Supplementary Materials

Overcharging effect in electrospray ionization mass spectra of daunomycin-tuftsin bioconjugates

Lilla Pethő¹, Gábor Mező^{1,2} and Gitta Schlosser^{1,3,*}

- ¹ MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- ² ELTE Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Department of Organic Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- ³ ELTE Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- * Correspondence: schlosser@caesar.elte.hu

TABLE OF CONTENT

Analytical data	S2
Summarized analytical data of the daunomycin-tuftsin bioconjugates	S2
Mass spectra and analytical RP-HPLC chromatograms of the bioconjugates	S3

Analytical data

Summarized analytical data of the daunomycin-tuftsin bioconjugates

Number	Conjugates	$R_t (\min)^a$	MW _{calc.} / MW _{meas.} ^b
1	H-TK(Dau=Aoa)PR-OH	19.8	1082.5/1082.4
2	For-TK(Dau=Aoa)PR-OH	20.4	1110.5/1110.4
3	H-TK(Dau=Aoa-GFLG)PR-OH	21.8	1456.7/1456.7
4	H-[TK(Dau=Aoa)PR] ₂ -OH	19.1	2147.0/2147.1
5	For-[TK(Dau=Aoa)PR] ₂ -OH	19.5	2175.0/2175.1
6	H-[TK(Dau=Aoa-GFLG)PR]2-OH	22.2	2895.4/2895.3

Table S1. Characteristics of daunomycin-tuftsin conjugates

^{*a*} Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm.

^{*b*} Bruker Daltonics Esquire 3000+ ESI-MS, 10 μ L/min flow rate, positive ion mode in the *m/z* 50–2000 range.

Mass spectra and analytical RP-HPLC chromatograms of the bioconjugates

H-TK(Dau=Aoa)PR-OH (1)

Figure S1. ESI-MS spectra of **1** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 136V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

For-TK(Dau=Aoa)PR-OH (2)

Figure S3. ESI-MS spectra of **2** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 136V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

H-TK(Dau=Aoa-GFLG)PR-OH (3)

Figure S5. ESI-MS spectra of **3** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 143V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

Figure S7. ESI-MS spectrum of sugar-lost, purified **3** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 143V)

Figure S8. Analytical chromatogram of sugar-lost 3

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

H-[TK(Dau=Aoa)PR]2-OH (4)

Figure S9. ESI-MS spectra of **4** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 143V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

For-[TK(Dau=Aoa)PR]2-OH (5)

Figure S11. ESI-MS spectra of **5** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 143V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)

H-[TK(Dau=Aoa-GLFG)PR]₂-OH (6)

Figure S13. ESI-MS spectra of **6** under the commonly used ESI-MS conditions (acetonitrile-water (50:50%, v/v), 0.1% acetic acid; cap. exit: 143V; *A*) and under the optimized conditions (NH₄OAc buffer (50 mM, pH = 6.7) and acetonitrile (50:50%, v/v); cap. exit: 5V; *B*)

(Knauer RP-HPLC; Nucleosil C18 column (5 μ m, 100 Å; 250×4.6 mm) gradient: 0 min 2% B, 5 min 2% B, 30 min 90% B; eluents: 0.1% TFA in water (A) and 0.1% TFA in acetonitrile-water 80:20%, v/v (B); flow rate: 1 mL/min, detection: $\lambda = 220$ nm)