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Abstract: Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa.
In the past decade there has been an ongoing concern about the safety of heparin, since in 2008,
adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were
observed in preparations of pharmaceutical porcine heparin, which led to the death of patients,
causing a global public health crisis. However, it has not been clarified whether OSCS has been
added to the purified heparin preparation, or whether it has already been introduced during the
production of the raw heparin. Using a combination of different analytical methods, we investigate
both crude and final heparin products and we are able to demonstrate that the sulfated contaminants
are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show
that the oversulfated compounds are not structurally homogeneous. In addition, we show that these
contaminants are able to bind to cells in using well known heparin binding sites. Together, the data
highlights the importance of heparin quality control even at the initial stages of its production.

Keywords: oversulfated chondroitin sulfate; heparin and oversulfated chondroitin sulfate anticoagulant
activities; 1H NMR and COSY; FACE; heparinases

1. Introduction

Heparin is a linear, highly sulfated glycosaminoglycan (GAG) chain of various lengths with
molecular weights varying from 2000 to 40,000 Da [1,2] and is composed of a repeating disaccharide
units of 1,4 linked α-l-iduronic or β-d-glucuronic acid (d-GlcA), and α-d-glucosamine (d-GlcN).
The predominant substitution pattern comprises 2-O-sulfation of the iduronate residues and N- and
6-O-sulfation of the glucosamine residues [3].

Heparin is an established anticoagulant drug for the prevention and control of thrombotic events
owing to its interaction with a number of proteins of the blood clotting cascade, notably antithrombin
increasing its inhibitory effect on thrombin and other coagulation serine proteases [4]. Antithrombin
is the main regulator of coagulation proteases in vertebrates, acting upon thrombin and factors XIIa,
XIa, IXa and Xa activities. The inhibitory effect is due to the fact that heparin induces conformational
modifications in antithrombin, favoring its interaction with the serine proteases forming a ternary
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complex [5,6]. Heparin is also capable of potentiating cofactor II activity, which is another serpin of the
coagulation cascade, specific for thrombin inhibition. In addition, upon heparin treatment, endothelial
cells enhance the synthesis and release of an antithrombotic heparan sulfate as well as tissue factor
pathway inhibitor (TFPI) [7].

Pharmaceutical heparin is largely obtained from bovine and porcine intestinal mucosa by a
multi-step extraction process that involves proteolysis, anion exchange chromatography or quaternary
ammonium complexes, ethanol precipitation (where raw heparin is collected), bleaching, fractionation
by alcohol precipitation and drying [8,9]. Considering heparin as a natural pharmaceutical of animal
origin, the amount of potential impurities is relatively high when compared to a fully synthetic drug.
Such impurities may be in the form of other GAGs, such as chondroitin, dermatan and heparan sulfates,
residual protein or nucleic acids, solvent and salts. Since this process is quite complex, it requires
carefully executed procedures and effective quality control monitoring to avoid the co-purification of
impurities and contaminating species [10–12].

In the last decade there has been concern about the safety of heparin due to events related to
heparin contamination. In 2008, significant numbers of adverse clinical responses such as arrhythmia,
nausea, edema, hypotension, anaphylactic reactions associated with contaminated heparin were
reported, which led to deaths in the United States [13–16].

The contaminant was characterized as an oversulfated chondroitin sulfate (OSCS). The structural unit of
the OSCS corresponds to a 2,3-disulfated glucuronic acid linked to a 4,6-disulfated N-acetylgalactosamine.
The glycosidic bonds are β-1,4 between galactosamine and glucuronic acid and β-1,3- between glucuronic
acid and galactosamine. OSCS presents structural and physicochemical similarities with heparin, which
makes these molecules easily co-purified [13,17].

From the identification of this component, several studies have shown the biological effects of this
contaminant proposing analytical methods to evaluate the purity of the produced heparin [12,16,18,19].
However, it has not been clarified if OSCS has been added to the purified heparin preparation, or it has
been introduced during the production of the raw heparin. Thus, in the present study commercial
raw heparin preparations from the Techpool Company (Guangdong, China) and final product from
Changzhou SPL Company (Jiangsu, China), extracted and purified from porcine intestinal mucosa
were analyzed. The presence and influence of the contaminants on heparin quality control methods as
well as some pharmacological effects were investigated.

2. Results and Discussion

2.1. Identification of Contaminants in Crude Heparins and Final Product by Agarose Gel Electrophoresis

The degree of purity of the heparin preparations was initially evaluated by agarose gel
electrophoresis in two different buffers (PDA and discontinuous Ba/PDA). Figure 1 shows the pattern
of electrophoretic mobility for selected samples. When comparing the results observed for standard
heparin and the samples, the presence of other components which bind to the quaternary amine
precipitating in the gel and exhibit metachromatic activity with toluidine blue becomes evident. In the
discontinuous Ba/PDA buffer, this is most evident due to a clear separation of slow migrating bands
which are not present in standard heparin. The figure also shows that there are differences in the
amounts of such contaminants among both the crude and final product heparin.

The electrophoretic behavior of all crude heparin and final heparin batches in different buffers are
depicted in Figure S1 (Supplementary Materials) and the percentage of contaminants in each sample
obtained after densitometry of the PDA gels are shown in Table S2 (Supplementary Materials).
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Figure 1. Identification of contaminants in selected samples of crude and final heparins by agarose 
gel electrophoresis. Aliquots (5 µL, 5–10 µg) of heparin samples were applied to 0.55% agarose gel 
and submitted to electrophoresis in 0.05M PDA or Ba/PDA discontinuous system as described in 
Methods. The arrow shows the presence of slow migrating bands which are not present in standard 
heparin. In the discontinuous Ba/PDA buffer this is most evident due to a clear separation of slow 
migrating bands. The figure also shows differences in the amounts of these contaminants among both 
the crude and final product heparin. C7, C8, C9, C10, C11 and C16: crude heparin samples; F1, F4, F8, 
F9, F10 and F11: final product heparin samples; HEP: standard porcine heparin; CS/DS/HS: standard 
mixture of chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS); S: heparin slow 
moving component, I: heparin intermediate moving component and F: heparin fast moving 
component; Or: origin. 

