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Abstract: This work deals with the size-dependent buckling response of functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) (FG-CNTRC) curved beams based on a higher-order
shear deformation beam theory in conjunction with the Eringen Nonlocal Differential Model (ENDM).
The material properties were estimated using the rule of mixtures. The Hamiltonian principle was
employed to derive the governing equations of the problem which were, in turn, solved via the
Galerkin method to obtain the critical buckling load of FG-CNTRC curved beams with different
boundary conditions. A detailed parametric study was carried out to investigate the influence of
the nonlocal parameter, CNTs volume fraction, opening angle, slenderness ratio, and boundary
conditions on the mechanical buckling characteristics of FG-CNTRC curved beams. A large parametric
investigation was performed on the mechanical buckling behavior of FG-CNTRC curved beams,
which included different CNT distribution schemes, as useful for design purposes in many practical
engineering applications.

Keywords: buckling; Galerkin method; nanocomposites; nonlocal elasticity theory

1. Introduction

The reinforcement of nanocomposites with the introduction of carbon nanotubes (CNTs) as filler
beside a polymeric matrix is well known to improve the potential applications of a structure in some
fields of mechanics and electronics. Indeed, in recent decades, CNTs reinforced nanocomposites have
been increasingly studied in the scientific community because of their remarkable properties [1–9].
CNTs are made of graphene sheets as it is the thinnest material in the world. Therefore, the use of CNTs
with very small dimensions cannot disregard the possibility of size-dependent behavior of materials,
especially at a nanoscale. This represents a challenging aspect to consider during the evaluation of
the structural behavior of nanomaterials. To overcome this issue, a large variety of methods and
strategies have been proposed in the literature, including laboratory tests, molecular dynamics-based
simulations, and non-classical mathematical methods [10–19]. Among them, experimental tests and
molecular dynamics simulations, however, are typically expensive and time-consuming, which has
led to find an attention to use theoretical and numerical models for approaching similar problems.
In this framework, Eringen [20,21] proposed a size-dependent model in which the size-dependent
behavior is considered by introducing one small-scale nonlocal parameter. However, this approach
considers only the softening enhancement of the size-dependence in nanostructured systems. Bouafia
et al. [22] analyzed the bending and vibration response of FG nanobeams via a nonlocal quasi-3D
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theory. Shahsavari et al. [23] studied the forced vibration of viscoelastic graphene sheet under the
moving load using a nonlocal refined plate theory. Ganapathi et al. [24] studied the vibrations of
curved nanobeams via a nonlocal higher-order theory based on a finite element approach. For the first
time, a guided wave propagation analysis of porous nanoplates was performed by Karami et al. [25]
using the differential constitutive nonlocal model of Eringen in conjunction with the first-order shear
deformation theory. The elastic stability response of curved nanobeams was analyzed by Polit et al. [26]
using a nonlocal higher-order shear deformation theory employed in a finite element context. A further
application of the nonlocal higher-order theory can be found in the work of Ganapathi and Polit [27]
for the numerical study of the bending and buckling response of curved nanobeams, including the
thickness stretching effect. For the first time, the shear buckling analysis of porous nanoplates was
presented by Shahsavari et al. [28] using a nonlocal quasi-3D plate theory. A different single variable
shear deformable nonlocal theory was applied instead, by Shimpi et al. [29], for the static analysis
of rectangular micro/nanobeams subjected to a transverse loading, whereas a comprehensive study
of the CNTs reinforced composite plates was presented by Karami et al. [30] by applying a nonlocal
second-order shear deformable theory.

In a context where curved structures like beams or tubes play a remarkable role in many
nanotechnology applications because of their engineering properties (i.e., high strength/stiffness to
weight ratios), various size-dependent investigations of reinforced curved beams, tubes, and shells
have been carried out in literature [31–41], including different theoretical or computational strategies.

