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Abstract: Catalytic conversion of actual biomass to valuable chemicals is a crucial issue in green
chemistry. This review discusses on the recent approach in the levulinic acid (LA) formation from
three prominent generations of biomasses. Our paper highlights the impact of the nature of different
types of biomass and their complex structure and impurities, different groups of catalyst, solvents,
and reaction system, and condition and all related pros and cons for this process.
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1. Introduction

Among the challenging issues that humans are struggling with in the 21st century, Climate change
and Energy security are considered as the most important issues that need to be addressed [1]. With the
rapid depletion of fossil fuels, international attempt to raise the use of renewable energy such as biomass
has greatly increased [2—4]. Various approaches, including thermal, biological, and chemo-catalytic
processes have been performed in order to produce fuels and chemicals from biomass, owing to
environmental and economic needs [5]. Two different types of processes are used for this application.
The first type is thermochemical process in which the entire biomass could be considered as feedstock.
These processes mainly include gasification, liquefaction, pyrolysis, and high-pressure supercritical
extraction. On the other hand, individual fractions of biomass, including starch, sugars, cellulose,
and fatty acids could be separated and transformed by a hydrolysis step (catalyzed by acids or bases),
after which there are several processes for transforming each one [6]. Acid-catalyzed hydrolysis
has been considered to be a crucial step for chemicals production at a relatively mild temperature
(100-250 °C). Furfural, glucose, 5-hydroxymethylfurfural (5-HMF), and levulinic acid (LA) are regarded
as the key intermediate platform chemicals [7].

LA is a linear C5-alkyl carbon chain that is known as 4-oxopentanoic acid or gamma ketovaleric
acid and also 3-acetylpropionic acid. It is a short chain fatty acid with molecular formula CsHgO3
(see Figure 1) [8]. The Biomass Program of the US Department of Energy in 2004 regarded LA as one of
the top 12 most promising bio-based platform chemicals [2].
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Figure 1. The molecular structure of levulinic acid.
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LA acts as a viable chemical bridge between biomass and petroleum processing. Multiple LA
derivatives have been suggested for fuel applications, such as y-valerolactone (GVL), ethyl levulinate
(EL), and methyl tetrahydrofuran (MTHF). One of the most important processes is the hydrogenation
of LA to y-valerolactone, and further to liquid alkenes with eight or more carbons. In addition, LA can
be used as a as gasoline and biodiesel additives by conversion to a family of valerate esters [9-17].
Besides renewable biofuels, LA is also a promising basic chemical for other applications. As shown in
Figure 2, LA can be converted to a range of multiple derivatives that have various market applications.
The chemicals that are produced from LA are currently used in several industries, such as solvents,
resins, chemical intermediates, polymers, electronics, batteries, adsorbents, photography, plasticizers
rubber, cosmetic, drug delivery systems, textiles, and pharmaceutical products [7,8,18-29].
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Figure 2. Levulinic acid (LA) derivatives [1,17].

There are several different feedstocks for synthesis of LA, including raw materials and precursors,
such as polysaccharides, monosaccharides, furfural, 5-hydroxymethyl furfural (5-HMF), and renewable
resources, such as the most types of biomasses. Polysaccharides, including starch, cellulose,
hemicellulose, and chitin, are the main components of biomass. Their hydrolysis could lead to
the formation of monosaccharides, such as glucose and fructose [30].

As can be seen in Figure 3, there are three different generations of biomasses:

(i) First generation of biomass comes from food crops such as sugar, starchy crops, vegetable oil,
or animal fat.

(ii) Second generation of biomass is non-food crops such as wood, organic waste, food crop
waste, and specific biomass crops. Most of biomasses in this generation are considered as the
lignocellulosic biomass.

(iii) Third generation of biomass comes from algae.

Therefore, the reaction of LA production from three different generations of biomass is consecutive
and usually includes three general steps (see Figure 3):

(i) pretreatment of biomass to extract polysaccharides,
(ii) hydrolysis of polysaccharides into monosaccharides such as hexoses and pentoses, and pentoses,
(iii) conversion of monosaccharides to LA during several steps [31].
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The pretreatment of biomass is a compulsory and significant step in its transformation to LA in
order to have a great LA yield and reaction rates since the structure of raw biomass is very complex.
Moreover, the type and severity of pretreatment could be of crucial importance, according to the
complexity of the raw starting biomass [32]. The next important route is several steps acid catalyzed
reaction for formation of LA from different types of C5 and Cg4 sugars, which can also drive from the
hydrolysis of polysaccharides or more complex carbohydrates extracted from pretreatment of raw
biomass, such as cellulose, hemicellulose or starch. For these reactions the acidity of the catalyst plays
a crucial role in which both Lewis and Brensted acid sites in catalyst and a great balance of them are
highly needed.
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Figure 3. Roadmap of LA production from biomass.

Although several researches have been undertaken on the tailored acid catalyzed hydrolysis
of biomass, and this interest continues to rise in the recent years, few review papers have been
published regarding the synthesis of LA from real biomass, especially focusing on using three
different generation of biomasses as a feedstock, including starchy, lignosellulosic, and marine
biomasses [4,33,34]. Thus, in this review, we focus on different biomass categories and using catalysts
in the real biomass conversion and the production of one of the valuable chemical, named LA, based
on recent years’ studies.

