	$30.0(3)$	$33.6(3)$	$35.3(3)$	N17-C18-C19-C20	$173.5(2)$	$171.8(3)$	$54.8(3)$
C3-C4-C5-N1	$29.7(3)$	$32.6(3)$	$20.6(3)$	C18-C19-C20-C21	$66.5(4)$	$49.3(5)$	$170.3(2)$
C5-N1-C2-C3	$0.8(3)$	$0.6(3)$	$23.9(3)$	C19-C20-C21-C22	$61.3(4)$	$179.0(3)$	$173.3(2)$
C2-N1-C5-C4	$19.0(3)$	$19.9(3)$	$2.1(3)$	C20-C21-C22-C23	$172.4(3)$	$175.8(4)$	$174.4(3)$

Table S 2. H-bonds in crystal of compound 8f.

H-bond	D-H	H...A	D...A	D-H...A
O15B-H15B...O16B	0.86	1.68	$2.536(3)$	173
O15C-H15C...O16C	0.85	1.72	$2.550(3)$	165
O15A-H16A...O16A	0.85	1.66	$2.508(3)$	171
N17A-H17A...O7A	0.88	2.10	$2.921(3)$	156
N17B-H17B...O7B	1.02	1.91	$2.842(3)$	151
N17C-H17C...O7C	0.89	1.98	$2.867(3)$	171
C2A-H2AA...O15A	1.00	2.48	$2.882(3)$	103
C3A-H3AB...O7A	0.99	2.44	$2.914(3)$	109
C4A-H4AB...O7A	0.99	2.54	$3.131(3)$	118
C5A-H5AB...O7A	0.99	2.52	$3.338(3)$	140

H-bond	D-H	H...A	D...A	D-H...A
C2B-H2BA...O15B	1.00	2.49	$2.893(3)$	104
C3B-H3BB...O7B	0.99	2.31	$3.003(4)$	126
C12B-H12B...O16C	0.95	2.38	$3.251(3)$	152
C18B-H18D...O16B	0.99	2.42	$2.765(3)$	100
C4C-H4CA...O7C	0.99	2.32	$3.006(3)$	126
C5C-H5CA...O15C	1.00	2.48	$2.890(3)$	104

Table S 3. $\pi . . . \pi$ interactions in crystal of compound $\mathbf{8 f}$.

$\Pi . . . \pi$	Cg-Cg	Alpha	Cgl_Perp	CgJ_Perp
$\mathrm{Cg} 2 \ldots \mathrm{Cg} 3$	$3.4890(16)$	$0.88(13)$	$3.4838(11)$	$3.4858(11)$
$\mathrm{Cg} 3 . . \mathrm{Cg} 2$	$3.4890(16)$	$0.88(13)$	$3.4858(11)$	$3.4838(11)$
$\mathrm{Cg} 7 \ldots \mathrm{Cg} 11$	$3.7432(16)$	$1.41(13)$	$-3.4105(11)$	$-3.3934(11)$
$\mathrm{Cg} 11 . . \mathrm{Cg} 7$	$3.7432(16)$	$1.41(13)$	$-3.3934(11)$	$-3.4105(11)$

Table S 4. CH... π interactions in crystal of compound $\mathbf{8 f}$.

C-H...л	H..Cg	H-Perp	Gamma	X-H..Cg
C2A-H2AA...Cg11	2.89	2.86	7.89	143
C21A-H21B...Cg6	2.78	2.73	10.66	144
C22C-H22E...Cg3	2.66	-2.65	6.12	168

In vivo anti-cancer activity

Figure S 16. The Kaplan-Meier curves demonstrating the percentage of survival of mice bearing P388 leukemia as a function of time.

In vitro anti-cancer activity
Table S 5. Cytotoxic effects of pyrrolidines 7b-8h on the cancer and normal human cell lines. ${ }^{1}$

Test compounds	IC ${ }_{50}(\mu \mathrm{M})$		Test compounds	$\mathrm{IC}_{50}(\mu \mathrm{M})$	
	Cancer cell line	Normal cell line		Cancer cell line	Normal cell line
	M-Hela	Chang liver		M-Hela	Chang liver
7b	>100	>100	8b	>100	>100
7c	>100	>100	8 c	>100	>100
7d	>100	>100	8d	>100	>100
7 e	>100	>100	8 e	>100	>100
7 f	>100	>100	8 f	>100	>100
7 g	>100	>100	8 g	>100	>100
7h	>100	>100	8h	>100	>100

${ }^{1}$ Three independent experiments were carried out

Copies of NMR spectra

Figure S 17.

Figure S 18.
 $\underbrace{\circ}$

Figure S 19.
-159.09
18:Z01-

Figure $\mathbf{S} 20$.

 $\underbrace{\bullet \bullet \text { ம் }}$

Figure S 21.

$\stackrel{\sim}{\infty}$	\sim N	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\circ}$
ก	¢ ¢ ¢	N	00°
	$\cdots 1$	$\stackrel{7}{1}$	1)1

5a

Figure S 22.

Figure S 23.
m

5b

Figure S 24.

Figure S 25.

Figure S 26.

5c

Figure S 27.

No ทค่ ทั่
$\stackrel{ \pm}{\underset{\sim}{\sim}} \stackrel{\underset{\sim}{\star}}{\underset{\sim}{\sim}}$

5c

Figure S 28.

5d

Figure S 29.

Figure S 30.

Figure S 31.

5e

Figure S 32.

$5 f$

Figure S 33.

¢	∞		
¢	$\stackrel{\sim}{1}$	Nio oo	
\boldsymbol{r}			17

$5 f$

Figure S 34

5g

Figure S 35.

Figure S 36.

Figure S 37.

Figure S 38.

Figure S 39.

Figure $\mathbf{S} 40$.

Figure S 41.

6c

Figure S 42.

Figure S 43.

Figure $S 44$.

6

Figure S 45.

$6 e$

Figure S 46.

Figure S 47.

Figure S 48.

Figure S 49.

on
min
min

$6 g$

		1	1			1	1	1		1	1	1	1					1						
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

Figure $\mathbf{S} 50$.

Figure S 51.

Figure S 52.

7b

Figure S 53.

Figure S 54.

Figure S 55.

Figure $S 56$.

Figure S 57.

Figure $S 58$.

Figure S 59.

Figure $\mathbf{S} 60$.

Figure $\mathbf{S} 61$.

7f

Figure S 62.

[^0]
79

Figure S 63.

Figure S 64.

Figure S 65.

Figure S 66.

Figure S 67.

Figure S 68.

Figure S 69.

Figure $\mathbf{S} 70$.

Figure S 71.

8d

Figure S 72.

Figure S 73.

8 e

Figure S 74.

8 e

Figure S 75

Figure S 76.

Figure S 77.

Figure S 78.

Figure S 79.

Figure S 80.
 N

8h

Figure S 81.

[^0]: 이 M
 |