In the current work, the buckling response of CNT reinforced composite curved beams was
investigated through the constitutive equations of the nonlocal elasticity, while originally employing
the Galerkin method. A continuum model of the nanobeam was also considered based on a
higher-order refined theory of beams, which included the shear deformation effects without any
proper introduction of shear correction factors. The nonlocal governing equations of the CNT
reinforced curved size-dependent beams are here described by means of the Hamiltonian principle,
which has been written in a variational form, and they are solved numerically for simply-supported
and clamped boundary conditions. After evaluating the accuracy of the proposed method using the
available literature, we represent the main results based on a large parametric investigation aimed to
studying the influence of boundary conditions, opening angles, CNT distribution patterns, volume
fractions, and nonlocal parameters on the critical mechanical buckling force, which is useful for the
structural analysis and design of composite curved nanostructures.

The paper is organized as follows. Following the introduction section, we describe the basic
fundamentals of the size-dependent problem in Section 2, while the considered solution strategy is
presented in Section 3. Afterwards, Section 4 presents the numerical results of a large parametric
investigation, useful for design purposes for many engineering applications. Finally, concluding
remarks are summarized in Section 5.

2. Size-Dependent Problem

2.1. Basic Fundamentals

In this section, we consider the nonlocal model of Eringen [20], which is based on the following
stress-strain relations:

τi j =

∫
V
α(

∣∣∣x′ − x
∣∣∣), τσi j(x′)d(V′) (1)

σi j and τi j being the local and nonlocal stress tensors, together with the following differential
equations typically defined for a size-dependent behavior of nanostructure systems:(

1− (e0a)2
∇

2
)
σi j = Ci jklεkl (2)

where ∇2 is the Laplacian operator.
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Let us consider a CNTRC curved beam with length L and thickness h, as shown in Figure 1.
Two different distributions of CNTs are here considered, namely a uniform distribution (UD) and a
non-uniform functionally graded (FG) distribution, along the thickness direction of the curved beam
(Figure 2), whereby the CNTs are added as filler beside the matrix for the reinforcement purposes.
Hence, the effective material properties of CNTRC curved beams are defined, based on the Mori–Tanaka
micromechanical scheme and the rule of mixture, as follows [42]:

E11 = η1VCNTECNT
11 + VmEm (3)

η2

E2
=

VCNT

ECNT
22

+
Vm

Em (4)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm (5)
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Figure 1. Geometry of a carbon nanotubes (CNTs) reinforced composite curved beam. 

  

Figure 1. Geometry of a carbon nanotubes (CNTs) reinforced composite curved beam.
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Figure 2. Distribution schemes of CNTs along the thickness direction. UD = uniform distribution;
FG = functionally graded.

In the previous relations, ECNT
12 , ECNT

22 GCNT
12 are the Young moduli and shear modulus of CNT; Em,

Gm refer to the mechanical properties for the matrix; and VCNT and Vm denote the volume fractions of
the CNT and matrix, respectively, such that:

VCNT + Vm = 1 (6)

The CNTs efficiency parameters η j in Equations (3)–(5) must be determined before computing
the effective material properties of the structure. Thus, we estimate the CNT efficiency parameters η1

and η2 by comparing the Young’s moduli ECNT
11 and ECNT

22 for the CNTRCs, as obtained by the rule
of mixtures, with those given by Han and Elliott [43]. In Table 1, the mechanical properties with a
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clear good agreement between the molecular dynamics and the rule of mixture are summarized after a
proper selection of η1 and η2. Moreover, the effective Poisson’s ratio and mass density are expressed as”

ν12 = V∗CNTν
CNT
12 + Vmν

m (7)

ρ = VCNTρ
CNT + Vmρ

m (8)

where νCNT
12 , ρCNT stand for the Poisson’s ratio and mass density of the CNT; and νCNT

12 , ρCNT refer to
the Poisson’s ratio and mass density of the matrix, respectively. The selected distribution schemes for
CNTs along the thickness direction can be expressed analytically as [42]:

VCNT =

 V∗CNT (UD)(
1 + 2z

h

)
V∗CNT (FG)

(9)

where:
V∗CNT =

wCNT

wCNT + (ρCNT/ρm) − (ρCNT/ρm)wCNT
(10)

and wCNT is the mass fraction of the CNTs.

