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Abstract: It is a challenging objective in synthetic organic chemistry to create efficient access to
biologically active compounds. In particular, one structural element which is frequently incorporated
into the framework of complex natural products is a β-hydroxy ketone. In this context, the aldol
reaction is the most important transformation to generate this structural element as it not only
creates new C–C bonds but also establishes stereogenic centers. In recent years, a large variety of
highly selective methodologies of aldol and aldol-type reactions have been put forward. In this
regard, the vinylogous Mukaiyama aldol reaction (VMAR) became a pivotal transformation as it
allows the synthesis of larger fragments while incorporating 1,5-relationships and generating two
new stereocenters and one double bond simultaneously. This review summarizes and updates
methodology-oriented and target-oriented research focused on the various aspects of the vinylogous
Mukaiyama aldol (VMA) reaction. This manuscript comprehensively condenses the last four years of
research, covering the period 2016–2019.
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1. Introduction

Aldol reactions are among the most prominent and most frequently applied transformations in
synthetic organic chemistry because they assemble the polyketide backbone of important biologically
active compounds such as antibiotics and antitumor compounds. These reactions are valuable, not only
because they generate new carbon-carbon bonds, but also because they create new stereogenic centers.
The most frequently applied methods for aldol reactions often parallel the processes seen in the
biosynthesis of polyketide natural products. In the biosynthesis, acetate or propionate units are
added; subsequently, a series of further transformations (reductions, eliminations, and hydrogenations)
are performed by large polyketide synthases to provide the substrate for the next aldol reaction.
The laboratory synthesis mostly follows this modular approach by adding acetate and propionate
fragments followed by reduction and oxidation steps, often coupled with extensive protecting group
shuffling and additional chain-extension transformations, such as Horner–Wadsworth–Emmons (HWE)
reactions (Scheme 1). Even though a wide variety of polyketide structures can be accessed with
established transformations, the use of vinylogous aldol reactions reduces the number of steps needed
to access these structures. Therefore a substantial number of research groups have focused on these
reactions to develop more efficient methods for the construction of larger polyketide segments in one
step [1–5].
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According to Fuson’s principle of vinylogy, an additional adjacent double bond extends the 
nucleophilic character of silyl enol ethers [6]. Thus, the vinylogous extension of the Mukaiyama aldol 
reaction allows the synthesis of larger fragments while incorporating 1,5-relationships and 
generating two new stereocenters and one double bond simultaneously. The vinylogous Mukaiyama 
aldol (VMA) reaction is of great interest because it provides rapid access to larger carbon frameworks 
containing a double bond that is available for a wide variety of subsequent transformations 
(dihydroxylation, epoxidation, cuprate addition, etc.) [5,7–12]. The general outcome of the 
vinylogous Mukaiyama aldol (VMA) reaction is depicted in Scheme 2. 
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Not surprisingly, Prof. T. Mukaiyama, who first introduced the enoxysilane aldolization 
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vinylogous version of his eponymous reaction (Scheme 3) [13–15]. 
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Scheme 1. The vinylogous Mukaiyama aldol reaction (VMAR) is unique in its atom economy.

According to Fuson’s principle of vinylogy, an additional adjacent double bond extends the
nucleophilic character of silyl enol ethers [6]. Thus, the vinylogous extension of the Mukaiyama aldol
reaction allows the synthesis of larger fragments while incorporating 1,5-relationships and generating
two new stereocenters and one double bond simultaneously. The vinylogous Mukaiyama aldol (VMA)
reaction is of great interest because it provides rapid access to larger carbon frameworks containing
a double bond that is available for a wide variety of subsequent transformations (dihydroxylation,
epoxidation, cuprate addition, etc.) [5,7–12]. The general outcome of the vinylogous Mukaiyama aldol
(VMA) reaction is depicted in Scheme 2.
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Not surprisingly, Prof. T. Mukaiyama, who first introduced the enoxysilane aldolization chemistry
and developed it into a powerful transformation tool, was among the pioneers of the vinylogous
version of his eponymous reaction (Scheme 3) [13–15].
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For the reasons described above, the vinylogous Mukaiyama aldol reaction has become a
strategically important and reliable transformation that is increasingly employed in the asymmetric
synthesis of complex molecules, particularly polyketides.