2. LA Production from First Generation of Biomass: Starchy and Sugary Biomass

First generation of biomass consisting starchy and sugary biomass can be converted to LA during
several steps (see Figure 4): (1) the hydrolysis of starch or sugar as a polysaccharide to glucose catalyzed
by a Brensted acid; (2) isomerization of glucose to fructose by using a Lewis acid; (3) dehydration of
fructose to 5-HMF catalyzed by bifunctional acid; and, (4) rehydration of 5-HMF to LA catalyzed by
Brensted acid. It was demonstrated that the conversion pathway of glucose to 5-HMF depends on the
type of the catalyst. It has been established that fructose can only be formed as an intermediate when
Lewis acid catalysts are used in this reaction considering that not all Lewis acid sites are active for
glucose isomerization, but they simultaneously act as a catalyst for side reaction or soluble polymers
and insoluble humins. On the other hand, if a strong Bronsted acid has catalyzed the reaction, glucose
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dehydration follows a route with 3-deoxy-glucosone as an intermediate [35-37]. Therefore, there are
several reaction networks happening through transformation of biomass to LA: (1) isomerization
of glucose to fructose, which dehydrates to HMF and rehydrates to LA and formic acid; (2) direct
dehydration of glucose to HMF; (3) direct dehydration of glucose to furfuryl alcohol which converts
to LA and byproducts; and, (4) side reaction of glucose, fructose, HMF, and furfuryl alcohol, which
leads to the production of byproducts, especially tarry humins and char-byproducts. Different types of
techniques are suggested to prevent side reactions by controlling the process significant parameters,
such as acidity, pressure, temperature, pressure, reaction time, and conducting in situ extraction
since the structure of biomass is very complex. Additionally, all these side reactions are probable in
transformation of second and third generations of biomass.
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Figure 4. Overview of LA production from first generation biomass.

As shown in Table 1, in the last few years, there are few researches that focus on and using first
generation biomass in order to produce biochemical. In all of these works, homogenous catalysts were
used for hydrolysis process.

In 2016, a paper reported LA production from three different corn starches, including normal corn
starch, high-amylose corn starch, and waxy corn starch while using both microwave and conventional
oil bath heating [38]. For both methods, water was used as the solvent and HCl was preferred as
the catalyst rather than other mineral acid catalysts because the authors claimed that HCl can be
more effective for LA production. In addition, temperatures of 135, 150, 165, and 180 °C were set and
a hold time of 0, 5, 10, or 15 min. was applied to the runs. In microwave heating method, the LA
yield for waxy corn starch in the shorter reaction time (0 and 5 min.) were the highest one while
there were a very slight differences at higher reaction times and temperatures concluding that the
lower equivalent temperatures and shorter reaction times could be considered for microwave heating.
Anyway, the maximum yield of LA was around 53—-55% for all substrates and for both heating media at
optimum temperature of 165 °C and time of 15 min. Microwave- assisted heating can be used as a more
effective heating method than traditional ones. The use of microwave heating causes a homogeneous
heat transfer into the biomass feedstock by dipole rotation and ionic conduction using less energy
when compared to the traditional heating method. Hence, microwave reactor results a significant time
and energy saving [39].

In 2002, kernel sorghum grain was transferred to LA by using aqueous solution of H,SO; as the
catalyst. The reaction was performed in several conditions, including different H,SO4 concentration,
sorghum flour loading, and temperature. The yield of LA was increased with the decrease of the
sorghum flour loading and increase of temperature and H,SO4 concentration. The maximum LA yield
of 33% was attained at 200 °C, 8% H,SO, concentration, and 10% flour loading [40].

Sugar Cane Molasses is a biomass very rich in sucrose, which can be easily hydrolyzed to hexoses,
such glucose and fructose. Additionally, Sugar Cane Molasses itself has a slight amount of glucose
and fructose in the structure. A recent study [41] proposed a superimposed reaction, in which the LA
solution formed from the hexose hydrolysis reaction could be further used as the solvent for additional
hexose hydrolysis to produce more LA. First, the optimum condition of reaction was selected as
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180 °C for 180 min. H,SO,4 concentration was one of the critical factors that affected the product
distribution. Therefore, a relatively high concentration of HySO4 (0.2 M) was used as the catalyst for the
following works. An average yield of 30 and 24% LA was obtained in the third and fifth superimposed
reactions, respectively. In addition, a similar biomass (sugar beet molasses) was used in another study
for LA formation. The authors suggested an acidic cation exchange resin (Amberlyst-36TM) as the
heterogeneous catalyst for this reaction. However, a pretreatment step was performed due to the
rapid deactivation of the catalyst for the presence of non-sugar components, such as cations, proteins,
and alkaline compounds in the biomass. In order to remove the impurities of the biomass, it was
transferred from a column packed with the resin pellets which was also recovered several times under
ambient conditions for repeated pretreatment. The highest LA yield of 78 mol% was produced in the
optimum reaction condition of 0.2 g/mL catalyst dosage, 140 °C and 180 min. [42].

As can be seen in the Table 1, in all of the works, mostly homogeneous catalysts were used
for LA production from first generation of biomass. Although these types of catalyst exhibit
favorable yields with reasonable cost, they cannot be considered as promising catalysts due to limited
recyclability, reactor corrosion, and waste generation [43-45]. These drawbacks can be overcome
by using appropriate heterogeneous catalysts instead of homogeneous ones. Therefore, using
a cost-effective and environment-friendly catalyst with a reasonable mass transfer, activity, and stability
is required.

However, producing fuels and chemicals from edible biomass has become a disputable topic since
there are millions people in the world struggling with the challenge of accessing to the sufficient food.
In addition, using first generation biomass leads to several challenges, such as negative impact on
food security, violations of people’s rights and livelihoods by large-scale land acquisition for sourcing
biomass, biodiversity and water preservation, and negative impact of biomass plants on local air quality
through processing and transport emissions and on the aesthetics of the local landscape. Hence, all of
these different challenges regarding using edible biomass cause a focus on developing second generation
technologies to produce fuels and chemicals from food waste or nonedible feedstocks [46—49].

Table 1. Valorization of first generation biomass into LA over catalysts.

Biomass Solvent Homo Cat  Hetero Cat Temperature (°C)  Time (min)  Other :;eLli Ref
Normal corn starch H,O HCl - 165 15 mw  53-55% [38]
High-amylose H0 HCl - 165 15 mw  53-55%  [38]
corn starch
Waxy corn starch H,O HCl1 - 165 15 mw  53-55%  [38]
kernel sorghum grain H,O H,S0,4 - 200 40 33% [40]
Sugar cane molasses Hig + H,S50,4 - 180 180 30% [41]
Sugar beet molasses - - Amberlyst-36TM 140 180 PRET mZ)?"/ [42]
Homo Cat = Homogenous Catalyst; Hetero Cat = Heterogeneous Catalyst; mw = microwave;

PRET: PRETREATMENT.