Table 1. Mechanical properties for a Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene)
vinylene]} (PmPV)/CNT composites reinforced by (10,10) SWCNT at the temperature T = 300 K.

V∗CNT MD [43] Rule of Mixture

E11 (GPa) E22 (GPa) E11 (GPa) η1 E22 (GPa) η2
0.11 94.8 2.2 94.42 0.149 2.20 0.934
0.14 120.2 2.3 120.38 0.150 2.30 0.941
0.17 145.6 3.5 144.77 0.140 3.49 1.381

In what follows, we include the interactions among the CNTs and the matrix, while ignoring the
effects of strains at general points of the nanocomposite on the stresses at a reference point. Thus,
to avoid any possible inaccuracy related to the above-mentioned approximation, it is referred to the
presence of nonlocal parameters as required by the Eringen Nonlocal Differential Model (ENDM) to
predict the size-dependent behavior of nanostructure systems.

2.2. Displacement Field and Strain

According to the refined beam theory, the curved beam is modeled as a continuum model with its
displacement field defined as [44]:

uθ(θ, r, t) = (1 +
z
R
)u(θ, t) +

z
R
(
∂wb(θ, t)
∂θ

) +
f (z)
R

(
∂ws(θ, t)
∂θ

) (11)

wr(θ, r, t) = −wb(θ, t) −ws(θ, t) (12)

where u is the tangential mid-plane displacement, wb and ws are the bending and shear components of
the radial displacement, respectively; and f (z) is the shape function defined as:

f (z) =
h
π (sinh[πz

h ] − z)

(cosh[π2 ]) − 1
(13)

It is interesting to note that the shape function in Equation (13) satisfies the stress-free boundary
conditions on the top and bottom surfaces of the beam without using any shear correction factor. The
non-zero strain field related to the displacement components is:

εx = ε0
x + zkb

x + f (z)ks
x, γxz = g(z)(γ0

xz) (14)
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where:

ε0
x =

1
R
(−wb −ws +

∂u
∂θ

), kb
x =

1
R2 (

∂u
∂θ

+
∂2wb

∂θ2 ), ks
x =

f (z)
R2 (

∂2ws

∂θ2 ), γ0
xz = −

∂ws

R∂θ
(15)

and g(z) = 1 f ′(z).

2.3. Governing Equations

The equations of motion for the stability of composite curved beams can be derived from the
Hamilton’s principle: ∫ t

0
δ(U + V)dt = 0 (16)

where U and V refer to the strain energy and work done by external forces, respectively. The variational
form of the strain energy is expressed as:

δU =
∫
V
σi jδεi jdV =

∫
V
(σxxδεxx + τxzδγxx)dV

=
∫ L

0

(
N(−

δwb
R −

δws
R + ∂δu

R∂θ ) −
Mb
R2 (

∂δu
∂θ +

∂2δwb
∂θ2 ) − Ms

R2
∂2δws
∂θ2 + Q

R
∂δws
∂θ

)
Rdθ

(17)

where:

(N, Mb, Ms) =

∫ h
2

−
h
2

(1, z, f (z))σxxdz, Q =

∫ h
2

−
h
2

g(z)τxzdz (18)

Accordingly, the work done by the applied forces takes the following form:

δV =

∫ L

0

Nb

R2 (
∂(wb + ws)

∂θ

∂δ(wb + ws)

∂θ
)Rdθ (19)

Nb is the applied tangential force here. By substituting Equations (17), (19) into Equation (16) and
integrating by parts with respect to space and time variables, the equations of motion in terms of the
displacement components of the curved beam can be obtained as:

−
∂N
∂θ
−

1
R
∂Mb
∂θ

= 0 (20)

∂2Mb

R∂θ2 −N −
Nb
R
∂2(wb + ws)