For initiation of the VMA process, two modes of activation have been employed: Activation of
the electrophile or activation of the nucleophile (see below). In principle, three general methods are
applied to dictate the stereochemical outcome of this transformation: (1) Substrate control, wherein
stereoinduction arises from existing stereocenters, (2) catalyst control, wherein an external agent
functions as the stereo-controlling element, and (3) a combination of both methods. Because reagent-
and substrate-controlled transformations remain dominant in polyketide synthesis, the invention of a
general catalyst system to promote catalytic, enantioselective VMA reactions has become a preeminent,
overarching goal.

A brief chronological synopsis of the catalytic, enantioselective VMA reaction, making no claim of
being complete, shows that the first examples were reported between 1992–1995 using boron- and
titanium(IV)-derived catalysts [16–18]. Following this, bisoxazoline–copper(II) complexes and a chiral
bisphosphoramide catalyst in conjunction with SiCl4 were also shown to be effective in mediating
vinylogous Mukaiyama aldol reactions [19–23]. The catalyst systems mentioned thus far represent
enantioselective methods for simple aldol reactions extended to vinylogous Mukaiyama aldol reactions;
the catalytically active species in these VMA reactions is a chiral Lewis acid, which mediates the
reaction by electrophilic aldehyde activation. The first catalyst system that was specifically designed
for use in the catalytic, enantioselective, and vinylogous Mukaiyama aldol reaction was a copper(II)
fluoride/Tol-BINAP complex in which the catalytically active species was a bisphosphinyl copper(I)
fluoride complex [24–26].

Since the first pioneering reports of the Mukaiyama aldol reaction itself [27] and the catalytic,
enantioselective version of the vinylogous Mukaiyama aldol reaction [16,17], the enantioselective VMA
process has established itself as the gold standard for site-selective construction of densely adorned
δ-hydroxylated a,β-unsaturated carbonyl compounds and related polyketide networks [1–3,5,7–9,28].

In contrast to the Mukaiyama aldol reaction, its vinylogous extension, the so-called VMA
reaction, involves a regioselectivity issue, namely α-versus γ-addition. In general, metal dienolates
favor α-alkylation and silyl dienol ethers favor γ-alkylation products (Scheme 4). Aluminum
tris(2,6-diphenylphenoxide) (ATPH) mediated vinylogous aldol reactions are exceptions to this
rule, because the α position is deeply buried in the pocket of the catalyst and therefore is no longer
accessible to electrophiles [29]. The site selectivity associated with metal dienolates can be overcome
by using their silyl derivatives, whose generation can be controlled by the careful choice of catalysts
(promoters) and additives. In this context, silyloxy dienes have emerged as superb surrogates for metal
dienolates in the vinylogous aldol reaction.
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Scheme 4. The VMAR involves a regioselective issue, namely α-versus γ-addition.

The different site selectivities of the metal dienolates and the silyl dienol ethers can be explained
by frontier molecular orbital electron density calculations [30].



Molecules 2019, 24, 3040 4 of 19

For example, the HOMO coefficient and the electrophilic susceptibility value in (1-methoxy-1,3-
butadienyloxy)trimethylsilane at C4 is significantly higher than at C2; a kinetic preference for the
γ-addition product is therefore predicted. On the other hand, the lithium dienolate of methyl crotonate
displays a larger HOMO coefficient and electrophilic susceptibility value at C2 than at C4, rationalizing
the observed α-addition product (Scheme 5) [3]. These electronic effects can be altered by steric
interactions and/or chelation.
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Under typical conditions, most dienoxysilanes are unreactive toward aldehydes without
activation [31–36]. Thus, catalysis of the VMA reaction is crucial and can proceed by two fundamentally
different mechanisms: (a) Aldehyde activation or (b) dienolate activation (Scheme 6).
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Scheme 6. Aldehyde activation versus dienolate activation.

