Supplementary Information

An explanation about the use of (S)-citronelal as chiral derivatizing agent (CDA) in 1 H and

¹³C NMR for sec-butylamine, methylbenzylamine, and amphetamine: a theoretical-

experimental study

Viviani Nardini*, Vinicius Palaretti, Luis Gustavo Dias and Gil Valdo José da Silva

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil, Tel.: +55-16-3315-4382; fax: +55-16-3633-8151

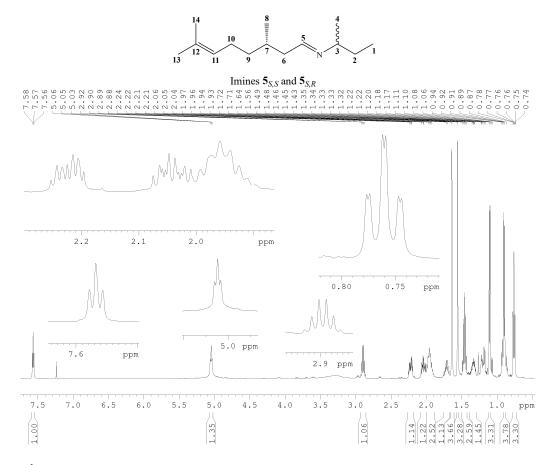
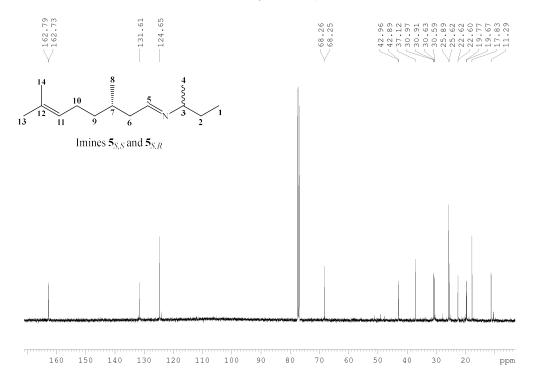
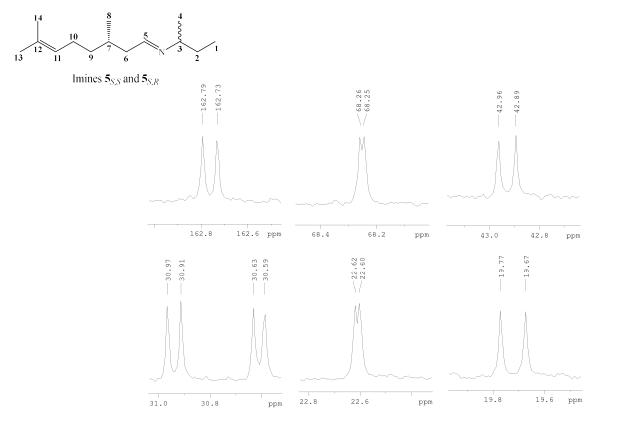




Figure S1. ¹H NMR spectrum of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of *sec*-butylamine (imines 5*s*,*s* and 5*s*,*r*, CDCl₃, 500 MHz).

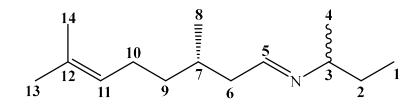


Figure S2. ¹³C NMR spectrum of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of *sec*-butylamine (imines **5**_{S,S} and **5**_{S,R}, CDCl₃, 500 MHz).

