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Abstract: Recent booming advances in luminescent gold nanoclusters (AuNCs), have prompted the
development of novel fluorescent sensors. The luminescent AuNCs possess unique and intriguing
physical and chemical properties including responsive photoluminescence and peroxide-like
activity, providing abundant potentials for sensing strategy design. As of now, a wide variety
of chem-/bio-sensors based on AuNCs have been developed and reviewed according to varied
analytes. In this review, from a different point of view, we follow the route of how those sensors realize
their functions and focus on the actual roles AuNCs play, in order to hierarchically and logically
display the recent progress in the sensing applications of AuNCs. This review not only opens new
windows to understand the development of sensors based on AuNCs but can also inspire broader
and deeper utilization of luminescent nanomaterials.
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1. Introduction

Gold nanoclusters (AuNC), composed of several atoms to several hundred unequal gold
atoms, have attracted considerable interest because of their intriguing aesthetic structures and
desired photophysical properties [1–14]. Their ultrasmall size (<2 nm), which is comparable to
the Fermi wavelength of electrons, hampers the surface movement of valence electrons, giving
rise to discrete electronic transitions and resulting interesting molecular properties, e.g., molecular
chirality, HOMO–LUMO transitions and photoluminescence [15]. Compared with other metal
nanoclusters, e.g., silver NCs [16] and copper NCs [17], AuNCs show superior stability against
oxidation. Moreover, different from organic clusters, [18] luminescent AuNCs have also exhibited
properties of long lifetime, large Stokes shift, and biocompatibility, facilitating to their practical
applications in chemo-/bio-sensing [19,20].

Briefly, chemo-/bio-sensing is the process of converting analyte signals to readable electrical or
optical signals. As for a luminescent sensor, the key of its construction lies proper luminescence
materials, whose luminescent signals, e.g., intensity and wavelength, are specifically responsive to
analytes [21]. As one of the attractive luminescence materials, AuNCs have experienced extensive
growth in the past two decades. In the early stage, studies of AuNCs mainly proceeded in size-focusing
structure analysis favored by the rapid development of organic chemistry [22]. Rare reports on their
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applications in sensing are there, mainly due to the lack of effective synthetic methods of AuNCs
with desirable luminescence and aqueous solubility [23]. In 2009, Xie et al. reported a facile and
“green” approach to synthesize AuNCs with strong fluorescence, excellent water solubility and
biocompatibility [24]. The utility of commercial proteins, bovine serum albumin (BSA), as reducers and
templates for AuNCs raised a wave of novel AuNCs stabilized by biomolecules, spurring the emergence
of various analytical methods based on AuNCs. In 2012, they introduced the well-known concept of
aggregation-induced emission (AIE) (proposed by Tang in 2001 [25–27]) into the scope of AuNC studies,
igniting interest to study the responsive luminescence behaviors of AuNCs and their corresponding
applications [28]. In short, the rapid development of synthetic approaches of luminescence AuNCs has
also extensively pushed forward their applications in chemo-/bio-sensing [29–32].

In this review, we summarize recent sensing applications of AuNCs from the novel aspect of the
roles they played in fulfilling conversion from analyte signals to luminescent signals. In each role,
we describe in detail, the sensing strategies according to the responsiveness of AuNCs. In addition,
we address intriguing peroxide properties of AuNCs and their use for colorimetric sensors. Finally,
we outline current challenges and discuss future prospects of AuNCs for chem-/bio-sensing.

2. Structure–Luminescence Relationship of AuNCs

The luminescent properties of AuNCs are directly linked to the molecular structure of AuNCs.
Core sizes are firstly unearthed and accepted to make crucial contributions to the luminescence of
AuNCs. Size-dependent luminescence of AuNCs was suggested by a series of experimental studies [33].
The water-soluble dendrimers, polyamidoamine (PAMAM), with well-defined molecular weight was
successfully applied to acquire a series of different sizes of AuNCs, including Au5, Au8, Au13, Au23,