In the most common mode of aldehyde activation, a Lewis acid or Brønsted acid binds to the oxygen
of the carbonyl group (see simple activation, Scheme 7). Because a highly stereoselective outcome
requires a high level of transition–structure organization, the binding mode plays an important
role in this process. In other words, to induce a large ∆∆G for competing transition structures,
different catalysts use different binding motifs. Conformational-biasing interactions, such as CH
hydrogen-bonding, π-stacking, or chelation, incorporated individually or in concert with the Lewis
acid/aldehyde complex, can contribute to high facial selectivity (Scheme 7).

The following section summarizes and updates methodology-oriented and target-oriented research
focused on the various aspects of the VMA reaction. The manuscript comprehensively condenses the last
four years of research, covering the period 2016–2019. The discussion concentrates on enantioselective
and/or diastereoselective variants that employ chiral ligand control. Purely substrate-controlled
reactions leading to chiral adducts are also included. Reactions resulting in achiral products will not
be discussed.
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2. Enantioselective VMA Reactions

2.1. Formal Synthesis of a CB2 Agonist Drug Candidate

The isatin core is an important heterocyclic motif present in diverse natural and non-natural
products with biological and pharmaceutical activities. Tertiary alcohol 2 is the key intermediate in the
synthesis of a potential drug candidate (CB2 agonist) for reducing neuropathic and bone pain.

In this context, an asymmetric vinylogous Mukaiyama aldol reaction (VMAR) protocol enables
access to a CB2 agonist building block. Thus, the organocatalyzed VMA reaction of (E)-(buta-1,3-dien-
1-yloxy)trimethylsilane and 1-(cyclopropylmethyl)-5-methylindoline-2,3-dione using cinchona based
thiourea catalyst 1 led to CB2 agonist precursor 2 in good yield and excellent enantioselectivity (94%
ee) (Scheme 8) [37]. It is noteworthy that the role of water was crucial for this reaction. In the absence
of water almost no conversion occurred, whereas the presence of 3 equiv led to the VMAR product in
75% yield.
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2.2. Enantioselective Synthesis of 2,3,5-Trisubstituted Tetrahydrofurans

Substituted tetrahydrofurans are common structural motifs found in several natural products
and biologically active compounds. Therefore, in recent years, many efforts have been devoted to
the development of stereoselective methods to generate multi-substituted tetrahydrofurans. Thus,
a chiral titanium−BINOL catalyst generated in situ from Ti(Oi-Pr)4 and (R)-BINOL induced the VMAR
of dienediolate 3 and various aldehydes 4 in diethyl ether to furnish the intermediate vinylogous aldol
product 5. That, in turn, was treated with BF3•OEt2 and a second equivalent of aldehydes 6 in ethyl
acetate to give rise to tetrahydrofurans 7 with good overall yield and good to moderate enantioselectivity
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(Scheme 9) [38]. It is noteworthy that this tandem reaction, a VMAR followed by a Lewis acid-mediated
Prins-type cyclization with a second aldehyde, gave rise to 2,3,5-substituted tetrahydrofurans by
generating three new σ-bonds and three new stereogenic centers in a one-pot process.
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3. Diastereoselective VMA Reactions

3.1. Oxazaborolidinone Catalysis

3.1.1. Aetheramide A

The first total synthesis of the highly potent anti-HIV natural product aetheramide A was
accomplished using the VMAR protocol utilizing oxazaborolidinone catalysis as a key step. The reaction
of silyl dienol ether 8 and vinylogous aldehyde 9 in combination with oxazaborolidinone catalyst 10
gave the secondary alcohol 11 in 89% yield as a single diastereomer (Scheme 10) [39]. The observed
diastereoselectivity and the absolute configuration can be explained with a transition state depicted in
Scheme 10. Herein, the indole moiety shields the Si-face of the aldehyde leading to a Re-face attack of
the nucleophile.
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Scheme 10. VMAR using oxazaborolidinone catalysis as a key step in the total synthesis of
aetheramide A.
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3.1.2. Nannocystin Ax