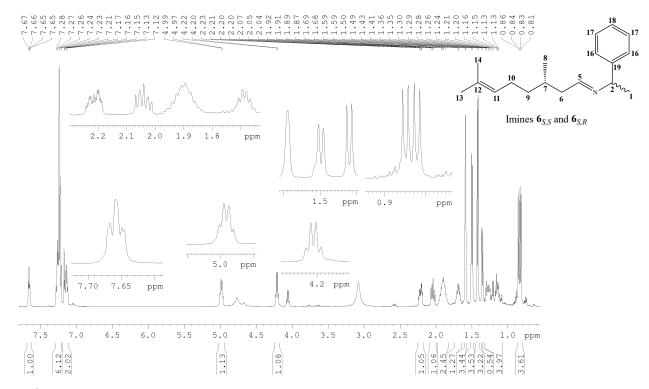
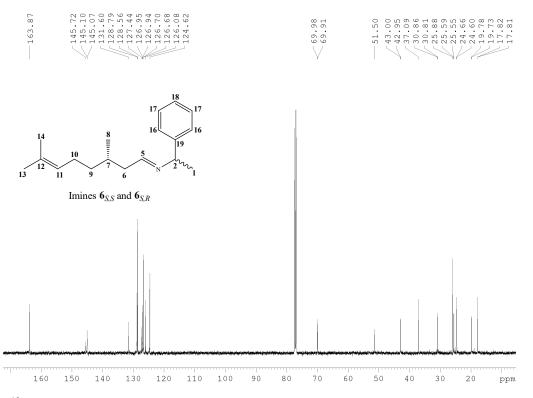

Figure S3. Expansion of ¹³C NMR spectrum of the <u>*S*,*S* and *S*,*R* diastereoisomers</u> derived from the reaction between (*S*)-citronellal and the racemic mixture of *sec*-butylamine (imines $5_{S,S}$ and $5_{S,R}$, CDCl₃, 500 MHz).

Table S1. Spectroscopic data of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of *sec*-butylamine (imines **5***s*,*s* and **5***s*,*r*, CDCl₃, 500 MHz).



Imines $\mathbf{5}_{S,S}$ and $\mathbf{5}_{S,R}$

Number	н (ррт)	Multiplicity	J (Hz)	δ c (ppm)
1	0.76	2 triplets	7.4	(<i>S</i> , <i>R</i>) 11.29 and 11.25 (<i>S</i> , <i>S</i>)
2	1.46	Overlapping s	ignals	(<i>S</i> , <i>R</i>) 30.63 and 30.59 (<i>S</i> , <i>S</i>)
3	2.90	Overlapping s	ignals	(<i>S</i> , <i>R</i>) 68.26 and 68.25 (<i>S</i> , <i>S</i>)
4	1.10	Overlapping s	ignals	(<i>S</i> , <i>S</i>) 22.62 and 22.60 (<i>S</i> , <i>R</i>)
5	7.57	Overlapping s	ignals	(<i>S</i> , <i>R</i>) 162.79 and 162.73 (<i>S</i> , <i>S</i>)
6a	2.23	Overlapping s	ignals	(C.D.) 42 0(- 42 80 (C.S.)
6b	2.05	Overlapping s	ignals	(S,R) 42.96 e 42.89 (S,S)
7	1.72	Overlapping s	ignals	(S,S) 30.97 e 30.91 (S,R)
8	0.90	Overlapping s	ignals	(S,R) 19.77 e 19.67 (S,S)
9a	1.33	Overlapping s	ignals	27.10
9b	1.19	Overlapping s	ignals	37.12
10a	1.06	Overlagging	ionala.	25.62
10b	1.96	Overlapping s	ignais	25.62
11	5.05	Overlapping s	ignals	124.65
12	-			131.61
13	1.56	Overlapping s	Overlapping signals 25.89	
14	1.64	Overlapping s	ignals	17.83

Figure S4. ¹H NMR spectrum of the <u>*S*, *S* and *S*, *R* diastereoisomers</u> derived from the reaction between (*S*)citronellal and the racemic mixture of methylbenzylamine (imines **6***s*, *s* and **6***s*, *r*, CDCl₃, 500 MHz).

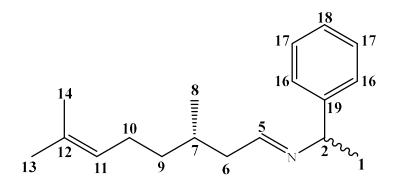


Figura S5. ¹³C NMR spectrum of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of methylbenzylamine (imines **6***s*,*s* and **6***s*,*r*, CDCl₃, 500 MHz).