The electrophoretic behavior of all crude heparin and final heparin batches in different buffers 
are depicted in Figure S1 (supplementary materials) and the percentage of contaminants in each 
sample obtained after densitometry of the PDA gels are shown in Table II (supplementary materials).  

Among the 19 crude heparin batches analyzed, the contaminants were present in 17 samples 
and the relative amounts ranged from 7.6 to 28.1%. Curiously, the contaminant is still present in 8 
out of 12 of final product heparin preparations where the percentage of contaminants ranged from 
3.7 to 25.2%. 

2.2. Scanning UV Spectroscopy Detects Contaminants in Heparin Preparations 

Figure 2 shows the scanning UV spectroscopy from 190 to 320 nm of selected batches of crude 
and final product heparin. Standard heparin UV spectra shows a narrow peak of 190–210 nm 
whereas, on the other hand, contaminated heparins have a broader peak around 200–220 nm, as well 
as an additional broad signal around 240–260 nm (nucleic acids, peptides) [16]. This experiment was 
performed for all crude and final samples (data not shown). 

Figure 1. Identification of contaminants in selected samples of crude and final heparins by agarose
gel electrophoresis. Aliquots (5 µL, 5–10 µg) of heparin samples were applied to 0.55% agarose gel
and submitted to electrophoresis in 0.05M PDA or Ba/PDA discontinuous system as described in
Methods. The arrow shows the presence of slow migrating bands which are not present in standard
heparin. In the discontinuous Ba/PDA buffer this is most evident due to a clear separation of slow
migrating bands. The figure also shows differences in the amounts of these contaminants among both
the crude and final product heparin. C7, C8, C9, C10, C11 and C16: crude heparin samples; F1, F4, F8,
F9, F10 and F11: final product heparin samples; HEP: standard porcine heparin; CS/DS/HS: standard
mixture of chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS); S: heparin slow
moving component, I: heparin intermediate moving component and F: heparin fast moving component;
Or: origin.

Among the 19 crude heparin batches analyzed, the contaminants were present in 17 samples and
the relative amounts ranged from 7.6 to 28.1%. Curiously, the contaminant is still present in 8 out of 12
of final product heparin preparations where the percentage of contaminants ranged from 3.7 to 25.2%.

2.2. Scanning UV Spectroscopy Detects Contaminants in Heparin Preparations

Figure 2 shows the scanning UV spectroscopy from 190 to 320 nm of selected batches of crude
and final product heparin. Standard heparin UV spectra shows a narrow peak of 190–210 nm whereas,
on the other hand, contaminated heparins have a broader peak around 200–220 nm, as well as an
additional broad signal around 240–260 nm (nucleic acids, peptides) [16]. This experiment was
performed for all crude and final samples (data not shown).
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Figure 2. Analysis of crude and final heparins by UV scanning spectroscopy (190–320 nm). UV spectra 
were performed on UV/VIS spectrophotometer using 1 mg/mL solution in water in the range of 190-
320 nm, with a reading rate of 120 nm/min with a resolution of 1 nm at room temperature. Standard 
heparin UV spectra shows a narrow peak of 190–210 nm whereas, on the other hand, contaminated 
heparins have a broader peak around 200–220 nm, as well as an additional broad signal around 240–
260 nm (nucleic acids, peptides). C7, C9 and C16: crude heparin samples; F1, F8 and F9: final heparin 
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Figure 3 shows the degradation profile of both crude and final product heparin preparations 
using individually heparinase and heparitinase II. Heparinase action upon standard heparin leads to 
the formation of unsaturated products, especially tetrasaccharide and trisulfated disaccharide. On 
the other hand, the results show that in the presence of the contaminants there is a decrease in the 
degradation of heparin by heparinase, suggesting an inhibition of the enzyme. This is most evident 
for crude samples C8 and C9, as well as samples F8 and F9 of final heparin preparation. Apparently, 
the degradation of heparin by heparitinase II is not inhibited by the presence of the contaminant 
(Figure 3). These experiments were performed for all crude and final samples (data not shown). 

Figure 2. Analysis of crude and final heparins by UV scanning spectroscopy (190–320 nm). UV spectra
were performed on UV/VIS spectrophotometer using 1 mg/mL solution in water in the range of
190–320 nm, with a reading rate of 120 nm/min with a resolution of 1 nm at room temperature. Standard
heparin UV spectra shows a narrow peak of 190–210 nm whereas, on the other hand, contaminated
heparins have a broader peak around 200–220 nm, as well as an additional broad signal around
240–260 nm (nucleic acids, peptides). C7, C9 and C16: crude heparin samples; F1, F8 and F9: final
heparin samples).

2.3. Degradation with Lyases–Heparinase and Heparitinase II

Figure 3 shows the degradation profile of both crude and final product heparin preparations using
individually heparinase and heparitinase II. Heparinase action upon standard heparin leads to
the formation of unsaturated products, especially tetrasaccharide and trisulfated disaccharide.
On the other hand, the results show that in the presence of the contaminants there is a decrease in the
degradation of heparin by heparinase, suggesting an inhibition of the enzyme. This is most evident
for crude samples C8 and C9, as well as samples F8 and F9 of final heparin preparation. Apparently,
the degradation of heparin by heparitinase II is not inhibited by the presence of the contaminant
(Figure 3). These experiments were performed for all crude and final samples (data not shown).
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Figure 3. Analysis of heparinase and heparitinase II products from crude and final heparin samples. Crude and 
final heparin samples were incubated with heparinase and heparitinase II and the degradation products 
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there is a decrease in the degradation of heparin by heparinase, suggesting an inhibition of the enzyme. BHep: 
bovine standard heparin; PHep: porcine standard heparin; Crude heparins (C7 to C11); Final heparin samples 
(F8, F9 and F11); ΔTetra: unsaturated pentasulfated tetrasaccharide; (ΔU2S-GlcNS,6S): unsaturated trisulfated 
disaccharide; (ΔUGlcNS,6S): disulfated unsaturated disaccharide; (ΔU-GlcNS): unsaturated N-sulfated 
disaccharide; Or: origin. 
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The contaminants present in the crude samples (C8, C9 and C16) as well as final product (F4, F8 
and F9) were isolated by ion exchange column chromatography in order to investigate their structure. 
The elution profile of the ion exchange column for the C8 sample is shown in Figure 4. It is clear the 
presence of peaks eluted with different salt concentrations. As depicted in Figure 4A, three peaks 
were selected for further analyses. The electrophoretic mobility in agarose gel shows that peak III has 
a lower migration, suggesting higher sulfation when compared to other GAGs, and was denominated 
OSC8 (Figure 4B). The same procedure was performed for other batches and the purified 
contaminants isolated for further analyses.  