∂θ2 = 0 (21)

∂2Ms

R∂θ2 −N +
∂Q
∂θ
−

Nb
R
∂2(wb + ws)

∂θ2 = 0 (22)

Now, the constitutive equations of the nonlocal refined curved beam are introduced as follows:

σxx − µ
∂2σxx

∂θ2 = Eεxx (23)

τxz − µ
∂2τxz

∂θ2 = Gγxz (24)

where µ = (e0a)2. By the combination of Equations (2)–(21), (23), (24), we get to the following relations
for the curved beam:

N − µ
∂2N

R2∂θ2 =

(
A
R

(
−wb −ws +

∂u
∂θ

)
+

B
R2

(
∂u
∂θ

+
∂2wb

∂θ2

)
+

Bs

R2
∂2ws

∂θ2

)
(25)
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Mb − µ
∂2Mb

R2∂θ2 =

(
B
R

(
−wb −ws +

∂u
∂θ

)
+

D
R2

(
∂u
∂θ

+
∂2wb

∂θ2

)
+

Ds

R2
∂2ws

∂θ2

)
(26)

Ms − µ
∂2Ms

R2∂θ2 =

(
Bs

R

(
−wb −ws +

∂u
∂θ

)
+

Ds

R2

(
∂u
∂θ

+
∂2wb

∂θ2

)
+

Hs

R2
∂2ws

∂θ2

)
(27)

Q− µ
∂2Q

R2∂θ2 = −

(
As

R
∂ws

∂θ

)
(28)

where:

(A, B, Bs, D, Ds, Hs) =

∫ h
2

−
h
2

E(1, z, f (z), z2, z f (z), f 2(z))dz (29)

As =

∫ h
2

−
h
2

g2(z)Gdz (30)

Upon rearrangement, we get to the following governing equations of the beam in terms of
displacement components:

A
R

(
−
∂wb
∂θ −

∂ws
∂θ + ∂2u

∂θ2

)
+ B

R2

(
−
∂wb
∂θ −

∂ws
∂θ + 2 ∂

2u
∂θ2 +

∂3wb
∂θ3

)
+ Bs

R2
∂3ws
∂θ3 + D

R3

(
∂2u
∂θ2 +

∂3wb
∂θ3

)
+ Ds

R3
∂3ws
∂θ3 = 0

(31)

B
R2

(
−
∂2wb
∂θ2 −

∂2ws
∂θ2 + ∂3u

∂θ3

)
+ D

R3

(
∂3u
∂θ3 +

∂4wb
∂θ4

)
+ Ds

R3
∂4ws
∂θ4 −

A
R

(
−wb −ws +

∂u
∂θ

)
−

B
R2

(
∂2wb
∂θ2 + ∂u

∂θ

)
−

Bs
R2

∂2ws
∂θ2 −

Nb
R
∂2(wb+ws)

∂θ2 +
µ

R2

(
Nb
R
∂4(wb+ws)

∂θ4

)
= 0

(32)

Bs
R2

(
−
∂2wb
∂θ2 −

∂2ws
∂θ2 + ∂3u

∂θ3

)
+ Ds

R3

(
∂3u
∂θ3 +

∂4wb
∂θ4

)
+ Hs

R3
∂4ws
∂θ4

−
A
R

(
−wb −ws +

∂u
∂θ

)
−

B
R2

(
∂2wb
∂θ2 + ∂u

∂θ

)
−

Bs
R2

∂2ws
∂θ2 −

As
R2

∂2ws
∂θ2

−
Nb
R
∂2(wb+ws)

∂θ2 +
µ

R2

(
Nb
R
∂4(wb+ws)

∂θ4

)
= 0

(33)

3. Solution Methodology

The Galerkin method is here employed to solve the equations of motion for functionally graded
carbon nanotube-reinforced composite (FG-CNTRC) curved beams with simply-simply (S-S) supports,
clamped-simply (C-S) supports, and clamped-clamped (C-C) supports, respectively:

Simply-supports (S):
wb = ws = M = 0 at x = 0, L

Clamped-supports (C):
u = wb = ws = 0 at x = 0, L

Assuming the following expansion for the displacement field:

u(θ) =
∞∑

n=1

Un
∂Fm(θ)

∂θ
(34)

wb(θ) =
∞∑

n=1

WbnFm(θ) (35)

ws(θ) =
∞∑

n=1

WsnFm(θ) (36)



Molecules 2019, 24, 2750 7 of 14

and by introducing the Equations (34)–(36) into Equations (31)–(33), the following set of relations can
be obtained:

K


Un

Wbn
Wsn

 = 0 (37)

in which K represents the stiffness matrix. The admissible function Fm is selected in the following as
the beam eigenfunction, i.e.,

• S-S: Fm = sin( nπ
α θ)

• C-S: Fm = sin( nπ
α θ)

[
cos( nπ

α θ) − 1
]

• C-C: sin2( nπ
α θ)

To obtain the critical buckling force, we must enforce the determinant of the stiffness matrix
equal to zero. This parameter will be quantified in nondimensional form in the next parametric
analysis, namely:

Ncr = Nb
R2

EMh3 (38)

4. Numerical Results

The procedure proposed in the previous section is here applied to study the size-dependent
buckling behavior of FG-CNTRC curved beams. The higher-order shear deformation beam theory
is also applied to model the nanobeam, whereby the size-dependent effect is considered by means
of the application of the Eringen nonlocal differential model. Thus, the buckling phenomena of the
nanostructure are solved mathematically via the Galerkin method for different boundary conditions.
The parametric study presented in this work analyzes the sensitivity of the size-dependent buckling
response of FG-CNTRC curved beams reinforced with CNTs to some mechanical parameters (i.e., the
nonlocal parameter and the nanotube volume fraction), as well as to some geometrical parameters,
(namely, the opening angle, slenderness ratio, and the CNT distribution schemes). The preliminary
focus of the investigation was on the accuracy of the proposed method to compute the critical buckling
load, whose results are summarized in Table 2 in nondimensional form for an S-S beam, while varying
the nonlocal parameter µ. Based on a comparative evaluation between our predictions and those
obtained by Reddy [45], Aydogdu [46], and Eltaher [47], a very good match was observed, which
confirms the accuracy of the proposed formulation for similar problems.

Table 2. Nondimensional buckling force for a simply supported beam.

µ Reddy [45] Aydogdu [46] Eltaher [47] Present

0 9.8696 9.8696 9.86973 9.80601
1 8.9830 9.6319 8.98312 8.92692
2 8.2426 9.4055 8.24267 8.19176
3 7.6149 9.1894 7.61499 7.56846
4 7.0761 8.9830 7.07614 7.03246

Next, we discuss about the size-dependence of the buckling load for FG-CNTRC curved beams
with different boundary conditions (see Tables 3–11 and Figures 3–5), together with results for
UD-CNTRC counterparts, for a direct comparison. Unless otherwise stated before, the length of the
curved beam is fixed at L = 20, whereby a Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene)
vinylene]} is selected as matrix (henceforth labeled as PmPV), with Poisson’s ratio νm = 0.34, elastic
modulus Em = 2.1 GPa, and temperature T = 300 K. As reinforcement phase, instead, we select an
armchair (10, 10) SWCNTs, with elastic moduli ECNT

11 = 5.6466 TPa, ECNT
22 = 7.080 TPa, and Poisson’s

ratio νCNT = 0.175.
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Table 3. Nondimensional critical buckling load for simply- simply (S-S) CNTRC curved beams with
L/h = 10, α = π/3.