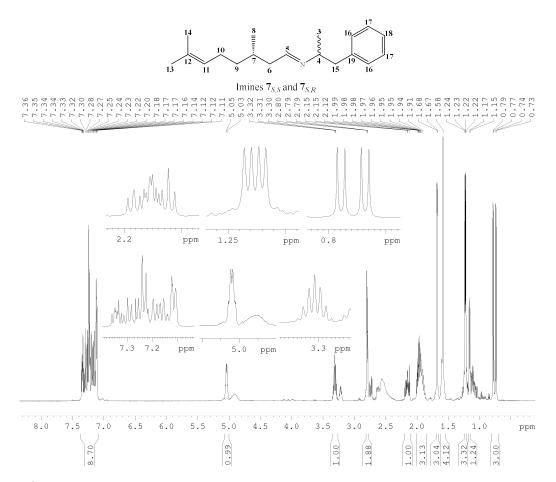

Figura S6. Expansions of ¹³C NMR spectrum of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)-citronellal and the racemic mixture of methylbenzylamine (imines **6***s*,*s* and **6***s*,*r*, CDCl₃, 500

Table S2. Spectroscopic data of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of methylbenzylamine (imines **6***s*,*s* and **6***s*,*r*, CDCl₃, 500 MHz).

Imines $\mathbf{6}_{S,S}$ and $\mathbf{6}_{S,R}$

Number	<i>δ</i> н (ppm)	Multiplicity	J (Hz)	δ c (ppm)
1	1.42	2 dublets	6.3	(<i>S</i> , <i>R</i>) 24.66 and 24.60 (<i>S</i> , <i>S</i>)
2	4.21	Overlapping	signals	(<i>S</i> , <i>R</i>) 69.98 and 69.91 (<i>S</i> , <i>S</i>)
5	7.66	Overlapping	signals	163,87
6a	2.21	Overlapping	signals	(S, S), 42, 00, and 42, 05, (S, D)
6b	2.04	Overlapping	signals	(<i>S</i> , <i>S</i>) 43.00 and 42.95 (<i>S</i> , <i>R</i>)
7	1.69	Overlapping	signals	(<i>S</i> , <i>S</i>) 30.86 and 30.81 (<i>S</i> , <i>R</i>)
8	0.84	2 duble	ets 6.7	(S,S) 19.78 and 19.73 (S,R)
9a	1.23	Overlapping	signals	27.00
9b	1.13	Overlapping	signals	37.09
10a	1.90	Overlagging	~;~~~1~	(C, C) 25 50 and 25 55 (C, D)
10b	1.90	Overlapping	signals	(<i>S</i> , <i>S</i>) 25.59 and 25.55 (<i>S</i> , <i>R</i>)
11	4.98	Overlapping	signals	124.62
12	-	-	-	131.60
13	1.50	2 singlets	-	25.88
14	1.59	2 singlets	-	17.82 and 17.81
16				126.95 and 126.94
17	Overlapp	ing signals 7.10 to 7	.30 ppm	128.56
18				126.70 and 126.68
19	-	-	-	(<i>S</i> , <i>S</i>) 145.10 and 145.07 (<i>S</i> , <i>R</i>)

Figure S7. ¹H NMR spectrum of the <u>*S*, *S* and *S*, *R* diastereoisomers</u> derived from the reaction between (*S*)citronellal and the racemic mixture of amphetamine (imines 7*s*,*s* and 7*s*,*r*, CDCl₃, 500 MHz).

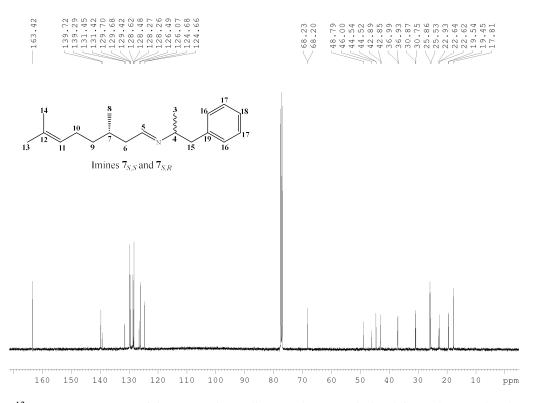
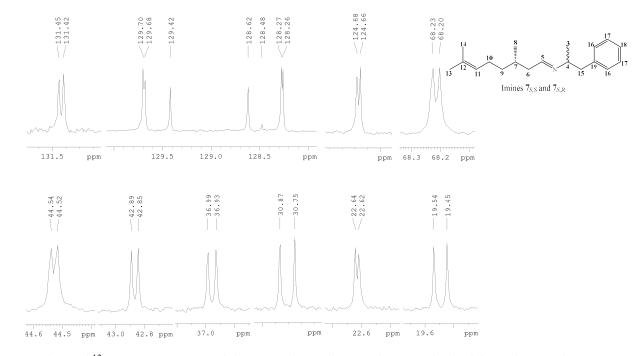
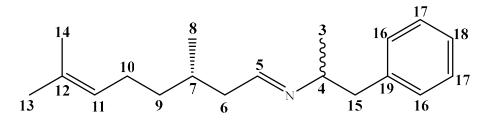