 
Figure 4. Purification of sulfated contaminants by ion exchange chromatography. (A) Elution profile 
of the crude heparin preparation C8 on Q-Sepharose ion exchange chromatography. I, II and III: the 
fractions shown in A were combined according to their elution profile and named peaks I to III. (B): 
Agarose gel electrophoresis in PDA buffer of Q-Sepharose fractions. Peak III corresponds to the 
contaminant OSC8, isolated from C8 crude heparin. CS/DS/HS: standard mixture of chondroitin 
sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS); Or: Origin. 

Figure 3. Analysis of heparinase and heparitinase II products from crude and final heparin samples.
Crude and final heparin samples were incubated with heparinase and heparitinase II and the degradation
products analyzed by paper chromatography as described. The results show that in the presence
of the contaminants there is a decrease in the degradation of heparin by heparinase, suggesting an
inhibition of the enzyme. BHep: bovine standard heparin; PHep: porcine standard heparin; Crude
heparins (C7 to C11); Final heparin samples (F8, F9 and F11); ∆Tetra: unsaturated pentasulfated
tetrasaccharide; (∆U2S-GlcNS,6S): unsaturated trisulfated disaccharide; (∆UGlcNS,6S): disulfated
unsaturated disaccharide; (∆U-GlcNS): unsaturated N-sulfated disaccharide; Or: origin.

2.4. Isolation of the Contaminants

The contaminants present in the crude samples (C8, C9 and C16) as well as final product (F4, F8
and F9) were isolated by ion exchange column chromatography in order to investigate their structure.
The elution profile of the ion exchange column for the C8 sample is shown in Figure 4. It is clear the
presence of peaks eluted with different salt concentrations. As depicted in Figure 4A, three peaks were
selected for further analyses. The electrophoretic mobility in agarose gel shows that peak III has a
lower migration, suggesting higher sulfation when compared to other GAGs, and was denominated
OSC8 (Figure 4B). The same procedure was performed for other batches and the purified contaminants
isolated for further analyses.
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Figure 4. Purification of sulfated contaminants by ion exchange chromatography. (A) Elution profile
of the crude heparin preparation C8 on Q-Sepharose ion exchange chromatography. I, II and III:
the fractions shown in A were combined according to their elution profile and named peaks I to III.
(B): Agarose gel electrophoresis in PDA buffer of Q-Sepharose fractions. Peak III corresponds to the
contaminant OSC8, isolated from C8 crude heparin. CS/DS/HS: standard mixture of chondroitin sulfate
(CS), dermatan sulfate (DS) and heparan sulfate (HS); Or: Origin.
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2.5. Structural Characterization of Heparin Contaminants by Nuclear Magnetic Resonance (NMR)

The isolated contaminants purified from crude and final heparin batches were structurally
characterized by nuclear magnetic resonance (1H NMR and COSY).

Figure 5 shows the 1H NMR spectra for standard OSCS. As already demonstrated by others [13,16],
the signal in the 2.16 ppm region which corresponds to N-acetyl present in galactosamine residues is
clear. The N-acetyl signal for glucosamine residues is depicted at 2.04 ppm being typical of heparin
molecules, whereas for dermatan sulfate the N-acetyl also present in galactosamine residues gives a
signal at 2.08 ppm (results not shown). Other OSCS characteristic signals are present in the region of
4.87 ppm, corresponding to the substituted glucuronic acid.
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Figure 5. 1H-NMR spectra of standard OSCS and sulfated contaminants isolated from crude (OSC16)
and final heparin samples (OSF4, OSF8 and OSF9). The isolated contaminants purified from crude
and final heparin batches were structurally characterized by nuclear magnetic resonance (1H NMR).
Solutions of 20 mg/mL of each sample in deuterium oxide (99.9%) were analyzed for the acquisition of
free induction decay (FID) using 16 scans, 90◦ pulse and 20 s delay at 37 ◦C in a Bruker Spectrometer
DRX-500. Sulfated contaminants purified from batches of crude (OSC16) and final heparin (OSF4, OSF8
and OSF9) display similar 1H NMR spectra of standard OSCS.
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Sulfated contaminants isolated from some batches of crude and final heparin display similar 1H
NMR spectra of standard OSCS (Figure 5). Nevertheless, contaminants purified from other batches
(OSC8 and OSC9) in the 1H NMR spectra show signals in the region from 4.0 to 4.55 ppm, that may
correspond to non-fully substituted glucuronic acid residues and are not detected in OSCS (Figure 6).
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The confirmation of the partial sulfation of the isolated compound was performed by two-
dimensional 1H-1H NMR correlation spectroscopy (COSY). Figure 7 shows the COSY spectra for the 
standard OSCS as well as for the isolated OSC9. The U2-U3 correlation signal is shifted, as expected, 
downfield since position 3 is replaced by a sulfate (electronegative) group. On the other hand, in the 
COSY spectrum of the OSC9 isolated compound, we observed an upfield U2-U3 correlation signal 
which suggests the incomplete sulfation at the 3-position of some glucuronic acid residues. 