and Au31, which were determined by electrospray ionization mass spectrometry (ESI-MS) [34,35].
A distribution of luminescence spectra, varying from ultraviolet (UV) to near-infrared (NIR), were
also correspondingly correlated to the sizes of AuNCs (Figure 1). The empirical formula on the
size-dependent luminescence of the PAMAM-protected AuNCs was thus deduced: EFermi/N1/3 (where
EFermi is the Fermi energy of bulk gold, while N is the number of atoms). The energy scaling law is
accurately suitable to the relationship for small AuNCs. As for larger AuNCs, a modified formula is
required to correct the deviation from the electronic screening effects and the harmonic distortion in
their potential energy well. Their corresponding modified free-electron models of the Au core (from
spherical harmonic to Woods–Saxon and eventually to square-well potential), could be further used to
explain the evolution of luminescence of AuNCs according to their increasing sizes [36].
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Ligands also played a key role in the photoluminenscence of AuNCs. For example, the PL
properties of the atomically precise glutathione (GSH)-protected AuNCs remain ambiguous with
respect to their core size, which is in striking contrast with the dendrimer-protected AuNCs [23].
The type of thiolate ligands has been further studied and shown to affect the luminescence of thiolated
Au25 NCs [37]. It has thus been understood that electron-rich atoms or functional groups in the thiolate
ligands can enhance the luminescence of the Au25 NCs. In addition, increasing the electro-positivity of
the Au core could also promote the luminescent intensity of thiolated AuNCs.

3. Synthetic Routes of AuNCs

AuNCs were first reported by Naldini et al. in 1966 using phosphine as a ligand [38]. Since
then, abundant physical and chemical methods have been developed to synthesize AuNCs of a size of
<2 nm. Generally, similar to other nanomaterials, the synthetic routes of AuNCs can be divided into
top-down and bottom-up routes.

3.1. Top-Down Synthesis

The etchants e.g., thiols and phosphines, have been recognized as the key tool to realize the
top-down synthesis of AuNCs. These “scalpels” can segment large gold nanoparticles (AuNPs, core
sizes >2 nm) into ultra-small AuNCs and then refine the relevant raw materials to size-focused AuNCs.
For example, the core size of mercaptosuccinic acid (MSA)-protected AuNPs could be gradually
reduced by adding excess BSA in alkaline conditions, [39] finally generating fluorescent BSA-protected
AuNCs with the emission maximum appeared at 660 nm. The particle size was unraveled to be about
1 nm with 38 gold atoms analyzed by MS. In the presence of GSH, the MSA-protected AuNPs could be
well etched into two kinds of AuNCs, Au25, and Au8, respectively at pH 3 and 7–8 [40]. Based on a
similar top-down strategy, a variety of AuNCs could be synthesized successfully [41–43].

3.2. Bottom-Up Synthesis

The bottom-up synthesis undergoes a thoroughly controlled reduction of the Au3+ precursors
under suitable ligand protection. Au3+ precursors and proper stabilizers are necessary for preparing
luminescent AuNCs. Versatile AuNCs with different sizes and luminescence can be synthesized by
controlling the reaction parameters, such as stabilizer, solvent, temperature, time, and pH of the
solution. The stabilizers represented by proteins are the classic method to prepare luminescent AuNCs.
Besides BSA, a series of proteins, such as urease, [44] catalase, [45] lysozyme, [46] plant proteins, [47]
egg white, [48] goose feathers, [49] and globulin, [50] have been applied as stabilizers for the synthesis
of luminescent AuNCs using a “one-pot” fashion method. The protein cages act as excellent scaffolds,
which can regulate the growth of AuNCs within their well-defined ultrasmall 3D structures.

4. Luminescent Sensing Strategies of AuNCs

A typical sensing process consists of analyte identification, signal transition, and output [51].
Luminescent sensing strategies are based on sensors which can transfer analyte signals to readable
photoluminescent signals. Of note, naked AuNCs have considerably high surface energy and hence
a strong affinity to grow or aggregate into larger particles. The protections provided by ligands are
necessary to maintain their solution stability [52]. Thus, we here denote metal cores and ligands
together as AuNCs. In the sensing process, luminescent AuNCs can generate recordable photonic
signals, which are closely related to their physicochemical structures. Therefore, sensing strategies
targeting structures of AuNCs are the mainstream to develop various useful sensors. With these
understandings, we then classify and describe recently-developed sensing strategies from multi-aspects,
according to the roles of AuNCs within each sensor.
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4.1. Mono-Component Sensing Systems Based on AuNCs

Owing to the diversity of ligands and unique gold chemistry, AuNCs can be designed and
developed into luminescent sensors. The richness of ligands provides abundant affinity sites interacted
with targeted analytes, ensuring sensors with the desired selectivity. On the other hand, the Au core
can interact with certain electron-donating groups (-S, -CN, -P) and form strong Au-CN bonding in
gold–cyanide complexes, Au-S bonding in gold–sulfur and Au-P bonding in gold–phosphine [53].
Additionally, the electronic configuration of the surface Au+ of AuNCs is 5d106s0, a closed-shell
configuration. Such configuration can exert highly specific and strong dispersion forces, which are
greatly magnified by relativistic effects, to other closed-shell metal atoms, such as Hg2+ (5d106s0).
The use of strong binding energies is therefore attractive for designing sensing approaches [54]. Hence,
with proper modifications, versatile luminescent AuNCs are ready to sense analytes and give out
detectable photons.