Figure S8. ¹³C NMR spectrum of the <u>S,S and S,R diastereoisomers</u> derived from the reaction between (S)citronellal and the racemic mixture of amphetamine (imines 7*s*,*s* and 7*s*,*r*, CDCl₃, 500 MHz).

Figure S9. Expansions of ¹³C NMR spectrum of the <u>*S*, *S* and *S*, *R* diastereoisomers</u> derived from the reaction between (*S*)-citronellal and the racemic mixture of amphetamine (imines 7*s*,*s* and 7*s*,*r*, CDCl₃, 500 MHz).

Table S3. Spectroscopic data of the <u>*S*, *S* and *S*, *R* diastereoisomers</u> derived from the reaction between (*S*)citronellal and the racemic mixture of amphetamine (imines 7*s*,*s* and 7*s*,*r*, CDCl₃, 500 MHz).

Imines $7_{S,S}$ and $7_{S,R}$

Number	<i>δ</i> н (ppm)	Multiplicity	J (Hz)	δ c (ppm)
3	1.22	2 doublets	6.3	22.64 and 22.62
4	3.28	Overlapping signals		68.23 and 68.20
5	Overlappi	ng with H16, H17 aı	nd H18	163.42
6a	2.15	Overlapping signals		42.90 1.42.95
6b	1.98	Overlapping s	ignals	42.89 and 42.85
7	1.60	Overlapping s	ignals	30.87 and 30.75
8	0.75	2 doublets	6.6	19.54 and 19.45
9a	1.11	Overlapping signals Overlapping signals		26.00 and 26.02
9b	1.25			36.99 and 36.93
10a	1.93	Overlapping signals		25.53
10b	1.95			23.33
11	5.04	Overlapping s	ignals	124.68 and 124.66
12	-	-	-	131.45 and 131.42
13	1.58	Overlapping s	ignals	25.86
14	1.67	2 singlets	-	17.81
15a	2.79	Overlapping signals		44.54 and 44.52
15b	2.19			44. <i>3</i> 4 and 44. <i>3</i> 2
16				128.27 and 128.26
17	Overlapping with H5 7.1 to 7.4 ppm		4 ppm	129.70 and 129.68
18				126.07
19	-	-	-	139.72

Table S4. Δ Energy (kcal/mol) and most stable conformers distribution of the diastereoisomer 5 (S,S and
S,R) using B3LYP-D3(BJ)/def2-TZVP(-f) level