Nannocystin Ax is a cytotoxic 21-membered depsipeptide which was isolated from the
myxobacterial genus Nannocystis sp. In the second total synthesis of Nannocystin Ax, a vinylogous
Horner−Wadsworth−Emmons reaction (HWE) and a vinylogous Mukaiyama aldol reaction (VMAR)
were used as the key steps for the construction of the polyketide fragment. Thus, aldehyde 13,
TES-ketene acetal 12, and the oxazaborolidinone Lewis acid 10 generated in situ from NTs-L-tryptophan
and dichlorophenylborane were combined in a VMAR. Coordination between the aldehyde and the
chiral Lewis acid leads to an attack from the less hindered re face of the aldehyde, giving preference to
the R-configured hydroxy group at C5. Alcohol 14 was obtained in good yield but unfortunately with
only moderate diastereoselectivity for the desired product (Scheme 11) [40].
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3.2. The Kobayashi Protocol

In 2004, a vinylogous extension of the Evans’ aldol strategy, the so-called Kobayashi protocol,
was investigated. The highly diastereoselective VMA reaction using Evans’ auxiliary-based vinylketene
silyl N,O-acetals provided an efficient and hitherto unprecedentedly high degree of remote [1,7- and
1,6,7-] asymmetric induction [41].

3.2.1. Nannocystin A

Nannocystin A is a 21-membered cyclodepsipeptide showing remarkable anti-cancer properties.
In 2016 two total syntheses of nannocystin A were described featuring a very similar VMAR according
to the Kobayashi protocol [41]. The independent and contemporaneous development of VMAR adducts
17a and 17b demonstrates the extreme viability and sustainability of this process (Scheme 12) [42,43].
In a parallel effort, nannocystin A was constructed from essentially the same fragment 18.
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3.2.2. Nannocystin Ax

The first total synthesis of nannocystin Ax features an extension of the Kobayashi protocol, namely
a syn-selective VMAR using acetals mediated by BF3•OEt2 (Scheme 13) [44]. This reaction originally
was developed in 2013 by Hosokawa et al. [45]. Thus, the aldol reaction of acetal 19 and vinylketene
silyl N,O-acetal ent-15a under the action of BF3•OEt2 directly afforded the methyl ether 20 with 14:1 dr
in 88% yield. The advantage of this VMAR is the direct formation of a methoxy group, a feature often
required in bioactive natural products; this streamlines natural product synthesis.

3.2.3. Maltepolide C

Structurally, maltepolide C is a 20-membered cytotoxic macrolide connected to a side chain
through an E-double bond. The macrolactone core of the molecule contains seven stereocenters,
one E,E-diene unit, one highly substituted Z-olefin, one substituted E-olefin in conjugation with the
lactone carbonyl, and a highly substituted THF moiety. From this structural information and previous
studies [46], it was recognized that a Kobayashi VMAR could establish the C1–C7 fragment 23 of the
bioactive molecule. Accordingly, treatment of N,O-silyl ketene acetal 21 and iodo acrylate 16 with
TiCl4 provided the desired hydroxyl imide 22 with the exclusive formation of one diastereomer in 75%
yield (Scheme 14) [47].
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3.2.4. (+)-Methynolide

(+)-Methynolide is an aglycone of the 12-membered macrolidic antibiotic methymycin and has
been a key target molecule over the past four decades. In the highly convergent total synthesis of
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(+)-methynolide, the C1–C7 fragment was prepared by a Kobayashi VMAR protocol using a vinyl
ketene silyl N,O-acetal and a β-oxyaldehyde (Scheme 15) [48]. It is known that β-oxyaldehydes are
challenging substrates in Kobayashi VMARs, probably due to theβ-elimination of an oxygen-containing
functional group, and/or chelation that results in the deactivation of the Lewis acid [49,50].Molecules 2019, 24, x FOR PEER REVIEW 11 of 20 
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For this purpose, exploratory studies have identifiedβ-oxyaldehyde 24c (Scheme 15, entry 10) as an
ideal candidate for this pivotal transformation, resulting in both excellent yield and diastereoselectivity.
The desired anti-aldol product 25c could be obtained in 90% yield on a gramscale using 2.0 equivalent
of aldehyde 24c in toluene in the presence of catalytic amounts of H2O [51].