3. LA Production from Second Generation of Biomass: Food Waste and Lignocellulosic Biomass

Second generation or lignocellulosic biomass consisting hemicellulose and cellulose is one of the
most plentiful renewable resources. As can be seen in Figure 5, cellulose can be hydrolysed into glucose
by using Brensted acid as the catalyst that further dehydrates into 5-HMF and then rehydrates into
LA catalyzed by Brensted acid catalyst on the course of lignocellulosic biomass conversion. Besides,
hemicellulose can be hydrolyzed into xylose by using Brensted acid, followed by dehydration of xylose
to furfural and hydrogenation of furfural towards furfuryl alcohol and ethyl levulinate and then LA over
bifunctional catalysts [10,13,14,16,17,50-52]. Lignin is another organic component of lignocelluloses
that is linked with hydrogen, chemical, and covalent linkage to cellulose and hemicellulose and packs
them densely. Most of the lignin remains as the solid residue through LA formation, and only a slight
amount of lignin dissolves in the solution. Lignin can be converted into humins in acidic reaction
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condition and reduce the yield of LA [53]. Pretreatment of actual biomass is one of the prominent
methods for isolating cellulose and hemicellulose of biomass from lignin before the hydrolysis. Dilute
acid pretreatment is one of the most common methods for biochemical production [54,55].
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Figure 5. Overview of LA production from second generation biomass.

Several works reported synthesis of LA from different types of straw (rice straw, cotton straw,
barley straw, Paddy Straw) by using ionic liquid, homogenous, and heterogeneous catalysts. In 2018,
by using Acidic ionic liquid (IL) [C3SO3sHmim]HSO; as a catalyst, at 180 °C and after 30 min. of one
pot reaction, yield of 96 mol% (21 wt%) was obtained from rice straw. It was proven that acidity and
hydrogen bonding ability of anions are viable to the yield of LA. In addition, the catalyst was reused
over five cycles without any loss of activity [56]. Another work reported an improvement rice straw
accessibility to a solid superacid S,05%7/Zr0,-Si0,-Sm,O; catalyst by using enzymatic pretreatment
and phydroxyanisole inhibitor reduced the side reactions during reaction processes, which led to
LA yield of 25 wt.% under the optimal condition [57,58]. Moreover, Ga salt of molybdophosphoric
acid, GaHPMo, was found to be a possible alternative to the conventional mineral acids used for the
production of LA yield of 46 wt.% from rice straw. GaHPMo exhibited superior catalytic performance
in terms of activity for glucose conversion and selectivity for LA production relative to the parent
HPMo [59]. As a homogeneous catalyst, HCI was used as a catalyst during the hydrolysis reaction of
straw, because of its low cost and effectiveness. In 2016, a group of authors suggested several chemicals
reagents, such as HySO4, NaOH, NaClO,, and NaClO for the thermo-chemical pretreatment of rice
straw. Subsequently, they performed a post-pretreatment of rice straw fibers for LA formation in
a co-solvent reactor system consisting of aqueous HC], tetrahydrofuran (THF), and Dimethyl sulfoxide
(DMSOQO). The highest LA yield was 21% by using HySOj as the pretreatment reagent [60]. In 2018,
the author provided LA production from rice straw while using a co-solvent biphasic reactor system
and HCl and dichloromethane organic solvent. The author claimed that, beside HCI, the acidic product
could catalyze the hydrolysis reaction (auto-catalysis). The optimum yield of LA achieved 15% wt.
in this work [61]. Another study reported that a low concentration of LA does not provide enough
H* for hydrolysis of the cellulose and, hence, cause a low reaction rate. On the other hand, too high
concentrations lead side reactions, which may negatively affect the rate of hydrolysis of the cellulose
to LA. Therefore, by using HCl with the concentration of 4.45% in optimum condition of reaction,
the maximum yield of 24% LA was produced from paddy straw [62]. In addition, in some works,
a dilute concentration of HySO,4 was used as a catalyst during hydrolysis reaction. In one of the study,
a 9.5% yield of LA was produced from cotton straw in two-step hydrolysis in the optimum hydrolysis
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condition [63], while in another study 0.03 g/L of LA was produced from barley straw in which the
H,S0Oy acid improves dissolving hemicellulose fraction of the straw [64].

In 2017, several types of lignocellulosic biomass (palm oil frond, rubber wood,
bamboo and rice husk) were converted to LA in one-pot reaction. Dicationic ionic liquids,
containing 1,1-Bis(3-methylimidazolium-1-yl) butylene ([C4(Mim),]) cation with counter anions
[(2HSO4)(H2S04)0], [(2HSO4)(H2504)2] and [(2HSO4)(H2504)4] were used in different hydrolysis
conditions for all types of biomass. However, under optimum experimental condition (100 °C,
60 min.), [C4(Mim), ][(2HSO4)(H;S04)4] gave a higher yield of LA up to 47.52 from bamboo biomass.
Thus, the authors concluded that the yield of LA increases with the increase of the number of HSO, in
anion, which leads to an increase in the acidity and decrease in viscosity of IL [65].