4.1.1. Friendly Core-Targeting Strategies

Analytes that only generate physical inhibition on the fluorescence of AuNCs, e.g., light absorption
and electron transition, generally are not harmful towards AuNCs. AuNCs still maintain an intact
structure and composition after interacting with analytes. Yang et al. found that phenol derivatives
produced inner filter effects (IFE) on the emission of AuNCs [55]. They thus utilized blue-emitted
AuNCs to quantitatively analyze toxic p-nitrophenol (pNP) and explosive trinitrotoluene (TNT).
Particularly, the special closed-shell interactions of outer Au+ with other ions with similar configuration
can offer excellent selectivity and sensitivity for the corresponding ion detection. Xie et al. used
BSA-protected AuNCs to construct a label-free sensor for Hg2+ and they pointed out that strong
closed-shell interactions between Au+ and Hg2+ were responsible for sensitively and selectively
detecting Hg2+ (Figure 2) [54]. The unique interactions ensured that AuNCs place as powerful sensors
for Hg2+, and inspired a series of relevant applications with novel AuNCs. Zang et al. reported new
AuNCs using β-lactoglobulin as a reducer and stabilizer [56]. Using the protein-protected AuNCs,
they realized the determination and quantification of Hg2+ in beverages, urine, and serum with high
sensitivity and selectivity. On the other hand, the intactness of the AuNC core after interaction with
Hg2+ hints that the removal of the cation can restore the origin emission of AuNCs. On the basis
of this mechanism, sensors for biothiols which can form stable S-Hg bonds with Hg2+ have been
developed. Park et al. applied the weakly emitting Hg2+-AuNC complexes to establish a turn-on
responsive biosensor for biothiols (Figure 3) [57]. Biothiols, such as cysteine (Cys), glutathione (GSH),
and homocysteine (Hcy), were able to block Hg2+-induced fluorescent quenching via interacting with
thiophilic Hg2+ and, as a result, reactivated the intense fluorescence of AuNCs.
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Copyright (2010) Royal Society of Chemistry.
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4.1.2. Core-Targeting Strategies with Gold Chemistry

The chemical inertness of gold materials benefits them as sensors not only with good stability
but also with selectivity over many potential interferences. In general, strong oxidants and specific
coordinating agents can react with gold, finally resulting in quenching of AuNC fluorescence. Jiang’s
group found that the fluorescence of GSH-modified fluorescent could be significantly quenched by
hROS (•OH, ClO−, and ONOO−) instead of wROS (H2O2 and •O2−) at the same concentration, showing
their excellent selectivity on hROS over wROS (Figure 4) [58]. They argued that the hROS-mediated
fluorescence quenching was ascribable to the oxidation of AuNCs by hROS at both the Au sites and
GSH sites. Similarly, Gopu et al. utilized the strong oxidizing agent, HOCl, towards the gold core of
BSA-AuNCs for fluorimetric detection of HOCl [59]. This rapid and simple method enabled sensitive
determination of HOCl with a detection limit of 0.1 × 10−6 M with high selectivity over common ions
present in real water samples.
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Figure 4. Schematic illustration of the one-step synthesis of red-emitting AuNCs with versatile surface
chemistry, and the fluorescence quenching strategy for the living cell imaging of hROS (•OH, ClO−, and
ONOO−) using the functionalized AuNCs. Adapted with permission from Reference [58] Copyright
(2018) Wiley.
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In recent years, our groups have been dedicated to developing novel biosensors based on AuNC
etching chemistry. The physio/pathologically important etchants were able to digest the gold core
of fluorescence AuNCs into non-emissive Au+ complexes. We first found that cysteamine (CSH),
the main drug for pediatric nephropathic cystinosis, could selectively quench the fluorescence of
BSA-protected AuNCs over Cys and GSH [60]. Simultaneously, the addition of CSH could bleach
the brown-red color of AuNC solution into colorless. A deeper investigation unearthed that CSH
triggered core-etching of AuNCs and oxidized elementary Au into Au(0) with strong supports
from data of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS),
and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) [60].
Thus, we constructed a label-free and separation-free facile method for CSH detection and the method
showed an excellent selectivity over common biothiols. Subsequently, we undertook massive works on
etchant screening and successfully found that tris (2-carboxyethyl)phosphine (TCEP), a commonly-used
chemical in reducing disulfide bonds, aroused a similar etching phenomenon towards AuNCs as CSH
(Figure 5) [61]. The fact that TCEP created a chemical etching towards the AuNCs was then revealed
by relevant characterizations. This method showed a linear relationship in the TCEP concentration
range of 5 × 102 to 5 × 104 nM, achieving the highest sensitivity compared with previous methods.
Following this etching strategy, we used a different kind of AuNCs, GSH-AuNCs, as the fluorescence
probe. We found that GSH-AuNCs could be effectively etched by Cys and thus it could be applied
to the facile, selective, and sensitive detection of cysteine. The sensor exhibited an ultra-wide linear
concentration range as wide as nine orders of magnitude and an ultra-low limit of detection (LOD) of
6.3 pM (S/N = 3) [62].