3.2.5. Lagunamide A

Lagunamide A not only possesses excellent anti-malarial properties, but it also has unique, highly
cytotoxic properties against leukemia cell lines and against colon cancer. The therapeutic potential of
lagunamide A coupled with its relative scarceness in nature has garnered significant interest from a
number of research laboratories. In a recent approach, two iterative Kobayashi VMARs have been
applied in order to selectively install three contiguous stereocenters at C37, C38, and C39 of the
southern polyketide (C27–C45) segment of lagunamide A. The first VMAR [50,52] established the
anti-aldol motif at C38–C39 and the second VMAR [50] introduced the stereocenter at C37 (Scheme 16).
By adopting a known protocol [52], the first VMAR yielded 96% of anti-alcohol 28 in an excellent
diastereomeric ratio (>98:2). The second VMAR, employing aldehyde 29 and chiral vinylketene silyl
N,O-acetal ent-15a, was more challenging, however. Initially, the VMAR conducted in the conventional
CH2Cl2 medium provided a low yield (30%) of alcohol product 30 albeit with good diastereoselectivity
(91:9). However, when toluene containing 10 mol% of water was applied as a medium and the reaction
was conducted for 72 h the yield increased modestly to 48% with the same diastereoselectivity (91:9)
instead (see entry 2 in the table included in Scheme 16). The exact role of the presence of water during
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the Kobayashi VMAR is unknown, but the rate enhancement effect of H2O was demonstrated in
previous studies [51].Molecules 2019, 24, x FOR PEER REVIEW 12 of 20 

 

 
Scheme 16. Synthesis of the C27–C45 segment of lagunamide A using two iterative Kobayashi 
VMARs. 

3.2.6. Amphidinolide N 

Amphidinolide N is an extremely potent cytotoxic macrolide that was first isolated from a 
cultured Amphidinium sp. (Y-5) strain in 1994. Due to its challenging structure and extraordinarily 
potent cytotoxicity, amphidinolide N is a highly attractive target for total synthesis. Consequently, a 
convergent synthesis of the C1–C13 segment of amphidinolide N was reported using a Kobayashi 
VMAR as a key step (Scheme 17) [53]. For that, the VMAR of acetaldehyde 32 with the dienol silyl 
ether 31 delivered -hydroxy--methyl-,-unsaturated imide 33 [54] in 91% yield as a single 
diastereomer (dr > 20:1). 

Scheme 16. Synthesis of the C27–C45 segment of lagunamide A using two iterative Kobayashi VMARs.

3.2.6. Amphidinolide N

Amphidinolide N is an extremely potent cytotoxic macrolide that was first isolated from a
cultured Amphidinium sp. (Y-5) strain in 1994. Due to its challenging structure and extraordinarily
potent cytotoxicity, amphidinolide N is a highly attractive target for total synthesis. Consequently,
a convergent synthesis of the C1–C13 segment of amphidinolide N was reported using a Kobayashi
VMAR as a key step (Scheme 17) [53]. For that, the VMAR of acetaldehyde 32 with the dienol silyl ether
31 delivered δ-hydroxy-α-methyl-α,β-unsaturated imide 33 [54] in 91% yield as a single diastereomer
(dr > 20:1).
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3.2.7. Tabtoxinine-β-Lactam (TβL)

Tabtoxinine-β-lactam (TβL) is a potent inhibitor of glutamine synthetase. Therefore, TβL is
expected to be a selective pesticide and many synthetic studies on TβL have been reported, recently
cumulating in a stereoselective synthesis of TβL by a remote asymmetric induction. The pivotal
Kobayashi VMAR process is depicted in Scheme 18 [55].
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3.2.8. Fidaxomicin 

Fidaxomicin, also known as tiacumicin B and lipiarmycin A3, constitutes a macrolide antibiotic 
used for the treatment of Clostridium difficile infections (CDI), which are considered to be responsible 
for a significant number of hospital-acquired infections, resulting in over 29000 deaths each year in 
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Here, careful tuning of the chiral auxiliary (R2), the silyl ether group (R1), and the Lewis acid
afforded tertiary alcohol 36 in excellent yield and selectivity (see entry 5 in the table included in
Scheme 18).
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3.2.8. Fidaxomicin