Wood is one of the most plentiful biomass resources in the world, consisting of around 40-45%
cellulose and about 20-30% of hemicellulose; both can be readily hydrolyzed to monomeric sugars and
then sugars are appropriate compounds for both energy and chemical production [66]. There are several
papers that investigate different woody biomass (eucalyptus wood, red pine wood, poplar branches,
grapevine pruning, pine sawdust, aspen, fir, birch wood) hydrolysis with various homogeneous
catalysts (HCl, HySO4, and H3POy) in the several reaction conditions. In 2015, a work proposed the use
of methanol as a solvent for LA synthesis from eucalyptus wood chips and by using H,SO, catalyst.
90 vol % methanol solution as the solvent demonstrated great performance in the inhibition of humins
production from glucose by a quick reaction with glucose and convert it into LA and methyl levulinate
(MLA). Therefore, 66 mol% of LA and MLA was produced in best reaction condition at 180 °C and
90 min. [25]. In 2016, the same authors used the same biomass (eucalyptus wood) and catalyst (H,SO,)
to produce LA. First, for xylose recovery from hemicellulose, a pretreatment in the mild conditions was
done. Subsequently, the pretreated solution was reused in optimum condition of 170 °C and 300 min.
to produce 105 g/L of LA. The authors justified that high concentration of old LA in reaction solution
leads to some interaction with other intermediates and byproducts reducing the production of LA from
glucose [53]. The conversion of Pinus pinaster wood into LA while using two consecutive treatments
with hot, compressed water was also reported. Water-solubles and hemicellulose solubilization were
removed in the first and second step pretreatment, respectively. The pretreated liquid was mixed with
H,50; as the catalyst and hydrolyzed at different acid concentrations, temperatures, and reaction times.
66% yield of LA was produced in the optimum reaction condition of 135 °C and 3600 min. [67]. In 2012,
another work designed two-step acid-catalytic conversion of hybrid poplar wood chips into LA in order
to inhibit humins production from pentose fraction in biomass in severe acid conditions. The reaction
was started with a mild acid extraction to remove most of the pentoses and then followed by second
harsher step by using a high concentration of H,SOj, as a catalyst to convert the first step extracted
solids to LA. A maximum molar yield of 17.5 wt % based of the initial biomass was produced in the
best reaction condition [68]. Kuznetsov et al., in 2013, studied the LA production from different kinds
of wood (aspen, pine, fir, birch) using steam conversion of wood impregnated with HySOy4 (5 wt %) as
a catalyst at 220 °C for 120 min. The highest yield of 24% LA from wood was attained in all types of
wood. Additionally, the authors mentioned that the ability of inorganic acids as a catalyst to hydrolyze
carbohydrate into LA could be considered in the following activity order: HCl > HySO4 > H3POy4 [69].

There are several studies focusing on corn stalk, corn cob residue, and corn stover as a biomass
for LA production. In 2015, FeCls solution was proven as a catalyst for the synthesis of LA from corn
stalk. FeCl3 solution played a positive role in LA production in high temperature and concentration.
The highest LA yield was produced at 48.7% under the optimum condition of 230 °C and 10 min.
with 0.5 mol/L FeCl; solution [70]. Another study reported a high yield of LA (70%) from corn
stover. First, biomass was loaded to an enzymatic saccharification step for glucose production and
also isomerization of glucose to fructose. Subsequently, fructose conversion to LA was performed in
an effective mixture of acidic ionic liquid [BMIMSO3;H]JHSO,4 and DI water without any extra need
for an acid catalyst [71]. A new fed-batch process for increasing the concentration of LA produced
from corncob residues in HSO4 solution was recently designed by Liang et al. The fed-batch process
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(seven stage) was performed after a pretreatment in 3 wt. % HSOy solution to remove the hemicellulose
from corncobs. The mass concentration of LA was raised from 23.6 g/L to 107.9 g/L after first and
seventh hydrolysis, respectively. The authors claimed that this new process led to a decrease in the
amount of acid catalyst in the reaction and a reduction of energy consumption. Additionally, they found
that LA yield during the fed-batch process was dropped, owing to the polymerization of the 5-HMF
and the glucose to soluble humins analogues [72]. An efficient homogenous catalyst was used for the
production of LA from corncob residue by Zhao et al. Using SnCly as the catalyst was led to 64.6 mol%
yield of LA at 180 °C after 60 min. The authors demonstrated that, after hydrolysis of SnCly catalyst in
water, stannic oxide, H*, and C1~ could be produced. Therefore, cellulose hydrolysis was catalyzed
by CI~ and H*, fructose dehydration and 5-HMF decomposition were improved by H* as Brensted
acid, both glucose-to-fructose isomerization and fructose consumption yielding undesirable polymers
were catalyzed by Sn(IV) species when considering that it can have some negative impact on cellulose
hydrolysis [73]. Furthermore, corncob was used as the raw biomass for LA production that was
catalyzed with acid modified zeolite as a heterogeneous catalyst in subcritical condition. The natural
zeolite was modified while using a different ratio of HCl solution. By increasing the ratio of HCl in
zeolite, the H* ion increased in the surface of zeolite and subsequently in reaction solution improving
the hydrolysis of cellulose and hemicellulose to produce monomeric sugars. Additionally, acidic
condition and high temperature boosted the dehydration of monomeric sugars to LA. The highest
yield of LA was 262 mg/g obtained at 200 °C during a reaction time of 60 min., and zeolite to acid
ratio of 1:15. In addition, this catalyst indicated a gradual deactivation and an acceptable stability and
reusability after five cycles [74].

Sugarcane bagasse, in several countries, is produced in a vast amount as by-products of
agro-industrial production. In addition, this type of biomass is potentially prone in LA production
with a relatively lower market price. Two studies proposed the use of sugarcane bagasse as a feedstock
for LA production. In 2013, 63% LA was directly produced by using 0.55 M H,SOy, as the catalyst
in the optimum condition of 150 °C and 360 min. [75]. In 2017, first, a pretreatment of Sugarcane
bagasse with H,SOy acid at 120 °C and delignification with NaOH alkali at 80 °C were performed.
Afterwards, an acid hydrolysis carried out in different condition. The highest LA yield of 55.00 + 0.36%
was produced at 170 °C and 75 min. with the presence of HySOy as the reaction catalyst [76].

Jeong et al., demonstrated the application of Quercus mongolica as a biomass for LA production.
They suggested a pretreatment by using H,SOy dilute acid at 150 °C in 10 min. After this acid-catalyzed
pretreatment, the liquid hydrolysate was rich of the hemicellulosic C5 sugars, whereas the solid fraction
contained the Cg sugars. In 2017, they used the solid fraction for second step acid-catalyzed treatment
by using H,SO, as the homogeneous catalyst. The highest LA yield of 16.5% (g/100 g biomass) was
produced in the optimum condition [77]. On the other hand, in 2018, they used the liquid hydrolysate
for catalytic conversion of C5 sugar to LA by using the heterogeneous catalyst of alkaline-treated
zeolites Y (commercial). The maximum yield of 4.6% LA was produced at 190 °C and 180 min. [78].