Molecules 2019, 24, x FOR PEER REVIEW  6 of 16 

 

In recent years, our groups have been dedicated to developing novel biosensors based on AuNC 
etching chemistry. The physio/pathologically important etchants were able to digest the gold core of 
fluorescence AuNCs into non-emissive Au+ complexes. We first found that cysteamine (CSH), the 
main drug for pediatric nephropathic cystinosis, could selectively quench the fluorescence of BSA-
protected AuNCs over Cys and GSH [60]. Simultaneously, the addition of CSH could bleach the 
brown-red color of AuNC solution into colorless. A deeper investigation unearthed that CSH 
triggered core-etching of AuNCs and oxidized elementary Au into Au(0) with strong supports from 
data of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) [60]. 
Thus, we constructed a label-free and separation-free facile method for CSH detection and the 
method showed an excellent selectivity over common biothiols. Subsequently, we undertook massive 
works on etchant screening and successfully found that tris (2-carboxyethyl)phosphine (TCEP), a 
commonly-used chemical in reducing disulfide bonds, aroused a similar etching phenomenon 
towards AuNCs as CSH (Figure 5) [61]. The fact that TCEP created a chemical etching towards the 
AuNCs was then revealed by relevant characterizations. This method showed a linear relationship 
in the TCEP concentration range of 5 × 102 to 5 × 104 nM, achieving the highest sensitivity compared 
with previous methods. Following this etching strategy, we used a different kind of AuNCs, GSH-
AuNCs, as the fluorescence probe. We found that GSH-AuNCs could be effectively etched by Cys 
and thus it could be applied to the facile, selective, and sensitive detection of cysteine. The sensor 
exhibited an ultra-wide linear concentration range as wide as nine orders of magnitude and an ultra-
low limit of detection (LOD) of 6.3 pM (S/N = 3) [62]. 

 
Figure 5. Tris (2-carboxyethyl)phosphine (TCEP) etching-induced quenching of red fluorescence 
emission of bovine serum albumin (BSA)-protected AuNCs and enhancing of the blue fluorescence 
emission of the dityrosine (diTyr) residues of the BSA ligands for detecting TCEP. Adapted with 
permission from Reference [61] Copyright (2016) American Chemistry Society. 

4.1.3. Ligands Targeting Strategies 

Ligands are of considerable importance to AuNCs. Ligand shells of AuNCs can be tailored 
independently, constituting versatile platforms for the development of simple and facile analytical 
methods. Wen et al. reported the synthesis of horseradish peroxidase-protected AuNCs through 
biomineralization, which were linearly responsive to H2O2 (Figure 6) [63]. They pointed out that 
the fluorescence quenching should be ascribed to H2O2-induced oxidation of thiolates in Au-S of 
AuNCs, leaving AuNCs unprotected and thus aggregated into large particles. Ligand exchanges of 
AuNCs can be alternatives for sensor design. Ligands of the acetylcysteine-stabilized AuNCs were 
reported to be able to be replaced by S2− and the ligand exchange unstabilized AuNCs, causing the increase 

Figure 5. Tris (2-carboxyethyl)phosphine (TCEP) etching-induced quenching of red fluorescence
emission of bovine serum albumin (BSA)-protected AuNCs and enhancing of the blue fluorescence
emission of the dityrosine (diTyr) residues of the BSA ligands for detecting TCEP. Adapted with
permission from Reference [61] Copyright (2016) American Chemistry Society.