Figure 6. 1H-NMR spectra of sulfated contaminants isolated from crude heparins OSC8 and OSC9
show distinct structure. The isolated contaminants purified were structurally characterized by nuclear
magnetic resonance (1H NMR). Solutions of 20 mg/mL of each sample in deuterium oxide (99.9%) were
analyzed for the acquisition of free induction decay (FID) using 16 scans, 90◦ pulse and 20 s delay at
37 ◦C in a Bruker Spectrometer DRX-500. Sulfated contaminants purified from crude batches (OSC8
and OSC9) in the 1H NMR spectra show signals in the 4.55 ppm region, marked with asterisks (*), that
may correspond to non-fully substituted glucuronic acid residues and are not detected in OSCS.

The confirmation of the partial sulfation of the isolated compound was performed by
two-dimensional 1H-1H NMR correlation spectroscopy (COSY). Figure 7 shows the COSY spectra for
the standard OSCS as well as for the isolated OSC9. The U2-U3 correlation signal is shifted, as expected,
downfield since position 3 is replaced by a sulfate (electronegative) group. On the other hand, in the
COSY spectrum of the OSC9 isolated compound, we observed an upfield U2-U3 correlation signal
which suggests the incomplete sulfation at the 3-position of some glucuronic acid residues.
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derivatized with AMAC and subjected to polyacrylamide gel electrophoresis and visualized by UV 
light absorption. Again, it becomes clear that the OSC8 is not a substrate for the enzymes, since no 
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(fluorescence x UV absorbance). On the other hand, the typical products were obtained by the action 
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same molar fluorescence value for every derivatized saccharide independent of its chemistry and is 
100 times more sensitive than the detection by UV absorbance of the unsaturation. 

Figure 7. Two-dimensional NMR COSY spectra for the standard OSCS and the isolated OSC9. 1H NMR
spectroscopy and 1H1H two-dimensional COSY homology was performed according to the USP
monograph for sodium heparin. In the OSCS COSY spectra (red), the U2-U3 correlation signal is
shifted, as expected, downfield since position 3 is replaced by a sulfate (electronegative) group. On the
other hand, the OSC9 COSY spectra (blue) shows a downfield unlinked U2-U3 correlation signal which
suggests the complete non-sulfation at the 3-position of the glucuronic acid residues.

2.6. Exhaustive Degradation of OSC8 with Chondroitinases AC and ABC

The structural characteristics of the OSC8 was further investigated by degradation with
chondroitinases AC and ABC. Under conditions of exhaustive degradation (72 h and 0.3 enzyme units)
no product formation was observed by SAX-HPLC ion exchange column chromatography, even though
the polysaccharide is non-sulfated at position C-3 of the glucuronic acid (Figure S2, Supplemental
Materials). On the other hand, the enzymes acted upon chondroitin sulfate (CS) and dermatan sulfate
(DS), yielding the expected products.

The degradation products were further analyzed by FACE (Figure 8). The products formed were
derivatized with AMAC and subjected to polyacrylamide gel electrophoresis and visualized by UV
light absorption. Again, it becomes clear that the OSC8 is not a substrate for the enzymes, since
no products could be detected even by this methodology that enhances the detection of products
(fluorescence x UV absorbance). On the other hand, the typical products were obtained by the action
chondroitinases AC and ABC (Figure 8). According to Calabro and coworkers [20], AMAC gives the
same molar fluorescence value for every derivatized saccharide independent of its chemistry and is
100 times more sensitive than the detection by UV absorbance of the unsaturation.
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the enzymes, since no products could be detected by this methodology that enhances the detection of 
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ΔDi2,6S: unsaturated 2,6-disulfated disaccharide; ΔDi2,4S: unsaturated 2,4-disulfated disaccharide; 
ΔDi2,4,6S: unsaturated 2,4,6-trisulfated disaccharide; ΔDi0S: non-sulfated unsaturated disaccharide; 
Standard: mixture of standard unsaturated disaccharides; Tetra: tetrasaccharides; Oligo: 
oligosaccharides; OSC8: sulfated contaminant purified from C8 crude heparin; CS: standard 
chondroitin sulfate; DS: standard dermatan sulfate; AC: chondroitinase AC; ABC: chondroitinase 
ABC; Or: Origin. 
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heparin by heparinase (Figure 3). Thus, a kinetic study using purified OSCSs from both crude and 
final product preparations was performed to investigate this putative inhibitory effect upon the 
degradation of heparin by heparinase (Figure 9). The results showed that indeed the sulfated 
compounds isolated from crude heparins (OSC8 and OSC9) and final product (OSF4 and OSF8) as 
well as standard OSCS inhibit the action of heparinase upon heparin in a dose and time dependent 
manner. All compounds at the lowest tested concentration (0.1 µg/mL) inhibited heparinase activity 
from 66% to 85%.  

Figure 8. Analysis by Fluorophore Assisted Carbohydrate Electrophoresis (FACE) of the products
formed from OSC8 by the exhaustive degradation with Chondroitinases AC and ABC. The structural
characteristics of the OSC8 were investigated by degradation with chondroitinases AC and ABC
under exhaustive degradation conditions (72 h and 0.3 enzyme units). The products formed were
derivatized with AMAC and analyzed by polyacrylamide gel electrophoresis in Tris Borate pH 8.3
buffer, and displayed by UV light absorption, as described in Methods. OSC8 is not a substrate for
the enzymes, since no products could be detected by this methodology that enhances the detection
of products. ∆Di2S: unsaturated 2-sulfated disaccharide; ∆Di4S: unsaturated 4-sulfated disaccharide;
∆Di6S: unsaturated 6-sulfated disaccharide; ∆Di4,6S: unsaturated 4,6-disulfated disaccharide; ∆Di2,6S:
unsaturated 2,6-disulfated disaccharide; ∆Di2,4S: unsaturated 2,4-disulfated disaccharide; ∆Di2,4,6S:
unsaturated 2,4,6-trisulfated disaccharide; ∆Di0S: non-sulfated unsaturated disaccharide; Standard:
mixture of standard unsaturated disaccharides; Tetra: tetrasaccharides; Oligo: oligosaccharides; OSC8:
sulfated contaminant purified from C8 crude heparin; CS: standard chondroitin sulfate; DS: standard
dermatan sulfate; AC: chondroitinase AC; ABC: chondroitinase ABC; Or: Origin.