V∗CNT µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 0.11 12.5642 12.4111 12.2617 12.1158 11.9734 11.6983
0.14 14.3533 14.1784 14.0077 13.8411 13.6783 13.3641
0.17 19.6015 19.3626 19.1295 18.9019 18.6797 18.2505

FG-CNTRC 0.11 10.1067 9.9835 9.8633 9.7459 9.6314 9.4101
0.14 11.7678 11.6244 11.4844 11.3478 11.2144 10.9567
0.17 15.6689 15.4780 15.2916 15.1097 14.9321 14.5890

Table 4. Nondimensional critical buckling load for clamped simply (C-S) CNTRC curved beams with
L/h = 10, α = π/3.

V∗CNT µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 0.11 123.0005 119.3204 115.8541 112.5835 109.4924 103.7931
0.14 153.2617 148.6762 144.3571 140.2818 136.4303 129.3288
0.17 189.3549 183.6894 178.3532 173.3182 168.5597 159.7857

FG-CNTRC 0.11 120.5401 116.9336 113.5366 110.3314 107.3022 101.7169
0.14 150.8821 146.3677 142.1157 138.1037 134.3120 127.3207
0.17 185.4017 179.8545 174.6296 169.6998 165.0406 156.4498

Table 5. Nondimensional critical buckling load for clamped- clamped (C-C) CNTRC curved beams
with L/h = 10, α = π/3.

V∗CNT µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 0.11 251.6676 239.8324 229.0603 219.2143 210.1798 194.1748
0.14 316.4206 301.5402 287.9965 275.6171 264.2581 244.1351
0.17 386.8498 368.6573 352.0990 336.9642 323.0770 298.4749

FG-CNTRC 0.11 249.5883 237.8509 227.1678 217.4031 208.4433 192.5705
0.14 314.4762 299.6872 286.2267 273.9234 262.6343 242.6349
0.17 383.5269 365.4907 349.0746 334.0698 320.3018 295.9111

Table 6. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for S-S CNTRC
curved beams with α = π/3, V∗CNT = 0.14.

L/h µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 10 14.3533 14.1784 14.0077 13.8411 13.6783 13.3641
20 25.2537 24.9459 24.6456 24.3524 24.0660 23.5132
30 29.4450 29.0862 28.7360 28.3941 28.0603 27.4156
50 32.1881 31.7958 31.4130 31.0393 30.6744 29.9697

FG-CNTRC 10 11.7678 11.6244 11.4844 11.3478 11.2144 10.9567
20 18.4256 18.2010 17.9819 17.7680 17.5591 17.1557
30 20.6574 20.4057 20.1600 19.9202 19.6860 19.2337
50 22.0620 21.7931 21.5307 21.2746 21.0244 20.5414
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Table 7. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for C-S CNTRC
curved beams with α = π/3, V∗CNT = 0.14.

L/h µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 10 153.2617 148.6762 144.3571 140.2818 136.4303 129.3288
20 575.5663 558.3455 542.1252 526.8208 512.3568 485.6873
30 1247.1406 1209.8265 1174.6804 1141.5187 1110.1779 1052.3904
50 3353.4099 3253.0768 3158.5732 3069.4054 2985.1338 2829.7502

FG-CNTRC 10 150.8821 146.3677 142.1157 138.1037 134.3120 127.3207
20 564.4312 547.5436 531.6372 516.6288 502.4446 476.2911
30 1228.5852 1191.8263 1157.2031 1124.5348 1093.6603 1036.7326
50 3327.6844 3228.1210 3134.3424 3045.8586 2962.2334 2808.0419

Table 8. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for C-C CNTRC
curved beams with α = π/3, V∗CNT = 0.14.

L/h µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC 10 316.4206 301.5402 287.9965 275.6171 264.2581 244.1351
20 1230.3705 1172.5095 1119.8461 1071.7102 1027.5419 949.2954
30 2714.6098 2586.9490 2470.7560 2364.5519 2267.1018 2094.4639
50 7393.5474 7045.8487 6729.3838 6440.1251 6174.7087 5704.5098

FG-CNTRC 10 314.4762 299.6872 286.2267 273.9234 262.6343 242.6349
20 1218.4960 1161.1934 1109.0383 1061.3669 1017.6249 940.1336
30 2691.1353 2564.5784 2449.3901 2344.1045 2247.4971 2076.3521
50 7355.7738 7009.8515 6695.0035 6407.2225 6143.1622 5675.3655

Table 9. Effect of the opening angle α on the nondimensional critical buckling load for S-S CNTRC
curved beams with L/h = 10, V∗CNT = 0.14.

α µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC π/4 28.3891 28.0431 27.7055 27.3759 27.0540 26.4325
π/3 14.3533 14.1784 14.0077 13.8411 13.6783 13.3641
π/2 4.5393 4.4840 4.4300 4.3773 4.3258 4.2264

2π/3 1.4001 1.3830 1.3664 1.3501 1.3342 1.3036
FG-CNTRC π/4 23.3784 23.0935 22.8155 22.5440 22.2790 21.7672

π/3 11.7678 11.6244 11.4844 11.3478 11.2144 10.9567
π/2 3.6889 3.6440 3.6001 3.5573 3.5155 3.4347

2π/3 1.1279 1.1141 1.1007 1.0876 1.0748 1.0501

Table 10. Effect of the opening angle α on the nondimensional critical buckling load for C-S CNTRC
curved beams with L/h = 10, V∗CNT = 0.14.

α µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC π/4 172.4731 167.3128 162.4523 157.8662 153.5319 145.5402
π/3 153.2617 148.6762 144.3571 140.2818 136.4303 129.3288
π/2 139.5855 135.4092 131.4754 127.7638 124.2560 117.7882

2π/3 134.8634 130.8284 127.0277 123.4417 120.0526 113.8035
FG-CNTRC π/4 168.1669 163.1354 158.3962 153.9246 149.6986 141.9064

π/3 150.8821 146.3677 142.1157 138.1037 134.3120 127.3207
π/2 138.6057 134.4586 130.5525 126.8670 123.3838 116.9614

2π/3 134.3841 130.3633 126.5762 123.0029 119.6258 113.3990
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Table 11. Effect of the opening angle α on the nondimensional critical buckling load for C-C CNTRC
curved beams with L/h = 10, V∗CNT = 0.14.

α µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 3

UD-CNTRC π/4 337.8116 321.9253 307.4660 294.2497 282.1228 260.6394
π/3 316.4206 301.5402 287.9965 275.6171 264.2581 244.1351
π/2 301.1614 286.9986 274.1080 262.3256 251.5144 232.3618

2π/3 295.8488 281.9358 269.2726 257.6981 247.0776 228.2628
FG-CNTRC π/4 334.3510 318.6274 304.3162 291.2353 279.2327 257.9693

π/3 314.4762 299.6872 286.2267 273.9234 262.6343 242.6349
π/2 300.3202 286.1970 273.3424 261.5930 250.8119 231.7128

2π/3 295.4045 281.5124 268.8683 257.3111 246.7066 227.9201
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More specifically, Tables 3–5 evaluate the effect of the volume fraction and distribution patterns
of CNTs on the nondimensional critical buckling load of the composite curved beams for S-S, C-S,
and C-C CNTRC curved beams, respectively, while L/h = 1 and α = π/3 are considered. By exploiting
the numerical results in Tables 3–5 comparatively, it is worth noting that clamped nanostructures
yield the maximum buckling load, while S-S beams get the lowest buckling values. Moreover, an
increment in the volume fraction of CNTs V∗CNT significantly raises the buckling load of both UD- and
FG-CNTRCs, with its behavior also affected by the nonlocality µ. More specifically, a rise in nonlocality
reduces the buckling load of CNTRC curved beams because of the stiffness-softening mechanisms
characterizing the nanostructure. The sensitivity of the buckling response to the volume fraction of
CNTs is also plotted in Figure 3 versus the slenderness ratio L/h, for a C-C boundary condition and
different distributions of CNTs (namely a UD pattern in Figure 3a and an FG pattern in Figure 3b).
Based on Figure 3, it is worth to note that the monotone behavior of the critical buckling load increases
for development in slenderness ratios L/h, especially for the higher values of the volume fraction of
CNTs V∗CNT.