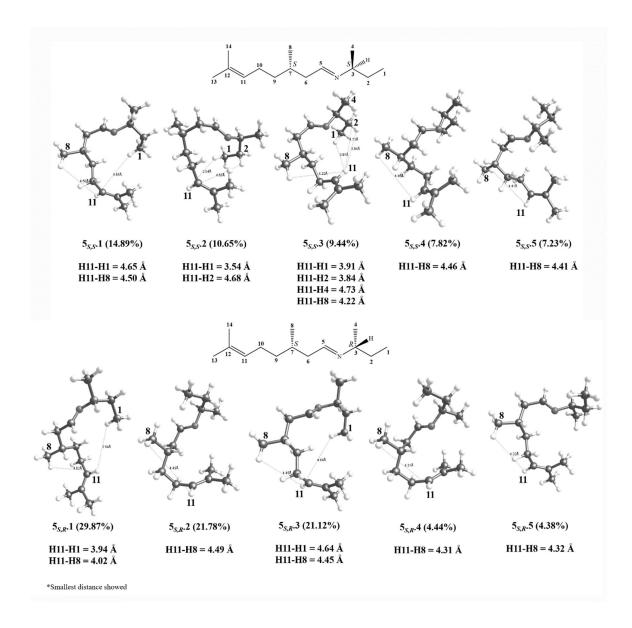

Conformer	∆Energy [kcal/mol)	Conformer	∆Energy (kcal/mol)
$5_{s,s}$.1	0.00	$5_{S,R}.1$	0.00
$5_{S,S}.2$	0.20	$5_{S,R}.2$	0.14
5 _{<i>S</i>,<i>S</i>} .3	0.27	5 <i>S</i> , <i>R</i> .3	0.16
5 _{<i>s</i>,<i>s</i>} .4	0.38	$5_{S,R}.4$	0.87
5 _{<i>s</i>,<i>s</i>} .5	0.43	$5_{S,R}.5$	0.88
$5_{S,S}.6$	0.63	$5_{S,R}.6$	0.92
5 _{<i>s</i>,<i>s</i>} .7	0.88	$5_{S,R}.7$	0.97
5 _{<i>s</i>,<i>s</i>} .8	0.89	$5_{S,R}.8$	1.11
5 _{<i>s</i>,<i>s</i>} .9	1.06		
$5_{S,S}$.10	1.13		
$5_{S,S}$.11	1.15		
$5_{S,S}$.12	1.16		
$5_{S,S}$.13	1.20		
$5_{S,S}$.14	1.25		
$5_{S,S}$.15	1.27		
$5_{S,S}$.16	1.38		
$5_{S,S}$.17	1.39		
$5_{S,S}$. 18	1.47		
$5_{S,S}$.19	1.50		
$5_{S,S}.20$	1.61		
5 _{<i>s</i>,<i>s</i>} .21	1.61		
5 _{<i>S</i>,<i>S</i>} .22	1.64		
$5_{S,S}$.23	1.64		
5 _{<i>s</i>,<i>s</i>} .24	1.65		
5 _{<i>S</i>,<i>S</i>} .25	1.70		
5 _{<i>s</i>,<i>s</i>} .26	1.71		
5 _{<i>S</i>,<i>S</i>} .27	1.77		
$5_{S,S}$.28	1.81		

Table S5. Δ Energy (kcal/mol) and most stable conformers distribution of the diastereoisomer 6 (S,S and
S,R) using B3LYP-D3(BJ)/def2-TZVP(-f) level

Conformer	∆Energy kcal/mol) Conformer		∆Energy (kcal/mol)	
$6_{S,R}$.1	0.00	$6_{S,S}$. 1	0.00	
$6_{S,R}.2$	0.06	$6_{S,S}.2$	0.68	
$6_{S,R}.3$	0.12	6 _{<i>s</i>,<i>s</i>} .3	0.87	
$6_{S,R}.4$	0.26	$6_{S,S}.4$	1.08	
$6_{S,R}.5$	0.26	$6_{S,S}.5$	1.10	
$6_{S,R}.6$	0.59	$6_{S,S}.6$	1.33	
$6_{S,R}.7$	0.84	$6_{S,S}$.7	1.43	
$6_{S,R}.8$	0.93			
$6_{S,R}.9$	0.95			
$6_{S,R}.10$	0.99			
$6_{S,R}$.11	1.12			
$6_{S,R}$.12	1.15			
$6_{S,R}$.13	1.15			
$6_{S,R}.14$	1.26			
$6_{S,R}.15$	1.29			
$6_{S,R}.16$	1.34			
$6_{S,R}.17$	1.40			
$6_{S,R}$.18	1.41			
$6_{S,R}$.19	1.41			
$6_{S,R}.20$	1.50			

Table S6. Δ Energy (kcal/mol) and most stable conformers distribution of the diastereoisomer 7 (S,S andS,R) using B3LYP-D3(BJ)/def2-TZVP(-f) level

Conformer	∆Energy (kcal/mol)	Conformer	∆Energy (kcal/mol)
$7_{S,S}$.1	0.00	$7_{S,R}$. 1	0.00
$7_{S,S}.2$	0.00	$7_{S,R}.2$	0.77
$7_{S,S}.3$	0.59		
7 _{<i>S</i>,<i>S</i>} .4	0.80		
7 _{<i>S</i>,<i>S</i>} .5	0.91		
7 <i>s</i> , <i>s</i> .6	0.92		
7 _{<i>S</i>,<i>S</i>} .7	1.02		
7 <i>s,s</i> .8	1.10		

Figure S10. Five most stable conformers distribution of the diastereoisomer **5** (*S*,*S* and *S*,*R*) using B3LYP-D3(BJ)/def2-TZVP(-f) level. In parentheses is the percentage of Boltzmann's population. Just below each conformer, there is the distance, less than 5 Å, between the hydrogens.