2.7. Effect of the Isolated Contaminants on Degradation of Heparin by Heparinase

As previously demonstrated, batches with contaminants show decrease in the degradation of
heparin by heparinase (Figure 3). Thus, a kinetic study using purified OSCSs from both crude and final
product preparations was performed to investigate this putative inhibitory effect upon the degradation
of heparin by heparinase (Figure 9). The results showed that indeed the sulfated compounds isolated
from crude heparins (OSC8 and OSC9) and final product (OSF4 and OSF8) as well as standard OSCS
inhibit the action of heparinase upon heparin in a dose and time dependent manner. All compounds at
the lowest tested concentration (0.1 µg/mL) inhibited heparinase activity from 66% to 85%.
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Figure 9. Kinetics of heparin degradation by heparinase in the presence of standard OSCS and 
sulfated contaminants isolated from crude and final heparin. The assay was performed using an UV 
spectrophotometer at 232 nm with temperature regulation. Incubation was performed using both 
recombinant heparinase and purified heparinase from F. heparinum in 50 mM Hepes buffer, 150 mM 
NaCl, pH 7.0. The enzyme was preincubated with 10 mM calcium acetate at 30 °C, and then standard 
heparin added. The formation of the unsaturated products was monitored at 232 nm for 10 min. 
Afterwards, different amounts of the isolated contaminants were added, and the formation of 
products monitored for 10 min at 232 nm. The sulfated contaminants isolated from crude heparins 
(OSC8 and OSC9) and final product (OSF4 and OSF8) as well as standard OSCS inhibit the action of 
heparinase upon heparin in a dose and time dependent manner. OSCS: standard oversulfated 
chondroitin sulfate; OSC8: sulfated contaminant purified from crude heparin C8; OSC9: sulfated 
contaminant purified from crude heparin C9; OSF4: sulfated contaminant purified from final heparin 
F4; OSF8: sulfated contaminant isolated from final heparin product F8. 

2.8. APTT 

APTT assay shows that both crude heparin samples contaminated with OSCS (C8, C9, C16) or 
the final heparin product also contaminated with OSCS (F4, F8, F9) display lower anticoagulant 
activity when compared to pure heparin sample (Figure S3, Supplementary Materials). 

2.9. Effects of the Contaminants on Endothelial Cells 

The effect of crude and final product heparins and respective purified sulfated contaminant were 
investigated using endothelial cells (EC) in culture. The results regarding cell viability show no effect 
of the compounds in all tested concentrations (Figure S4, Supplementary Materials).  

It is known that heparin binds to endothelial cells. Thus, in order to test if the isolated 
contaminants were capable of binding to EC, competitive experiments were performed. Biotinylated 

Figure 9. Kinetics of heparin degradation by heparinase in the presence of standard OSCS and
sulfated contaminants isolated from crude and final heparin. The assay was performed using an UV
spectrophotometer at 232 nm with temperature regulation. Incubation was performed using both
recombinant heparinase and purified heparinase from F. heparinum in 50 mM Hepes buffer, 150 mM
NaCl, pH 7.0. The enzyme was preincubated with 10 mM calcium acetate at 30 ◦C, and then standard
heparin added. The formation of the unsaturated products was monitored at 232 nm for 10 min.
Afterwards, different amounts of the isolated contaminants were added, and the formation of products
monitored for 10 min at 232 nm. The sulfated contaminants isolated from crude heparins (OSC8 and
OSC9) and final product (OSF4 and OSF8) as well as standard OSCS inhibit the action of heparinase
upon heparin in a dose and time dependent manner. OSCS: standard oversulfated chondroitin sulfate;
OSC8: sulfated contaminant purified from crude heparin C8; OSC9: sulfated contaminant purified
from crude heparin C9; OSF4: sulfated contaminant purified from final heparin F4; OSF8: sulfated
contaminant isolated from final heparin product F8.

2.8. APTT

APTT assay shows that both crude heparin samples contaminated with OSCS (C8, C9, C16) or the
final heparin product also contaminated with OSCS (F4, F8, F9) display lower anticoagulant activity
when compared to pure heparin sample (Figure S3, Supplementary Materials).

2.9. Effects of the Contaminants on Endothelial Cells

The effect of crude and final product heparins and respective purified sulfated contaminant were
investigated using endothelial cells (EC) in culture. The results regarding cell viability show no effect
of the compounds in all tested concentrations (Figure S4, Supplementary Materials).
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It is known that heparin binds to endothelial cells. Thus, in order to test if the isolated contaminants
were capable of binding to EC, competitive experiments were performed. Biotinylated heparin binds
to EC in a dose dependent manner and such binding is decreased in the presence of excess molar
amounts of all the tested contaminants as also observed for standard heparin (Figure 10).
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Figure 10. Isolated sulfated contaminants bind to endothelial cells. Endothelial cells were cultured in
96-well plates in F12 medium containing 10% FBS. The cells were exposed to different concentrations
of biotinylated heparin plus molar excess of standard heparin or sulfated contaminants. Binding of
biotinylated heparin to cells was detected by incubation with Europium-conjugated streptavidin and
fluorescence analyzed on a fluorescence reader. Biotinylated heparin binds to EC in a dose dependent
manner. This binding is decreased in the presence of excess molar amounts of all the tested contaminants
as also observed for standard heparin. Heparin: standard heparin; OSCS: standard oversulfated
chondroitin sulfate; OSC8: sulfated contaminant purified isolated from crude heparin preparation C8;
OSF8: sulfated contaminant purified from final heparin product F8.

2.10. Discussion

This paper was designed to clarify whether the OSCS found in heparin pharmaceutical preparations
was added to the purified heparin preparation or whether it was introduced during the production
of raw heparin. Several methodologies were used to evaluate the degree of purity of these different
preparations, as well as the structural characteristics and some pharmacological activities of the
preparations and isolated contaminants.