In 2012, a study proposed the use of a hybrid catalyst made of HY zeolite and CrCl; in one pot
conversion of empty fruit bunch and kenaf to LA. The author claimed that the catalytic reaction of
the catalysts was predominantly influenced by the type of acid sites (Lewis acid), acid sites density,
pore size, and shape selectivity. Hydrolysis of empty fruit bunch and kenaf at optimum temperature of
145 °C and reaction time of 146 min. produced 53% and 66% of the LA, respectively. This high yield of
LA was justified by the suitable acidity of catalyst, the sufficient microspores and mesoporous diameter
to decrease some side reactions (fragmentation and polymerization), and proper shape selectivity,
which leads to trap 5-HMF (intermediate product of glucose) within the cage and rehydrate by acid
sites to form LA [79]. In addition, using metal halide (CrCls) beside zeolite demonstrated great catalytic
reactivity by improving the LA yield. CrCl; as a Lewis acid site promoted the glucose isomerization,
whereas both Brensted and Lewis acid sites of CrCl; and zeolite improved the dehydration/rehydration
reaction to LA.
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In 2017, the oil palm fronds were transferred into LA while using an acidic ionic liquid 1-sulfonic
acid-3-methyl imidazolium tetrachloroferrate (([SMIM][FeCl,]) as the catalyst. Two important properties
of ionic liquid for biomass dissolution and high acidity to catalyze the overall reaction made
[SMIM][FeCly] a potential catalyst for direct conversion of oil palm fronds into LA. The optimum yield
of 25% was produced at 154.5 °C during 3.7 h of reaction time [80].

In 2017, Tiong et al., proposed a heterogeneous catalyst that was made of indium trichloride as the
Lewis acidic site and a noncorrosive ionic liquid, 1-methylimidazolium hydrogen sulfate as the Brensted
acidic site to produce LA from oil palm empty fruit bunch and mesocarp fiber biomass. The authors
suggested that the concentration of catalyst is one of the most important factors in the depolarization
of biomass, because the excess loading of catalyst causes cross polymerization, acceleration of the
reducing sugars degradation, and the production of black insoluble charred materials, the so-called
“humins”. Furthermore, the presence of InClj as the Lewis acid helped the production of desirable
product by promotion of glucose to fructose isomerization. The best result was 12% and 13% yield of
LA conducted at ionic liquids-to-biomass ratio of 5:1 (w/w), 0.15 mmol InCl3, and temperature of 160 °C
for 300 min. from oil palm empty fruit bunch and mesocarp fiber, respectively [81]. In 2019, the same
authors used the same catalyst and biomass feedstock in order to optimize the operation condition
by the response surface methodology approach. The best result, including LA yield of almost 18%,
was obtained at 177 °C in 288 min. with 0.15 mmol InClj in ionic liquids-to-biomass ratio of 6.6:1 (w/w)
from both oil palm empty fruit bunch and mesocarp fiber biomass [82].

It has been reported that giant reed as a suitable biomass in the Mediterranean area growing
under extreme conditions can be directly convert to LA with a maximum yield of 23%. First, when
pre-treatment of the biomass was needed, it was performed at a lower temperature for 120 min.
Subsequently, the main hydrothermal conversion was accomplished by using HCl as an appropriate
homogeneous acid catalyst. The authors believed that HCI could have a great performance, even at
low concentration [83]. In 2015, the same authors tried to optimize the reaction condition by using
microwave heating method and also the diluted acid approach. Eventually, the maximum LA yield of
21% was obtained at 180 °C for 20 min. [84].

The microwave heating process was also used for the conversion of two types of biomass,
including carbohydrate-rich potato peel waste and sporocarps of the fungus Cortinarius armillatus
to LA. The reaction was performed in the presence of both Brensted acid (H,SO4) and Lewis acid
(CrCl3-6H,0 or AICl3-6H,0) catalysts. The authors reported that the process was dependent on the
time, temperature, H,SO4, and Lewis acid concentrations. The maximum LA yield of 49% and 62%
was achieved in the optimum reaction conditions of 180 °C, 15 min. and 180 °C, 40 min. from potato
peel waste and Cortinarius armillatus, respectively [85]. Since the solid heterogeneous catalyst has
polarity, it can interact with the microwave field and be heated quickly beside the liquid homogeneous
catalyst. Thus, the microwave method can be efficient for the reaction due to great thermal influence.

In 2013, bamboo shoot shell was transferred into LA that was catalyzed with ionic liquid
[C4mim]HSO,, Although this ionic liquid can be considered to be an effective and environmentally
friendly catalyst, when considering their high cost, the authors suggested further investigation of ionic
liquids for this application. After optimizing the reaction condition, the best LA yield of 71 mol% was
obtained at 145 °C for 104 min. [86].

HCI and H,50; are the mineral acid catalysts that were used for the conversion of biomass to LA
in the most of the works, as it is obvious from Table 2. Using these homogenous catalysts that are as
the common and traditional catalysts for decades allowing for reasonable yield to LA, cost, and easier
accessibility. The reactivity of mineral catalysts is related to several prominent factors, such as the
strength and concentration of the catalyst, nature and concentration of biomass, and reaction condition,
such as time and temperature.
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Table 2. Valorization of second generation biomass into LA over catalysts.