In addition, Tables 6–8 summarize the results of the nondimensional critical buckling load for
different L/h ratios and nonlocal parameters µ, while considering a S-S, C-S, and C-C composite curved
beams reinforced with CNTs, respectively. It is clear that the highest sensitivity of the buckling response
of curved beams to the length-to-thickness ratio is obtained for C-C boundary conditions, followed by
C-S, and S-S supports, respectively. Moreover, the highest value of the critical load is always reached
in size-dependent composite curved beams with µ = 0, whereby as µ increases, the buckling load
decreases, independently of the selected L/h ratios and CNTs distributions. A meaningful sensitivity
of the response to the boundary conditions is also detected due to an expectable variation in the
structural stiffness of the composite curved beams. Furthermore, Figure 4 illustrates the double effect
of the nonlocal parameter and the slenderness ratio L/h on the nondimensional critical buckling load of
CNTRC curved beams for fixed C-C boundary conditions and different CNTs distribution patterns
(namely, a UD pattern in Figure 4a and an FG pattern in Figure 4b).

It is worth noting that the moderately thick CNTRC curved beam with L/h = 10 features the lowest
critical buckling load. This last one increases as the length-to-thickness ratio L/h is increased, both in
UD and FG-CNTRC curved beams. Another key aspect related to the sensitivity of the response with
the nonlocal parameter is that the impact is more pronounced for higher values of L/h, (or equivalently
to a lower thickness of the curved beam for a fixed length).

The effect of the opening angle and the nonlocal parameter on the nondimensional critical
buckling load is shown in Tables 9–11 for S-S, C-S, and C-C CNTs reinforced composite curved beams,
respectively. By exploiting comparatively, the results can be found that an increasing value of the
opening angle decreases the buckling load whose value is also affected by the selected boundary
condition. The results are obtained far from a size-dependence of the structure. It means that the
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buckling load of size-dependent and independent response of curved beams decreases by increasing
the opening angle for each boundary conditions.

The double effect of the opening angle and slenderness ratio is finally emphasized in Figure 5 for
each CNT reinforcement patterns, while considering a fixed C-C boundary condition. Based on this
last plot, it is clearly visible that the higher sensitivity of the response for thick CNTs reinforced curved
beams (i.e., for L/h = 50) compared to thin structures.

5. Conclusions

The size-dependent buckling of FG-CNTRC curved beams was investigated within the framework
of a refined beam theory and Eringen nonlocal differential model. The CNTs distributions were
considered uniform and graded through the thickness direction, and the material properties were
estimated using the rule of mixtures. The Galerkin method was also employed to obtain the critical
buckling load of FG-CNTRC curved beams for different boundary conditions. The effects of the
nonlocal parameter, CNT volume fraction, slenderness ratio, opening angle, boundary conditions, and
CNTs distribution scheme on the critical buckling load of FG-CNTRC curved beams were discussed in
detail. Based on the numerical results, the following concluding remarks can be summarized:

An increase in CNT volume fraction leads to an increase in the critical buckling load for both UD-
and FG-CNTRC curved beams.

A UD of CNTs in composite curved beams yields higher values of the critical buckling load
compared to an FG distribution of CNTs.

An increase in the opening angle leads to a lower value of the critical buckling load for both UD-
and FG-CNTRC curved beams.

The highest values of the critical buckling load of FG-CNTRC curved beams is obtained for
completely clamped C-C boundary conditions, due to an increase in structural stiffness compared to
simply supported boundary conditions.

Using nonlocality phenomena, the critical buckling load of FG-CNTRC curved beam decreases.
Moreover, the effect of the nonlocal parameter in curved beams with higher slenderness ratios is more
pronounced, if compared to lower slenderness ratios.
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