Initially, the identification of sulfated contaminants in crude heparins and final products was
demonstrated using agarose gel electrophoresis in two different buffers (Figure 1). The electrophoresis in
PDA showed contaminants with lower migration than standard heparin, suggesting higher interaction
with the diamine of the buffer, indicating different size and or distribution of charges when compared
to heparin. The presence of the contaminants became even more evident in the discontinuous barium
acetate/PDA system, where standard heparin is fractionated into three components (slow, intermediate
and fast) according to their mobility, due to differences in size and charge. The contaminants displayed
lower migration than the slow-moving component of heparin, again indicating the presence of
compounds with high degree of sulfation. Interesting, since the contaminants were already found in
the crude heparin preparations, we can conclude that these compounds were co-purified with heparin,
and intentionally added to the raw preparation, since these types of polymers do not occur naturally.
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The typical UV scanning spectra of GAGs show a peak around 190 nm resulting from the electronic
transition at the carboxyl of the iduronic and glucuronic acids present in the polymers as well as
the acetoamide of the hexosamines (Figure 2, standard porcine and bovine heparins). The spectra
obtained for both crude and final product heparin samples showed a broader and less defined peak
around 200–220 nm corresponding to the carboxyl groups of uronic acids of the structurally modified
chondroitin sulfates, as delineated for standard oversulfated chondroitin sulfate. In addition, these
samples show an additional peak with absorption in the region of 260 nm related to the UV spectrum
of nucleic acids and peptides. This method of analysis allows a rapid assessment of the presence
of contaminating sulfated polymers in commercial preparations of heparin since the broader peak
may indicate the presence of two components. This set of results again shows definitively that the
contamination of heparin by oversulfated compounds occurs during the production of crude heparin.

The structure of these heparins was investigated by incubation with heparinase and heparitinase
II. The results show the formation of unsaturated products, mainly tetrasaccharides and trisulfated
disaccharide by the action of heparinase and disulfated and N-sulfated disaccharides after heparitinase
II degradation (Figure 3). However, the amounts of products formed upon the action of heparinase was
dependent on the relative load of the contaminant present in each sample, that is, higher amounts of
contaminant, less formation of unsaturated products, which suggests that the contaminant is inhibiting
the heparinase action (Figure 3).

Furthermore, this hypothesis is confirmed by kinetic studies where standard heparin was incubated
with heparinase in the presence of the purified contaminants (Figure 9). These results indicate that these
contaminants can bind to heparinase due to their structural characteristics interfering with enzyme
activity. In previous work we have shown that the inhibition of heparinase by OSCS is irreversible,
since addition of heparin does not dislodge the inhibitor [21]. Similar results were also found by other
authors [22].

On the other hand, our data shows that the contaminant present in raw heparin preparations and
heparin final product do not affect heparitinase II action upon heparin. The differences observed in the
figure are related to the fact that bovine heparin is a better substrate for heparitinase II compared to
porcine heparin. The results from other authors, performing kinetics studies of heparitinase II in the
presence of OSCS indicate that the enzyme is inhibited [22]. These apparent discrepancies may be
related to the types of experiments performed by the groups.

The structure of the purified sulfated contaminants was characterized by NMR. The results showed
the presence of typical oversulfated chondroitin sulfate, that is a compound containing 2,3-disulfated
β-d-glucuronic acid and 4,6-disulfated β-d-N-acetylgalactosamine (Figure 5). The data also showed
the presence of other contaminants with different structure where glucuronic acid residues are present
bearing lower sulfation pattern (1H NMR signal at 4.55 ppm) (Figure 6). Confirmation of the partial
sulfation of the isolated compound was performed by two-dimensional NMR by COSY (Figure 7).
The COSY spectra for OSCSs shows that U2-U3 correlation signal is shifted, as expected, downfield
since position 3 is replaced by a (electronegative) sulfate group culminating in the deshielding of such
a proton in (Figure 7). On the other hand, the COSY spectra for OSC9 (Figure 7) and for OSC8 (data
not shown) showed an upfield U2-U3 correlation signals, possibly related to non-sulfated glucuronic
at the 3-position. Thus, for the OSCS we only have the presence of 2,3-O-disulfated glucuronic acid
residues, whereas for the OSC9 compounds we observed residues of 2-O-sulphated glucuronic acid
(Figure 7). This structural difference may be related to a partial sulfation of the polymer.

The NMR data led us to investigate whether these sulfated contaminants would be substrate for
chondroitinases AC and ABC under conditions of exhaustive degradation. For the sulfated contaminants,
no unsaturated products were detected at 232 nm after SAX-HPLC ion-exchange chromatography,
contrasting with the data obtained for standard chondroitin sulfate and dermatan sulfate (Figure 2,
Supplementary Materials). This result was further confirmed by a more sensitive method based on
the derivatization with a fluorophore followed by FACE analysis of the enzymatic products. Again,
the contaminant samples of OSCS with a lower sulfation pattern, where glucuronic acid residues
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are not persulfated, were not processed by both enzymes, whereas the products for the standard
galactosaminoglycans are clearly depicted (Figure 8).

Data from the literature show that chondroitin sulfate E isolated from squid presents in some
regions of the polymer, sulfation pattern similar to OSCS, and is partially degraded by chondroitinase
AC. A chondroitin sulfate isolated from Litopenaeus vanamei shrimp has been described in the literature,
with disaccharide units consisting of disulfated N-acetylgalactosamine 4,6 linked to a 2,3-disulfated
glucuronic acid in some regions of the polysaccharide chain [23]. This CS is also resistant to the action
of chondroitinase under exhaustive degradation conditions. The results suggest that sulfation in
glucuronic acid residues renders the substrate resistant to the action of enzymes [24].