Biomass Solvent Ionic Liquid Homo Cat Hetero Cat T(°C)  Time (min) Other Yield of LA Ref

Rice straw H,O [C3SO3Hmim]HSOy4 - - 180 30 21% [56]

Rice straw H,O - 8,042 /Zr0?-Si0,-Sm, O3 200 10 22% [57]

Rice straw H,O - S,05%7/Zr0%Si0,-Sm, O3 200 15 ENZ PRET 25% [58]

Rice straw H,O - GaHPMo 175 360 46% [59]

Rice straw H—i]ODI-:—/I;‘,F(I){ F HCl1 - 180 120 PRET H,SO,4 21% [60]

Rice straw H,O + DCM HCI, FA, LA - 200 180 16.6% [61]

Paddy Straw H,O HCl - 220 45 24% [62]

Cotton straw H,O H,SO4 - 180 60 9.5% [63]

Barley straw H,O H,S0,4 - 158 15 0.03 g/L [64]

Bamboo H,O [C4(Mim), ][(2HSO4)(H2SO04)4] - - 100 60 47.5% [65]

Eucalyptus wood chips ot H,50, - 180 90 66 mol% [25]

Eucalyptus wood H,O H,SO4 - 170 300 PRET 105 g/L [53]

Pinus pinaster wood H,O H,S0,4 - 135 600 66% [67]

Poplar wood chips H,O H,SO4 - 190 50 17.8% [68]

Aspen, pine, fir, birch wood H,O H,SO4 - 220 120 24% [69]

Corn stalk H,O FeCls - 230 10 48.7% [70]

Corn Stover H,0 [BMIMSO;H] HSO, - - 95 60 70% [71]

Corncob residues H,O H,SO4 - 180 50 7StageH 107.9 g/L [72]

Corncob residues H,O SnCly - 180 60 64.6 mol% [73]

Corncob H,O - Acid modified zeolite 200 60 52.48ppm [74]

Sugarcane bagasse H,O H,SO4 - 150 360 63 mol% [75]

Sugarcane bagasse H,O H,S04 - 170 75 PR];:\}ZSIZ_‘IS O4 55.00 + 0.36% [76]

Quercus mongolica H,O H,S0, - 200 10 PRET H,SO;  16.5% (g/100 g biomass)  [77]

Quercus mongolica H,O - modified zeolite Y 190 180 PRET H,SOy4 4.6% [78]

Empty fruit bunch H,O - hybrid of HY zeolite and CrCl3 145 146 53% [79]

Kenaf H,O - hybrid of HY zeolite and CrCl3 145.2 146.7 66% [79]

Oil palm fronds H,0 [SMIM][FeCl,] - - 154.5 222 25% [80]

Oil palm empty fruit bunch H,O InCl;~ [HMIM][HSO4] - - 160 300 12% [81]

Mesocarp fiber H,O InCl3 " [HMIM][HSOy4] - - 160 300 13% [81]

Oil palm empty fruit bunch H,O InCl; " [HMIM][HSO4] - - 177 288 17.7% [82]

Mesocarp fiber H,O InCl;~ [HMIM][HSO4] - - 177 288 18.4% [82]

Giant reed H,O HCl1 - 180 60 PRET 23% [83]

Giant reed H,O HCl1 - 180 20 mw 21% [84]

Carbohydrate-rich potato H,0 H,S0, CrCl; orAICl 180 15 mw 49% [85]
peel waste

Fungus Carbinarius H,0 H,50, CrCl; orAICl; 180 40 mw 62% [85]

Bamboo shoot shell H,O [Cymim] HSO4 - - 145 104 71 mol% [86]

Homo Cat = Homogenous Catalyst; Hetero Cat = Heterogeneous Catalyst; PRET = PRETREATMENT; ENZ = ENZYMATIC; 7StageH = 7 Stage HYDROLYSIS; mw = microwaves.
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In addition, metal salts, such as different metal chlorides, demonstrated remarkable catalytic
activity with higher yield of LA. In this group of catalysts, metal cations can act as the Lewis acid site
and intrinsic Brensted acidity derives from their hydrolysis.

In fact, limited mass transfer of solid-insoluble-substrate/solid-catalyst system causes trouble in
using heterogeneous catalysts. Owing to this problem, solid phase catalyst can be more appropriate
for water-soluble carbohydrates. There are some few researches that focus on using heterogonous
catalysts, especially zeolite with mixed Brensted and Lewis acid centers in which the results showed
an acceptable performance of this group of catalyst.

Moreover, most of the work was performed under an initial and external pressure of an inert
gas, such as nitrogen, and the reaction was done in subcritical water. Therefore, the higher pressure
of the reaction was produced from high-pressure steam. Water can be a safe and ecofriendly solvent
with high thermal conductivity, which can produce ionic product in high temperature and boost the
reactivity of the homogeneous catalyst in biomass conversion [87]. However, polysaccharides and
biomasses are insoluble in water. The hydrolysis of cellulose to glucose under mild conditions could
be a heterogeneous reaction and by using homogeneous catalyst mass transfer is reasonable and
the proton of the catalyst can penetrate into the matrix of cellulose [57]. On the other hand, there is
limited contact between solid biomass feedstock and solid heterogeneous catalyst while using water
as the solvent, and the proton of solid catalyst cannot be widely dispersed in the water solution.
To increase the limited mass transfer, using organic solvents, such as THF, DMSO, MIBK, ionic liquids,
and biphasic systems (e.g., aqueous/organic solvent, ionic liquids/aqueous) can be efficient [8§8-91].
Selecting a suitable organic solvent according to the nature of substrate and catalyst is of crucial
importance. Some significant factors, such as solubility of feedstock in solvent, having similar polarity
of the solvent and feedstock, impact of solvent on selectivity of the desired product, possible recovery
and recycling, its expense, and environmental effects must be taken into account.

Some authors used ionic liquid as both solvent and catalyst and the LA yield was low in most
cases, depending on the type and reactivity of the ionic liquid. Although this group of solvents
attached a great attention due to tunable chemical and physical properties, they demonstrate prominent
disadvantages, such as high cost, reactor corrosion, high viscosity and lower mass transfer, and hard
recovery by distillation method due to low vapor pressure, which need to be strongly considered.
Thus, ionic liquids are not completely environment-friendly and have limitation in using it at the
industry level [54,55].

4. LA Production from Third Generation of Biomass: Algal Biomass

Recent studies in biofuel and biochemical generation have demonstrated the great potential of
macroalgae (seaweed) as the third generation of biomass on extracting high value added chemicals [92].
Macroalgae can be considered as a prominent source of some viable compositions, such as alginates,
ulyan, agar, fucoidan, etc. [93,94]. Therefore, polysaccharides are one of the original compositions of
three groups of brown, red, and green macroalgae [95]. Using macroalgae as a feedstock for valuable
chemicals production has some advantages than second generation biomass consisting no presence of
lignin in the structure, high carbohydrate content, and very fast growth rate with the consumption of
huge amount of CO, [96].