4.1.3. Ligands Targeting Strategies

Ligands are of considerable importance to AuNCs. Ligand shells of AuNCs can be tailored
independently, constituting versatile platforms for the development of simple and facile analytical
methods. Wen et al. reported the synthesis of horseradish peroxidase-protected AuNCs through
biomineralization, which were linearly responsive to H2O2 (Figure 6) [63]. They pointed out that the
fluorescence quenching should be ascribed to H2O2-induced oxidation of thiolates in Au-S of AuNCs,
leaving AuNCs unprotected and thus aggregated into large particles. Ligand exchanges of AuNCs can
be alternatives for sensor design. Ligands of the acetylcysteine-stabilized AuNCs were reported to be
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able to be replaced by S2− and the ligand exchange unstabilized AuNCs, causing the increase of the
particle size and ultimately fluorescence quenching [64]. The “turn-off” phenomenon thus could be
used to selectively detect H2S. Polymethylacrylic acid (PMMA) was reported to be able to incorporate
AuNCs [65]. Their abundant carboxyl groups were capable of coupling the high-valence cation, Fe3+,
rendering aggregation of AuNCs and hence fluorescence quenching. A sensitive fluorescence biosensor
for Fe3+ was thus developed using PMMA-protected AuNCs. Specifically, enzyme-templated AuNCs
show a significant affinity to their substrates. West et al. synthesized AuNCs DNase 1 as templates [66].
They found that the DNase 1 after AuNC synthesis still retained the endodeoxyribonuclease activity.
Thus, DNA was able to bind with the luminescent hybrids and quench the emission of AuNCs.
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The aggregated AuNCs by crosslinking their ligands are responsive materials for developing
powerful sensors. You et al. reported the use of the aggregated AuNCs prepared by Ce(III)-induced
assembly of glutathione-capped AuNCs for alkaline phosphatase (ALP) detection [67]. The introduction
of Ce(III) significantly enhanced the emission of AIE-type AuNCs due to cation-induced aggregation.
ATP was able to compete with GSH-AuNCs for Ce(III) binding, resulting in partially quenching of the
assembly. The competitive quenching could be significantly inhibited by ALP, which could catalytically
degrade ATP and thus recover enhanced luminescence of AuNCs. Dai et al. crosslinked BSA-templated
AuNCs with disulfide bonds and prepared self-quenched aggregated AuNCs. The disulfide bonds could
be reductively cleaved by GSH, which restored the fluorescence of quenched AuNCs. The GSH-triggered
fluorescence recovery was further used to develop GSH sensors with desirable sensitivity and selectivity.
Furthermore, ligand modification with a specific recognition group can equip AuNCs with a responsivity
towards more species. Ban et al. functionalized AuNCs with NH2-β-cyclodextrin (CD) to develop
sensors for dopamine (Figure 7) [68]. The grafted CD on AuNCs could selectively bind dopamine
by non-covalent interaction of supramolecular host–guest recognition, which promoted the energy
transfer from AuNCs to dopamine and hence quenched the fluorescence of AuNCs.
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4.2. Dual-Components Sensing Systems Based on AuNCs and X

Although solo AuNCs can adequately act as sensors, their suitable analytes are limited. A further
extension of sensor components can immensely enrich and strengthen this system. The X materials
could introduce new interactions and physico-chemical properties into the sensing system, which can
be used to design and develop novel sensing sensors.