As already observed by other works, OSCS decreases heparin anticoagulant activity by in vitro
assays that measure the intrinsic pathway, such as the activated partial thromboplastin time [25,26].
Since OSCS, as well as the OSCS with a lower degree of sulfation, mimic the structure of heparin and
display similar effects on some anticlot assays [27], we decided to investigate if these compounds
could interact with the heparin binding sites in endothelial cells [28]. The results showed that indeed
both compounds bind to endothelial cells and are dislodged by heparin, thus indicating their binding
to the same cellular sites. Heparin when injected to human beings will interact endothelial cells to
produce antithrombotic effects. Thus, the fact that the contaminants interact with endothelial cells and
dislodge heparin from its binding site is of clinical interest for further understanding the side effects of
these contaminants.

The data clearly showed that heparin adulteration occurred at the initial steps of heparin
production, suggesting manipulation to alter anticoagulant activity. Due to the complex chemical
nature of heparin and the OSCS contaminants, the purity of the heparin sample needs to be performed
by a set of methods to guarantee quality control [16,19,29].

3. Materials and Methods

3.1. Heparin Samples and Standard OSCS

Commercial preparations of raw heparin (crude heparin) were obtained from the Techpool
Bio-pharma Company (Guangdong, China) and purified heparin (final product) from Changzhou SPL
Company (Changzhou City, Jiangsu, China) (Table S1, Supplementary Materials). All samples were
manufactured in 2008 and received for analysis in our laboratory in 2011. There is no correspondence
between the batches of raw heparin and final product, but they were all obtained at the same period
of time from the same companies. Standard heparin from porcine mucosa (183 IU/mg) and bovine
mucosa (165 IU/mg) was obtained from Kin Master Produtos Químicos Ltda. (Passo Fundo, RS, Brazil).
Semi-synthetic standard OSCS was prepared as previously described [30].

3.2. Agarose Gel Electrophoresis

Sulfated glycosaminoglycans (GAGs) were initially identified by agarose gel electrophoresis
using 0.05 M 1,3-diaminopropane acetate (PDA) buffer system, pH 9.0 (Dietrich & Dietrich, 1976)
or discontinuous buffer 0.04 M barium acetate, pH 5.8/0.05 M 1,3-diaminopropane acetate, pH 9.0
(Ba/PDA) [31]. Aliquots of the compounds (1.0 mg/mL; 5–10 µL) were applied to a 0.55% agarose
gel and ran for 1 h at 100 V in the cold. The GAGs were precipitated in the gel with 0.1%
cetyltrimethylammonium bromide solution. After 2 h, the gels were dried under heat and air,
stained for 15 min with 0.1% toluidine blue in 1% acetic acid in 50% ethanol, and destained with the
same solution without the dye. GAGs were quantified by densitometry at 525 nm were using Quick
Scan 2000 equipment, Helena Laboratories (Beaumont, TX, USA).
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3.3. Scanning UV Spectroscocy

Samples of heparins and other GAGs (1mg/mL in water) were scanned from 190 to 320 nm with
1 nm resolution at 120 nm/min using a Perkin-Elmer Lambda 25 UV/VIS spectrometer (Waltham, MA,
USA) [16].

3.4. Ion Exchange Chromatography for Isolation of the Sulfated Contaminants

Isolation of the sulfated contaminant was achieved by Q-Sepharose ion exchange chromatography
using HPLC chromatography (AKTA Purifier) eluted with a 2M NaCl gradient, from 0 to 85% using
5 mL/min flow rate for both crude heparins and final products. The samples were collected in 5 mL
fractions, dialyzed against distilled water and lyophilized for further analysis.

3.5. Degradation with Different Glycosaminoglycan Lyases

Samples of crude and purified heparins (100 µg) were incubated with 3 mIU of heparinase
(renamed heparinase I or heparin lyase I) or heparitinase II (renamed heparinase II or heparin lyase
II) from Flavobacterium heparinum in 0.1M ethylenediamineacetate (EDA) buffer pH 7.0 at 30 ◦C for
approximately 18 h [32]. Samples of the isolated contaminant (OSCS) (100 µg) were incubated with
30 mU of the chondroitinase AC (from Arthrobacter aurescens) and ABC (from Proteus vulgaris) in 50 mM
sodium acetate buffer pH 8.0 at 37 ◦C for approximately 24 h. In some experiments, the incubation was
performed for 72 h with addition of the enzymes every 24 h. Analytical separation of the products
formed by the action of the specific enzymes was performed both by paper and HPLC chromatography
as previously described [33,34]. The products were separated on descending paper chromatography
(Whatman nr. 1) using isobutyric acid: 1.25 M (5:3, v/v) NH4OH as solvent for 18 h. The chromatogram
was oven dried with heating (80 ◦C) and ventilation. The products were detected by UV absorption
(232 nm), revealed with silver nitrate in alkaline medium and fixed with 5% sodium thiosulfate.
For HPLC, the products were resolved in Zorbax SAX column (4.6 × 150 mm; 5 µm particle), with
0–1.5 M NaCl gradient with a flow of 1 mL/min for 30 min and the unsaturated products monitored by
absorbance at 232 nm.

3.6. Fluorophore Assisted Carbohydrate Electrophoresis (FACE)

The analysis of disaccharides derived from glycosaminoglycans was also performed by FACE
as described [20,35]. The degradation with chondroitinases yields unsaturated products containing
free reducing group, which were derivatized with AMAC (2-aminoacridone). The saccharide-AMAC
derivatives were separated by polyacrylamide gel electrophoresis. The derivatization with AMAC
consists of the reaction between saccharides with free reducing aldehyde group and a primary amino
group of a fluorescent compound with production of a Schiff base. This reaction is reversible and needs
to be accompanied by reduction to the secondary amine derivative using sodium cyanoborohydride.
For the reaction, aliquots containing 10 to 200 nmol saccharides with free reducing moieties were dried
under vacuum and derivatized with 5 µL of 50 mM AMAC solution (250 nmol) in DMSO: acetic acid
(85:15). After 15 min at room temperature 5 µL of freshly prepared 1M sodium cyanoborohydride
solution was added. This derivatization mixture was maintained for 16 h at 37 ◦C and afterwards
30 µL of 30% glycerol added. Aliquots of the derivatized samples (2 µL) were then analyzed by
electrophoresis on 20% polyacrylamide gel in Tris-borate glycine buffer (0.6M/0.5M/0.5M) pH 8.3.
The bands were visualized after exposure to UV lamp at 365 nm and photographed (MF-ChemiBism
DNR Biosystems, Neve Yamin, Israel).