The brown seaweeds have some types of carbohydrates consisting of laminaran, mannitol,
fucoidan, cellulose, and alginates. Agar, cellulose, xylene, mannan, and carrageenan are the saccharides
that are presented in the red seaweed cell wall, whereas the green seaweed cell wall is made up of
cellulose, mannose, and xylene [97]. As can be seen in Figure 6, different polysaccharides in macroalgae
can be hydrolyzed into monosaccharides, such as glucose, galactose, and xylose by using Brensted acid
as the catalyst. Glucose and galactose are prone to follow the process of dehydration into 5-HMF while
using bifunctional catalyst and then rehydration into LA using Brensted acid catalyst. Furthermore,
xylose can be dehydrated into furfural and then hydrogenated into furfuryl alcohol and ethyl levulinate
and then LA catalyzed by bifunctional catalysts [4,98]. In addition, algal biomass has a considerable
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amount of inorganic salts in the structure, which can act as a contamination and reduce LA yield.
Thus, dilute acid pretreatment of this group of biomass is highly recommended, which can lead to the
formation of acid salts and remove the metal ions from the biomass body to aqueous solution.

CH,OH CHyOH

OH Bronsted acld Bifunctional Bronsted acid
0 HorLyegr  Catalyst " i \E“ I/ T \I catalyst )KO/\ catalyst jL/YCHa
0 OH H
o ﬁ Hydrolyss | [ ] 4 l/'_ A
OH a ] 1
| Polysaccharides in algac | [ Glucose | [ Galactose |

Figure 6. Overview of LA production from third generation biomass.

In 2019, an interesting study has proposed a co-production of LA and hydrochar from red seaweed
(Gracilaria lemaneiformis), with high potential for economic viability. The authors selected diluted
H;,SOy as the acid catalyst, because of it being common, effective, and cheap. In addition, it is important
to consider the calcium naturally present in biomass because a precipitation reaction between the
sulphate ions of the catalyst and calcium might happen. They obtained best LA yield of 16.3 wt%
through microwave treatment under the conditions of 180 °C, 20 min., 0.2M H,SO4, and 5% (w/v) of
biomass loading [99].

Gracilaria fisheri and Gracilaria. Tenuistipitata as red seaweeds were also transformed into LA
after pretreatment at different concentrations of H,SO,. This work was conducted to examine the
pretreatment conditions to boost the production of fermentable sugars and by-products from these
biomasses. The catalytic efficiency for both biomasses was higher when the hydrolysis time was
150 min. and at the same time for G. fisheri was higher in comparison with that of G. tenuistipitata.
The best LA concentration of 3.66 g L™ and 6.12 g L~ was produced in optimum acid concentration of
1 M H,50;, with a reaction time of 150 min. at 95 °C for G. fisheri and G. tenuistipitata, respectively [100].

In 2015, a study that focused on optimization of reaction condition for conversion of red-algae
Gracilaria verrucosa to sugars (glucose, galactose), LA, and 5-HMF by the acidic hydrolysis process.
The author reported that LA are prone to being produced at a higher reaction temperature, a higher
H,SOy catalyst concentration, and a longer reaction time than glucose, galactose or 5-HMF. The best
yield of LA was almost 19 wt% at optimum condition of 180.9 °C, 2.85% acid concentration and
50 min. [101]. In 2018, anothers work reported LA production from the same biomass, but using different
type of catalyst. MSA (methanesulfonic acid) was applied as a catalyst to this thermochemical reaction.
The author proposed MSA as a stronger, more available and eco-friendly catalyst when compared with
other inorganic acids. A LA yield of 22% was achieved at 180 °C, 0.5M MSA, and 20 min. [102].

In 2010, it has been demonstrated that Gelidium amansii, which is considered as the category of
red macroalgae, can also be converted into LA. This seaweed is rich in carbohydrate content (glucose,
galactose, galactan, etc.), which is higher than that of lipid, protein, etc. The authors investigated
different reaction conditions and found that LA can be produced at a long reaction time, high reaction
temperature, and high catalyst concentration. Hence, by using H,SOj as the catalyst with concentration
of 3.0%, 9.7 g/L of LA was formed at 160 °C in 43.1 min. [103]. In 2013, another group of researchers
worked on the same biomass for LA formation through two steps hydrolysis process. In the first step,
they aimed to optimize the hydrolysis condition to produce higher yield of galactose in the liquor and
glucose content in the residue. The optimum condition was selected H,SO, concentration of 8.97%,
temperature of 76 °C, and reaction time of 49 h. The authors believed that first step pretreatment could
be a crucial and viable process for hydrolysis of polysaccharides, such as cellulose into monomers,
such as glucose. The second step hydrolysis was performed on higher temperature by using the
diluted liquor of first hydrolysis step. The best yield of 43% LA was achieved at 180 °C, 3% H;SO4
concentration, and 48 min. [104].
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Enteromorpha intestinalis as a green macroalgae were proceeded into fermentable sugars and
chemicals. After trying several reaction conditions and their effect on products yield, the authors found
that LA could be produced at high temperature, high catalyst concentration, and middling reaction
time, although the LA yield was not remarkable. The best LA yield of 4% was achieved with H,SO4
concentration of 3.7% at 175 °C in 35 min. reaction time [105]. In addition, a group of authors applied
another type of green duckweed, Lemna minor, with high starch content of 50%, as the raw material to
value-added chemicals production process. First, the process of Duckweed cultivation and induction
was performed with the uniconazole-induction method. Subsequently, the cultivated duckweed was
proceeded to LA in diluted HCl aqueous solution in teflon lined stainless steel autoclave. With the
enhancement of HCl concentration, the conversion of the generated glucose into LA and formic acid
became faster. The maximum yield of 262 g/kg LA was formed at optimum condition of 1.2 w% HC],
180 °C and 150 min. [106].