4.2.1. Fluorescence-Quenched System

The partner materials in this system generally are electron-/energy-receiver, which can efficiently
quench the fluorescence of AuNCs. Separation or removal of the quencher from AuNCs can restore
the fluorescence of AuNCs. Liu et al. found that p-nitrophenyl phosphate (PNPP) was capable of
effectively quenching mercaptoundecanoic acid (MUA)-protected AuNCs through IFE [69]. They thus
utilized the quenching system to detect ALP, which could degrade PNPP and eliminate IFE, resulting in
the recovery of AuNC fluorescence. Carbon nanomaterials are known as benign and broad quenchers.
Liu et al. used nanosized graphene oxide (GO) to efficiently quench the emission of MUA-protected
AuNCs through the Forster resonance energy transfer (FRET) pathway [70]. The interaction between
GO and AuNCs was bridged by positively-charged peptides. The charge of the bridge could be
reversed by modifying phosphate groups, which were introduced by protein kinase (PKA), resulting in
the attenuation of the interaction of GO with peptides and destruction of FRET between MUA-AuNCs
and GO. The following fluorescence recovery of AuNCs could be applied to quantitatively detect
PKA. Large gold nanomaterials are another good electron-/energy-receiver. Liu et al. presented a
universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria
using a dual-molecular affinity-based FRET platform based on the recognition of bacterial cell walls
by antibiotic and aptamer molecules, respectively [71]. They employed vancomycin (Van) and a
nucleic acid aptamer to functionalize AuNCs as the energy donor and AuNPs as the energy acceptor,
respectively. Staphylococcus aureus could thus selectively bridge the two components and activate
the FRET process. Qin et al. constructed a quenching assembly with GSH-protected AuNCs and
amine-terminated gold nanorods (AuNRs) [72]. Glutathione S-transferase (GSST) could competitively
bind GSH-protected AuNCs and restore their fluorescence, enabling a linear detection of GSST. MnO2

2D nanosheets recently received much attention for their potential as a responsive fluorescence
quencher. Yan et al. wrapped AuNCs with MnO2 nanosheets, forming nanostructured hybrids
(Figure 8) [73]. The fluorescence of AuNCs was quenched by the nanosheets through the FRET effect.
The effect could be obviated by oxidatively decomposing MnO2 nanosheets by H2O2, [73] resulting in
the luminescence recovery of AuNCs. H2O2 could be further enzymatically produced by oxidizing
cetylcholine, thus enabling the system to detect cetylcholine and its derivatives.
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4.2.2. Fluorescence-Enhanced System

Recently, the type of AuNCs with surprising AIE characteristics has attracted growing interest and
been widely applied to develop novel sensors. The fluorescence of AIE-type AuNCs is considerably
enhanced in aggregated states. Thus, the elimination of the factors that can induce the aggregation
of AuNCs can be an efficient way to design sensors. Lin et al. reported a novel nanoassembly of
amino-functionalized mesoporous silica nanoparticle(MSN)-AuNCs (Figure 9) [74]. The assembling
force remarkably enhanced the emission of AuNCs, which, however, could be inhibited in the
presence of negatively charged heparin due to the stronger interaction between heparin and MSNs.
The de-enhancement could be used to sensitively detect heparin. Similarly, Xue et al. found that
the amino-modified silicon nanoparticles (SiNPs) could significantly enhance GSH-capped AuNCs
through electrostatic interaction [75]. The novel nanohybrids possessed a dual-emission property and
could be used as a ratiometric probe. Cationic protamine exhibited stronger binding affinity towards
AuNCs and could compete with SiNPs, resulting in inhibition of the self-assembly and hence the
fluorescence quenching of GSH-AuNCs. The competition from protamine could be largely suppressed
by trypsin, which could catalyze the hydrolysis of protamine. Thus, the dual-emissive system
could be used to quantitatively determinate trypsin. The general phenomenon that the emission of
GSH-protected AuNCs could be significantly enhanced via multi-positively-charged species, inspired
You et al. to develop a sensing platform for various analytes [76]. They found that poly-arginine
could trigger the AIE enhancement of GSH-protected AuNCs, indicating the feasibility of peptides to
enhance the emission of AuNCs. Further designs of four biosensors were proposed using different
positively-charged peptides, which could specifically interact with heparin, trypsin, ALP, and integrin.
The four analytes thus could remove peptide and quench the enhanced luminescence of AuNCs.

Molecules 2019, 24, x FOR PEER REVIEW  9 of 16 

 