3.7. Inhibitory Effect of OSCS on Heparinase Activity

The inhibitory effect of OSCS on heparin degradation by heparinase was assayed in the presence
of 1085 µM heparin, 10 mM Ca2+ in 50 mM HEPES, pH 7.0 at 30 ◦C. The assay was performed using an
UV spectrophotometer at 232 nm with temperature regulation. Incubation was performed using both
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recombinant heparinase [21] and purified heparinase from F. heparinum [33] in 50 mM Hepes buffer,
150 mM NaCl, pH 7.0 in the presence of different concentrations of OSCS. The enzyme was preincubated
with 10 mM calcium acetate at 30 ◦C, and then standard heparin was added. The formation of the
unsaturated products was monitored at 232 nm for 10 min. Afterwards, different amounts of the
isolated contaminants were added, and the formation of products monitored for another 10 min at
232 nm.

3.8. Nuclear Magnetic Resonance (NMR) for Structural Characterization of the Contaminants in Heparin
Preparations

The structural characterization of the contaminating polymers isolated from the adulterated
heparins was performed by NMR spectroscopy. Six individual sulfated compounds isolated from the
crude heparins and final product were analyzed. 1H NMR spectroscopy and 1H1H two-dimensional
COSY homology was performed according to the USP monograph for sodium heparin [36]. Solutions
of 20 mg/mL of each sample in deuterium oxide (99.9%) were analyzed for the acquisition of free
induction decay (FID) using 16 scans, 90◦ pulse and 20 s delay at 37 ◦C in a Bruker Spectrometer.
All spectra were obtained with a Bruker 400 MHz, 600 MHz AVANCE II or III NMR spectrometer
(Bruker GmbH, Silberstrei-fen, Germany). Special attention was given to the spectral region in which
the N-acetyl group with chemical shift of ~2.00 ppm indicates the presence of other species of GAGs.
Typical 1H NMR spectra of non-fractionated heparins show signals corresponding to the trisulfated
disaccharide (α-l-iduronate 2-O-sulfate → 4α-d-glucosamine N, O-disulfated), which is the major
repeating unit in heparin [16].

3.9. APTT Assay

Activated partial thromboplastin time was performed in a Dade Behring Coagulation Analyzer
BFT II, Siemens Healthcare Diagnostics, Inc (Tarrytown, NY, USA), following the protocol of the APTT,
Helena Laboratories (Beaumont, TX, USA). The assays were performed with platelet-poor plasma,
prepared from the collection of plasma in the presence of sodium citrate (3.8%), centrifuged for 300 rpm,
15 min and packed in plastic tubes. For activated partial thromboplastin time (APTT), platelet-poor
plasma (50 µL) was incubated with cephalin (50 µL) and different concentrations (0.625 µg/mL to
5.0 µg/mL) of crude heparin samples (C8, C9, C16), final heparin samples (F4, F8, F9), standard porcine
heparin and standard oversulfated chondroitin (50 µL) at 37 ◦C for 2 min. Next, 10 mM calcium chloride
was added to determine clot formation time. Analyzes were performed in triplicate. The anticoagulant
activity is expressed as time in sec.

3.10. Endothelial Cells Culture

Endothelial cells (EC) derived from rabbit aorta were maintained in F12 medium supplemented
with 10% fetal bovine serum (FBS) and penicillin (50U/L)/streptomycin (50µg/L) [37]. For the subculture,
cells near confluence were detached with a solution of pancreatin (2.5%) diluted 1:10 (v/v) in EBSS,
suspended in F12 medium as described above and aliquots of 3 × 105 cells transferred to a new plate
(35 mm). Cells were maintained at 37 ◦C under moist atmosphere containing 2.5% CO2. The medium
was replaced after 24 h and each subculture performed near the confluence.

3.11. Cell Viability Assay

Cytotoxic effects of the compounds were evaluated using EC, which were plated in
96-well microplates (1 × 104 cells per well in F12 medium supplemented with 10% FBS and
penicillin/streptomycin, enriched F12) and maintained for 24 h in an incubator at 37 ◦C in 2.5%
CO2 atmosphere. The cells were then exposed to different concentrations of the various batches of
heparins or isolated contaminants in 150 µL of enriched F12 for 24 h at 37 ◦C in 2.5% CO2 atmosphere.
Afterwards the medium was aspirated and Alamar Blue® (resazurin sodium) prepared in serum-free
culture medium (0.1 mg/mL; 200 µL/well) added. The cells were then incubated for 4 h at 37 ◦C in an
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atmosphere of 2.5% CO2. Next, 100 µL of the medium were transferred to 96-well microplates and
the reduction of the rezasurin salt in resorufin measured by fluorescence analysis (λExc = 560 nm;
λEm = 590 nm) using FlexStation3 PlateReader (Molecular Devices, Sunnyvale, CA, USA). Viability
represents the mean and standard error of two independent experiments carried out in sextuplicate.

3.12. Competitive Binding Assay between Heparin and OSCSs

The binding assays were performed as previously described [28]. Briefly, EC (1 × 104 per well)
were cultured for 3 days in 96 well plates. Afterwards, the medium was removed, and the cells
washed with PBS containing 1% BSA at 4 ◦C. The cells were then exposed for 1 h, at 4 ◦C to different
concentrations of biotinylated heparin in the presence of different amounts of the isolated contaminants
and 100 times molar excess of standard heparin After, the cells were washed with PBS containing 1%
BSA. The binding of the biotinylated heparin to the cells was detected by incubation with Europium
conjugated streptavidin (1:5,000 in PBS) for 40 min at 4 ◦C and the fluorescence analyzed on fluorescence
reader Victor2 (Wallac, Turku, Finland).

Supplementary Materials: Tables and figures that give more details are included as Supplementary Materials.
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