Fidaxomicin, also known as tiacumicin B and lipiarmycin A3, constitutes a macrolide antibiotic
used for the treatment of Clostridium difficile infections (CDI), which are considered to be responsible
for a significant number of hospital-acquired infections, resulting in over 29000 deaths each year in the
US. While vancomycin and metronidazole are generally prescribed for this condition as a first-line
treatment, the introduction of fidaxomicin in the USA and the EU in 2011 provided a new therapeutic
option. Due to increased demand, the commercial macrolide antibiotic fidaxomicin very recently was
synthesized in a highly convergent manner using a Kobayashi VMAR as a key step.

Interestingly, the described VMAR protocol requires a more sophisticated procedural approach.
In the first generation synthesis of 38 (entry 1, Scheme 19) [56], a premixed solution of TiCl4 and
aldehyde 16 at –78 ◦C was treated with vinylketene silyl-N,O-acetal 37, and added in one portion
at –78 ◦C. In the second generation synthesis and after extensive experimentation, it was found that
aminal 37 does not need to be added in one portion, instead it can be delivered by syringe pump
at –78 ◦C over a period of 20 min to cleanly obtain the desired product in high yield and excellent
diastereoselectivity (entry 2, Scheme 19) [57]. It is noteworthy that for the transformation of 38 to the
aglycone of fidaxomicin the stereochemistry at C11 had to be inverted by a Mitsunobu reaction.
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3.2.9. PF1163B

Recently, a concise total synthesis of PF1163B was achieved (Scheme 20) [58]. For this, Hosokawa’s
extension [59] of the Kobayashi VMAR of ketene silyl N,O-acetal 15a, mediated by excess TiCl4
(4 equivalent), proceeded with saturated aldehyde 39 to give adduct 40 in moderate yield with
moderate stereoselectivity. The Birch reduction of α,β-unsaturated imide 40, possessing the R
configured, less hindered isopropyl side chain, gave the reduction product 41 with the S configuration
at C10 in good stereoselectivity (6:1) by employing 2-isopropylbenzimidazole as a bulky proton source.

Of note, in the described VMAR protocol, two separate stereogenic centers in PF1163B, C10,
and C13 respectively, were constructed with one chiral synthon. This demonstrates a short sequence to
prepare medium-size derivatives.
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3.2.10. Stoloniferol B

Stoloniferol B, isolated from Penicillium stoloniferum QY2-10, is a common core structure of citrinin
derivatives. However, the total synthesis of stoloniferol B had never been reported. The first total
synthesis of stoloniferol B was presented using a Kobayashi VMAR. The synthesis started with the
vinylogous Mukaiyama aldol reaction between 21 and paraldehyde 42 (Scheme 21) [60]. The reaction
proceeded in high yield (82%) with excellent diastereoselectivity (>20:1) to give anti adduct 43.
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3.2.11. C1–C17 Segment of Bafilomycin N

Because bafilomycin A1 is a well-known anti-tumor agent inhibiting v-ATPase at picomolar
concentration, its congener bafilomycin N is also expected to be an attractive target for antitumor
drugs. Although total synthesis of bafilomycin A1 has been achieved, synthetic studies on the new
congener bafilomycin N are unreported. Very recently, the first total synthesis of the C1–C17 segment
of bafilomycin N was presented using an anti- (C3–C11) and a syn- (C12–C17) selective Kobayashi
VMAR (Scheme 22) [61]. Strikingly, the two fragments 45 and 47 were constructed with the same
chiral synthon. Thus, aldehyde 44 was subjected to the vinylogous Mukaiyama aldol reaction with
the use of ent-21 to give anti adduct 45 (C3–C11). The rate enhancement effect of H2O in the VMAR
was demonstrated in previous studies [51]. The synthesis of C12–C17 segment 47 started from the
syn-selective Kobayashi VMAR between vinylketene silyl N,O-acetal ent-21 and chloral 46. The reaction
proceeded smoothly to afford syn adduct 47 in excellent diastereoselectivity (>20:1) [59,62].
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3.2.12. C3–C21 Segment of Aflastatin A