4.2.2. Fluorescence-Enhanced System 

Recently, the type of AuNCs with surprising AIE characteristics has attracted growing interest 
and been widely applied to develop novel sensors. The fluorescence of AIE-type AuNCs is 
considerably enhanced in aggregated states. Thus, the elimination of the factors that can induce the 
aggregation of AuNCs can be an efficient way to design sensors. Lin et al. reported a novel 
nanoassembly of amino-functionalized mesoporous silica nanoparticle(MSN)-AuNCs (Figure 9) [74]. 
The assembling force remarkably enhanced the emission of AuNCs, which, however, could be 
inhibited in the presence of negatively charged heparin due to the stronger interaction between 
heparin and MSNs. The de-enhancement could be used to sensitively detect heparin. Similarly, Xue 
et al. found that the amino-modified silicon nanoparticles (SiNPs) could significantly enhance GSH-
capped AuNCs through electrostatic interaction [75]. The novel nanohybrids possessed a dual-
emission property and could be used as a ratiometric probe. Cationic protamine exhibited stronger 
binding affinity towards AuNCs and could compete with SiNPs, resulting in inhibition of the self-
assembly and hence the fluorescence quenching of GSH-AuNCs. The competition from protamine 
could be largely suppressed by trypsin, which could catalyze the hydrolysis of protamine. Thus, the 
dual-emissive system could be used to quantitatively determinate trypsin. The general phenomenon 
that the emission of GSH-protected AuNCs could be significantly enhanced via multi-positively-
charged species, inspired You et al. to develop a sensing platform for various analytes [76]. They 
found that poly-arginine could trigger the AIE enhancement of GSH-protected AuNCs, indicating 
the feasibility of peptides to enhance the emission of AuNCs. Further designs of four biosensors were 
proposed using different positively-charged peptides, which could specifically interact with heparin, 
trypsin, ALP, and integrin. The four analytes thus could remove peptide and quench the enhanced 
luminescence of AuNCs. 

 
Figure 9. Schematics illustrations of (A) the self-assembly of mesoporous silica nanoparticle (MSN)-
AuNC nanocomposites, and (B) the detection of heparin. Adapted with permission from Reference 
[46] Copyright (2018) Royal Chemistry Society. 

4.2.3. Ratiometric Sensing System 

The fluorometric process is easily affected by variations from longtime-used illumination 
sources, environmental noises, and sample position, resulting in an instability of acquired data. The 
introduction of an extra fluorophore as a reference can satisfactorily overcome those drawbacks. 
Hence, ratiometric sensors consisted of AuNCs as a probe or reference have aroused increasing 
attention. Our group has revealed the synthesis of strong blue-emitted dityrosine (diTyr) during 
AuNC formation within BSA [77]. After thoroughly investigating the luminescence properties of the 
duel emissive system, we developed a ratiometric sensor for p-nitrophenol (pNP), which was able 
to effectively quench the emission of diTyr by IFE rather than that of AuNCs (Figure 10) [78]. 
Further, Deng et al. developed this response for enzyme analysis [44]. They used the selective 
quenching of diTyr emissions by pNP to design an analytical ratiometric approach for sulfatase, 

Figure 9. Schematics illustrations of (A) the self-assembly of mesoporous silica nanoparticle
(MSN)-AuNC nanocomposites, and (B) the detection of heparin. Adapted with permission from
Reference [46] Copyright (2018) Royal Chemistry Society.

4.2.3. Ratiometric Sensing System

The fluorometric process is easily affected by variations from longtime-used illumination sources,
environmental noises, and sample position, resulting in an instability of acquired data. The introduction
of an extra fluorophore as a reference can satisfactorily overcome those drawbacks. Hence, ratiometric
sensors consisted of AuNCs as a probe or reference have aroused increasing attention. Our group
has revealed the synthesis of strong blue-emitted dityrosine (diTyr) during AuNC formation within
BSA [77]. After thoroughly investigating the luminescence properties of the duel emissive system,
we developed a ratiometric sensor for p-nitrophenol (pNP), which was able to effectively quench the
emission of diTyr by IFE rather than that of AuNCs (Figure 10) [78]. Further, Deng et al. developed
this response for enzyme analysis [44]. They used the selective quenching of diTyr emissions by
pNP to design an analytical ratiometric approach for sulfatase, which could catalyze p-nitrophenyl
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sulfate and then release pNP. Wang’s group recently reported a sensitive and selective ratiometric
fluorescence sensing platform to detect tyrosinase (TYR) activity and dopamine using GSH-protected
AuNCs as probes [79]. The emission of AuNCs could be effectively quenched by quinones, while
TYR could catalyze the oxidization of dopamine to o-quinone, therefore quenching the fluorescence of
AuNCs. Meanwhile, the reaction of TYR and dopamine generated an emissive complex located at
400 nm, facilitating the construction of a ratiometric biosensor for TYR activity and dopamine. Recently,
carbon dots (CDs), as fluorescence nanomaterials, are known for their ease to synthesize and excellent
biocompatibility. Wang et al. reported a novel ratiometric fluorescent probe for Pb2+ composed by
positively-charged CDs and negatively-charged AuNCs [80]. Pb2+ could enhance the emission of
AuNCs, while the CDs remained unchanged. Additionally, Yan et al. constructed a highly sensitive
selective ratio fluorescence sensor for Hg2+ using a dual emission system of CDs and AuNCs [81].
Hg2+ could form close-shell interaction with surface Au+ of AuNCs and considerably quench the red
fluorescence of AuNCs, while the blue fluorescence of CDs is not affected by Hg2+. Modification of
ligands with external organic luminophores are plausible approaches to construct ratiometric probes.
Yu et al. developed a novel FRET-based ratiometric sensor using AuNCs as an energy donor and
H2S-sensitive cyclamate derivative (Cy1) as energy receptors [82]. With this functionalized AuNCs,
they could accurately detect H2S in vitro and in vivo.
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4.3. Multi-Components Sensing Systems Based on Single AuNCs