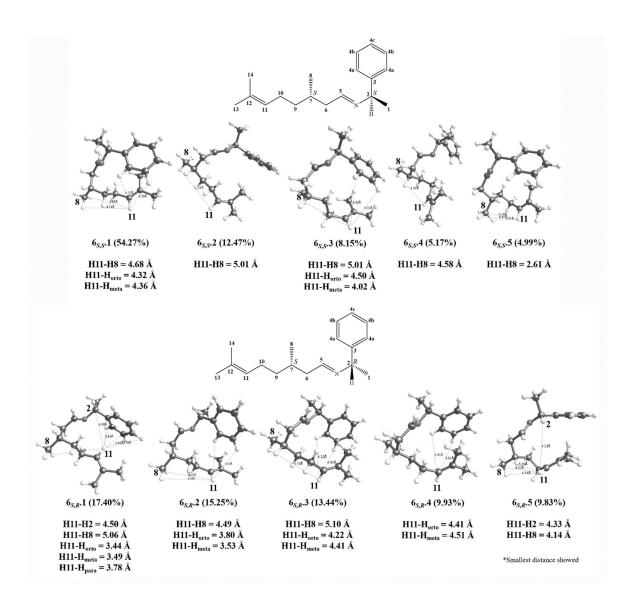
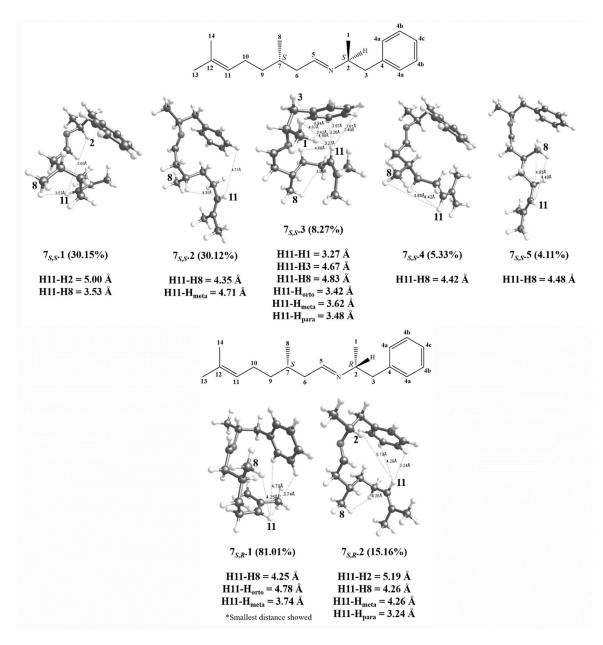



Figure S11. Five most stable conformers distribution of the diastereoisomer 6 (S,S and S,R) using B3LYP-D3(BJ)/def2-TZVP(-f) level. In parentheses is the percentage of Boltzmann's population. Just below each conformer, there is the distance, less than 5 Å, between the hydrogens.

Figure S12. Five most stable conformers distribution of the diastereoisomer 7 (*S*,*S* and *S*,*R*) using B3LYP-D3(BJ)/def2-TZVP(-f) level. In parentheses is the percentage of Boltzmann's population. Just below each conformer, there is the distance, less than 5 Å, between the hydrogens.