Aflastatin A remains an attractive and challenging target molecule because the complexity and
large size of this compound require efficient methodologies and adequate strategies to achieve its total
synthesis. The very recent synthesis of the C3–C21 segment of aflastatin A involves two Kobayashi
VMA reactions as key steps (Scheme 23) [63]. It is noteworthy to mention, the two fragments 49 and
ent-43 were constructed with the same chiral synthon. The known VMAR between N,O-acetal 21
and methacrolein (48) has always been a cumbersome process, because under standard conditions
(1.0 equivalent of TiCl4 in CH2Cl2, 2.0 equivalent of 48), the aldol adduct 49 is only formed in low yield
(23%) [64], presumably as a result of polymerization of 48. During an extensive survey of reaction
conditions, the authors improved the yield of 49 to 65% with greater than 20:1 diastereoselectivity by
using toluene as the solvent and 4.0 equivalent of 48 [64]. In the very recent version of this Kobayashi
VMAR a yield of 76% was achieved (Scheme 23) [63]. The second Kobayashi VMAR was also developed
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earlier [60], and herein repeated as the enantiomeric process with nearly the same yield (80%) and
diastereoselectivity (18:1) affording ent-43 [63].
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4. Conclusions

The efficient synthesis of complex natural products is often a hurdle that has to be overcome
before issues of chemical biology can be addressed. On that background, the vinylogous Mukaiyama
aldol reaction has become one of the pivotal transformations to gain rapid access to natural products.

Over the years, a variety of different enantioselective and diastereoselective transformations have
been demonstrated that allow the synthesis of all structural motifs found in natural products and
polyketides in particular. Besides the improvement of existing methods, one can expect elaboration of
subsequent transformations in order to further functionalize the structural motifs which are generated
by the vinylogous Mukaiyama aldol reaction.

Author Contributions: Conceptualization, M.C.; writing—original draft preparation, M.C.; writing—review and
editing, M.C.; supervision, M.K.; funding acquisition, M.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cordes, M.H.; Kalesse, M. The Asymmetric Vinylogous Mukaiyama Aldol Reaction. Org. React. 2019, 98,
173–174.

2. Kalesse, M. Recent Advances in Vinylogous Aldol Reactions and Their Applications in the Syntheses of
Natural Products. Top. Curr. Chem. 2005, 244, 43–76.



Molecules 2019, 24, 3040 17 of 19

3. Denmark, S.E.; Heemstra, J.R., Jr.; Beutner, G.L. Catalytic, Enantioselective, Vinylogous Aldol Reactions.
Angew. Chem. Int. Ed. 2005, 44, 4682–4698. [CrossRef] [PubMed]

4. Soriente, A.; DeRosa, M.; Villano, R.; Scettri, A. Recent Advances in Asymmetric Aldol Reaction of Masked
Acetoacetic Esters Promoted by Ti(IV) / BINOL: A New Methodology, Non-Linear Effects and Autoinduction.
Curr. Org. Chem. 2004, 8, 993–1007. [CrossRef]

5. Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. The Vinylogous Aldol Reaction: A Valuable,
Yet Understated Carbon−Carbon Bond-Forming Maneuver. Chem. Rev. 2000, 100, 1929–1972. [CrossRef]
[PubMed]

6. Fuson, R.C. The Principle of Vinylogy. Chem. Rev. 1935, 16, 1–27. [CrossRef]
7. Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. The Vinylogous Aldol and Related Addition

Reactions: Ten Years of Progress. Chem. Rev. 2011, 111, 3076–3154. [CrossRef] [PubMed]
8. Kan, S.B.J.; Ng, K.K.H.; Paterson, I. The Impact of the Mukaiyama Aldol Reaction in Total Synthesis. Angew.

Chem. Int. Ed. 2013, 52, 9097–9108. [CrossRef] [PubMed]
9. Kalesse, M.; Cordes, M.; Symkenberg, G.; Lu, H.-H. The vinylogous Mukaiyama aldol reaction (VMAR) in

natural product synthesis. Nat. Prod. Rep. 2014, 31, 563–594. [CrossRef] [PubMed]
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