As can be seen in the Table 3, among different types of macroalgae, red algae have shown to be
a better potential on chemicals production, due to the higher content of polysaccharide complexes
in the structure. Although homogeneous catalysts are not promising because of limited recyclability,
waste generation, and reactor corrosion, all of the studies have been reported on the homogeneous
catalytic hydrolysis of third generation biomass into LA. No published data on using heterogeneous
catalyst is available. Therefore, the selection of an appropriate heterogeneous catalyst, to be more
stable, efficient, green, and recyclable could play a vital role.

Table 3. Valorization of third generation biomass into LA over catalysts.

Biomass Solvent Homogeneous Catalyst T(°C) Time (min) Other (\){flili Ref
Gracilaria lemaneiformis H,O H,S04 180 20 mw 16.3% [99]
Gracilaria fisheri H,O H,SO4 95 150 3.66g Lt [100]
Gracilaria. tenuistipitata H,O H,SO,4 95 150 612gL™t  [100]
Gracilaria verrucosa H,O H,SO4 180.9 50 19% [101]
Gracilaria verrucosa H,O MSA (methanesulfonic acid) 180 20 22% [102]
Gelidium amansii H,O0 H,S0, 160 43.1 9.7 g/L [103]
Gelidium amansii H,O H,SO4 180 48 PRET 43% [104]
Enteromorpha intestinalis H,O H,SO4 175 35 4% [105]
Lemna minor H,0 HCl1 180 150 262 g/kg [106]

PRET = PRETREATMENT, mw = microwaves.

5. Conclusions

LA, as an essential chemical building block, can be directly produced from three generation
of biomasses. The acid catalyzed reaction pathway of LA production from biomass could be:
(i) pretreatment of biomass, (ii) hydrolysis of polysaccharides to monosaccharides, such as hexoses
and pentoses, and (iii) conversion of monosaccharides to LA through several step reactions that are
dependent on the types of the sugar. Moreover, there are some unavoidable byproducts when the
reaction is catalyzed by acid catalyst in which the type of byproducts depends on the type of biomass,
catalyst, solvent, and reaction condition. Byproducts can have some negative effects on the hydrolysis
efficiency. Three significant outlooks are listed below on the basis of what was discussed through this
review:

(1) Pretreatment of biomass seems to be a compulsory step for improving the yield of LA and
reaction rate [32]. Some of the studies performed pretreatment before starting real hydrolysis
reaction. There are different methods for biomass pretreatment, which depend on the type of
the raw starting compounds. Dilute acid pretreatment was demonstrated as the most common
method, especially for second generation biomass. Pretreatment causes an increase in cellulose
percentage in the feedstock, and most of the glucose could remain in the pretreated feedstock.
Therefore, pretreatment could act as a desirable economic method, which leads to higher efficient
LA production. According to the type of biomass, it could be more utile if other types of
pretreatment, such as mechanical communication, steam explosion, CO, explosion, pyrolysis,
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)

®)

)

)

®)

@)

organosolv, and biological pretreatment processes are taken into the account in order to remove
some destructive components, such as lignin and inorganic salts [107].

Water seems to be a preferable solvent for the LA production from biomass. Water or supercritical
water in the reaction condition is safe and environmental friendly. In addition, it has lots of
advantages, such as high thermal conductivity and low viscosity. On the other hand, in some
cases, water cannot be an appropriate solvent, due to the insolubility of polymeric feedstock,
especially when heterogeneous catalyst is used, limited mass transfer and instability of some
water-sensitive catalysts, such as metal chloride [108]. Therefore, using the most suitable ionic
and organic solvents could be critical. In recent years, study on ionic liquids has attracted great
attention, owing their wide performance as solvents as well as catalysts. However, the harmful
effect of this class of solvent, such as toxicity, explosivity, biodegradability, and their high cost
limits them from plentiful use [109].

According to what was reported in the recent year literatures, homogeneous catalysts, especially
HCl and HSO4, were widely used for the conversion of all three generation biomasses.
Homogeneous catalysts may be recovered from the reaction solution by using the distillation
method, but the challenge of reactor corrosion makes the process outrageously expensive.
Replacing homogeneous acid catalysts with green and efficient heterogeneous catalysts can be
useful for hydrolysis process in the future. In addition, in recent years, using heterogeneous
catalyst in LA production especially from second generation biomass, has gradually increased.
Normally, solid catalysts are tunable in the aspect of acidity and reaction condition and they
could be easily recovered [110]. Furthermore, heterogeneous catalysts do not have the problem
of reactor corrosion and they could be a promising catalyst for industrial use [111]. However,
using heterogeneous catalysts still have some limitations, such as limited mass transfer and the
deposit of some solid byproducts, such as humins and big organic components on the surface of
the catalyst and deactivation over a long period of time.

Furthermore, four outlooks for future trends are highlighted below:

Development of the green heterogeneous catalysts focusing on the important factors, such as
surface area, pore size and structure, accessibility of acid sites, recovery and recyclability,
and lifetime is the trend for future biomass direct hydrolysis.

Using some novel non-terrestrial resources, such as macroalgae, can demonstrate an important
achievement. Therefore, further study is still compulsory for developing an environmental-friendly
process with new high recyclable catalysts, which increase the LA yield and progressively target
towards raw and cheap biomass feedstock, and finally the possibility to scale up the process
going beyond the economic and technological barriers.

Separation and purification of LA from reaction solution, especially while using organic solvent
is still a challenge for having a cost-effective application. One potential way to solve this problem
is producing a higher LA concentration in the product stream, which can decrease the amount of
waste-solvent and reduce the consumption of energy. Moreover, solid acid catalysts are preferred
in the separation process. However, work on this research area is still needed.

Formation of by-products, such as thermal-table humins, is still a bottleneck for the industrial
scale production of LA. This problem is more relevant while using lignocellulosic biomass (owing
to the presence of lignin) as the feedstock. Since humins are prone to blocking and deactivating
the catalyst active sites, especially for heterogeneous catalysts, it can limit the scale-up on larger
scale. Performing reaction at low temperature, high acid concentration, and using low biomass
concentration could be some possible ways of preventing the formation of humins. However,
more studies are still needed in order to completely inhibit the formation of humins. In addition,
conversion of humins to some new carbon components is suggested for future work.
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