Sensing systems containing several elements are expected to be capable of undergoing more
complicated tasks. For example, Xu et al. reported the construction of a core-shell composite
nanostructure Ag@SiO2-AuNCs (composed of an outer conjugated layer of silver core, silica shell,
and AuNCs) [83]. The interaction between AuNCs and the silver core enhances the fluorescence
emission of AuNCs. A multi-component detection sensing system with the OFF-ON-OFF switching
nature for Cu2+, inorganic pyrophosphate (PPi), and pyrophosphatase (PPase) could be developed.
However, too many components in the system might introduce excess interferences and signal loss,
resulting in making the sensing process cumbersome.

5. Sensing Strategies Based on Peroxide Properties

Interestingly, in the past few years, peroxide-like characteristics of AuNCs have been unearthed
and have attracted increasing attention. Compared with natural enzymes, the AuNCs are more robust
and can undergo a wide range of pH and temperature. Furthermore, among nanomaterial-based
artificial enzymes, the AuNCs exhibit superior advantages for bioanalysis due to their easy modification,
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ultra-small size, and excellent biocompatibility. Liu et al. established a new type of colorimetric
nanosensor for Cu2+ and histidine (His) using the intrinsic peroxidase properties of AuNCs
(Figure 11) [84]. Cu2+ could inhibit the peroxidase activity of histidine-protected AuNCs nanoclusters
and the inhibition could be offset by free His. Thus, highly sensitive and selective colorimetric
nanosensors for Cu2+ and His could be constructed, due to the strong affinity between Cu2+ and His.
Hg2+ can also inhibit the intrinsic peroxidase properties of AuNCs. By the removal of Hg2+ away from
AuNCs with melamine (MA), Cao et al. constructed a colorimetric sensor for the quantitative detection
of MA, which could restore Hg2+-induced inhibition of the enzymatic activity of AuNCs [85]. Feng et al.
reported that the peroxidase-like activity of AuNCs could be suppressed by GSH binding [86]. They
applied this phenomenon to develop a colorimetric assay for GSH and realized the identification of
cancer cells, which generated much more GSH than normal cells.
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6. Summary and Outlook

As of now, a number of AuNCs with luminescence spanning from UV to near-IR has been reported.
Compared with quantum dots (QDs), AuNCs are more biocompatible and can be readily bioconjugated.
However, their quantum yield is normally much lower than that of QDs and organic dyes, greatly
limiting signal harvesting. Therefore, although many efforts have been undertaken to improve their
quantum yield, there is still a need for AuNCs with enhanced fluorescence in an aqueous solution.

Ligand shells play an essential role in stabilizing AuNCs and equipping the encapsulated AuNCs
with extra functions. Ligand shells of AuNCs have been decorated with many organic materials,
rendering sensing platforms based on AuNCs more versatile. Therefore, exploring new organic ligands
for the preparation of AuNCs would further stimulate the design of new fluorescent sensing systems.

Currently, the majority of sensing strategies using AuNCs are one-to-one signal transfer (from
analytes to photons) models. Technologies, such as enzymatic cycling amplification and nanotechnology
amplification, are desired to further enhance the sensitivity of sensors based on AuNCs.

Similar to other nanomaterials, it is always a challenging thing to obtain AuNCs with
uniform composition and structure. The uniformity endows the corresponding sensors or other
applications with sound reproducibility. Although plausible progress has been achieved in the field of
sized-focused AuNCs in organic solvents, considerable efforts are needed to expand such synthesis
into aqueous systems.

In summary, the current strategies of AuNCs for sensing applications were systematically classified
and discussed in detail according to their functions and roles. This review paves the way for others to
logically utilize the unique properties of AuNCs and provides inspiration for their future applications
in chem-/bio-sensing.
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