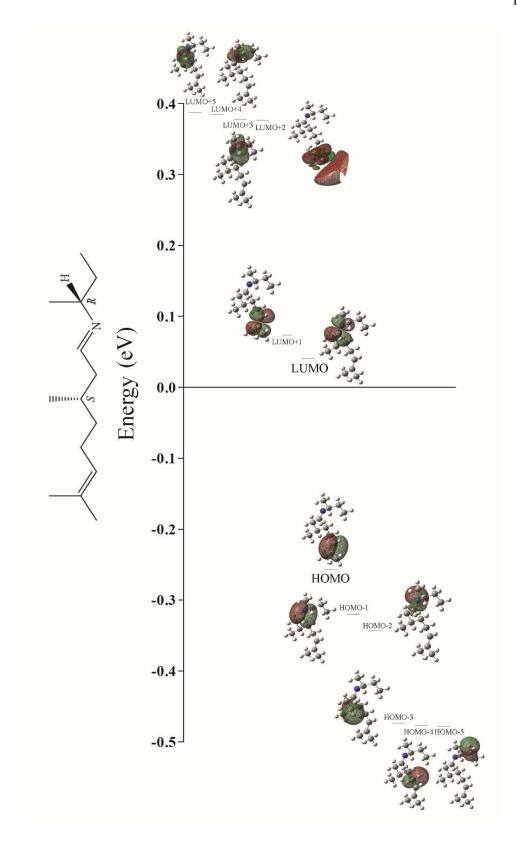


Figure S13. Energy diagram of the molecular orbitals of the diastereomeric imine $5_{S,R}$.

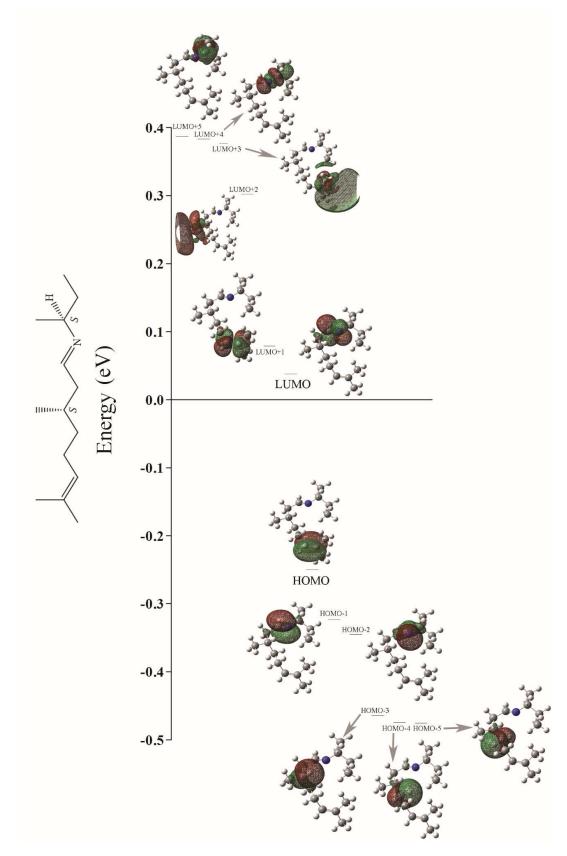


Figure S14. Energy diagram of the molecular orbitals of the diastereomeric imine $5_{S,S}$.

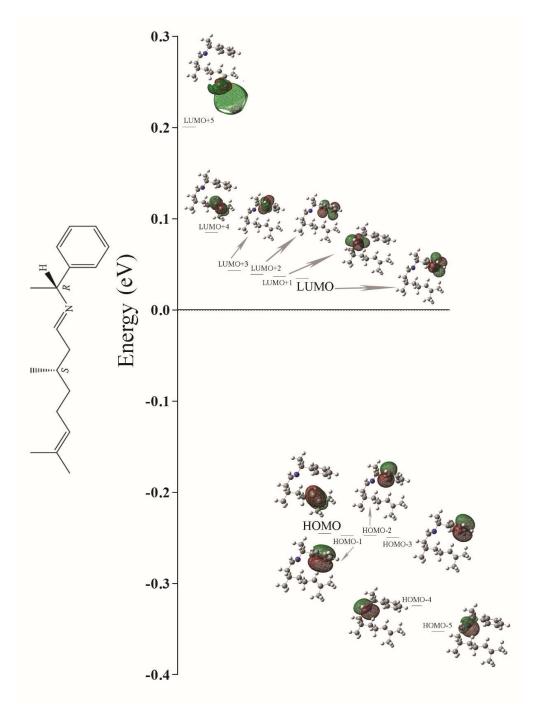


Figure S15. Energy diagram of the molecular orbitals of the diastereomeric imine $6_{S,R}$

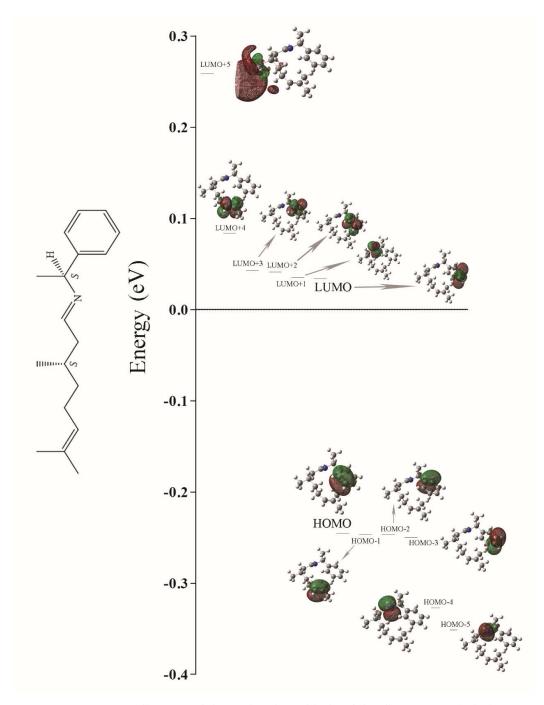


Figure S16. Energy diagram of the molecular orbitals of the diastereomeric imine $6_{S,S}$.

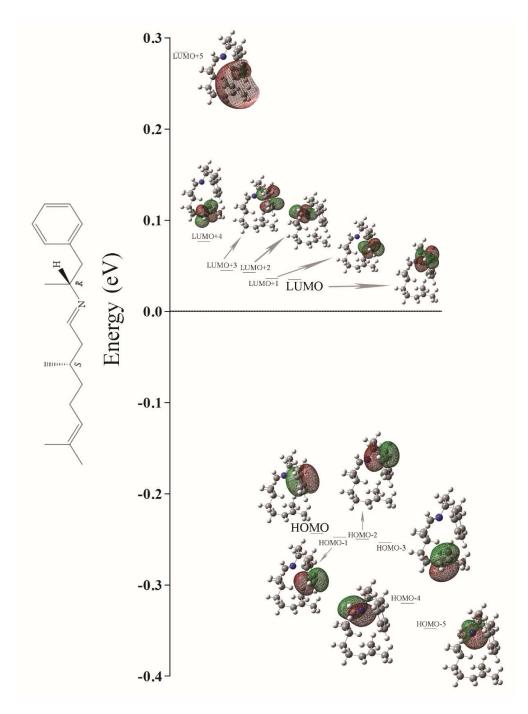


Figure S17. Energy diagram of the molecular orbitals of the diastereomeric imine $7_{S,R}$

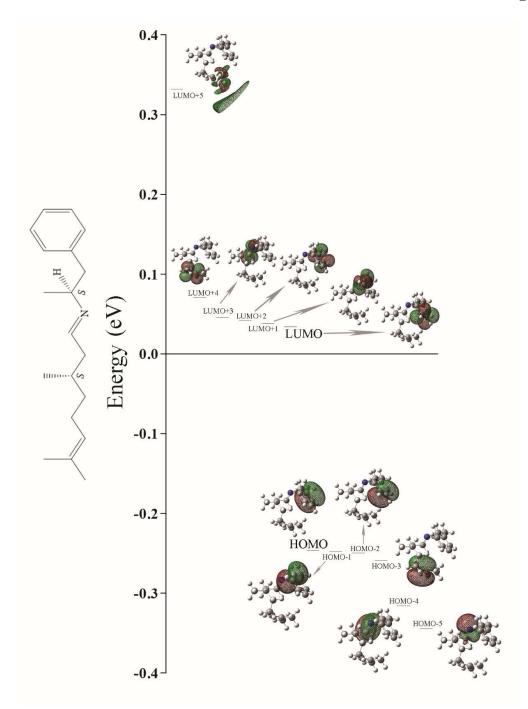


Figure S18. Energy diagram of the molecular orbitals of the diastereomeric imine $7_{S,S}$.