SUPPLEMENTARY MATERIAL

Supplementary Materials

Supplementary material relating to this article is available online, alongside Figure S1-

S36, S38-43 and S37.

Contents

Figure S1.	HR-ESI-MS spectrum of compound 1 .
Figure S2.	IR spectrum of compound 1.
Figure S3.	¹ H-NMR spectrum of compound 1 .
Figure S4.	13 C-NMR spectrum of compound 1 .
Figure S5.	DEPT spectrum of compound 1.
Figure S6.	HSQC spectrum of compound 1.
Figure S7.	1 H- 1 H COSY spectrum of compound 1 .
Figure S8.	HMBC spectrum of compound 1 .
Figure S9.	NOESY spectrum of compound 1.
Figure S10.	HR-ESI-MS spectrum of compound 2.
Figure S11.	IR spectrum of compound 2.
Figure S12.	¹ H-NMR spectrum of compound 2 .
Figure S13.	13 C-NMR spectrum of compound 2 .
Figure S14.	DEPT spectrum of compound 2.
Figure S15.	HSQC spectrum of compound 2.
Figure S16.	$^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 2.
Figure S17.	HMBC spectrum of compound 2.
Figure S18.	NOESY spectrum of compound 2.
Figure S19.	HR-ESI-MS spectrum of compound 3 .
Figure S20.	IR spectrum of compound 3 .
Figure S21.	¹ H-NMR spectrum of compound 3 .
Figure S22.	13 C-NMR spectrum of compound 3 .
Figure S23.	DEPT spectrum of compound 3 .
Figure S24.	HSQC spectrum of compound 3 .
Figure S25.	$^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 3 .
Figure S26.	HMBC spectrum of compound 3 .
Figure S27.	NOESY spectrum of compound 3 .
Figure S28.	HR-ESI-MS spectrum of compound 4.
Figure S29.	IR spectrum of compound 4.
Figure S30.	¹ H-NMR spectrum of compound 4 .
Figure S31.	¹³ C-NMR spectrum of compound 4 .
Figure S32.	DEPT spectrum of compound 4.
Figure S33.	HSQC spectrum of compound 4.
Figure S34.	¹ H- ¹ H COSY spectrum of compound 4 .
Figure S35.	HMBC spectrum of compound 4.
Figure S36.	NOESY spectrum of compound 4.
S37. ECD c	alculation details of compound of 1 .

- Figure S38. ¹H-NMR spectrum of compound **5**.
- Figure S39. ¹³C-NMR spectrum of compound **5**.
- Figure S40. ¹H-NMR spectrum of compound **6**.
- Figure S41. ¹³C-NMR spectrum of compound **6**.
- Figure S42. ¹H-NMR spectrum of compound **7**.
- Figure S43. ¹³C-NMR spectrum of compound **7**.

Figure S2. IR spectrum of compound **1**.

Figure S3. ¹H-NMR spectrum of compound **1**.

Figure S4. ¹³C-NMR spectrum of compound **1**.

Figure S6. HSQC spectrum of compound **1**.

Figure S7. ¹H-¹H COSY spectrum of compound **1**.

Figure S8. HMBC spectrum of compound 1.

Figure S9. NOESY spectrum of compound **1**.

Figure S11. IR spectrum of compound 2.

Figure S12. ¹H-NMR spectrum of compound **2**.

Figure S13. ¹³C-NMR spectrum of compound **2**.

Figure S14. DEPT spectrum of compound **2**.

Figure S15. HSQC spectrum of compound **2**.

Figure S16. 1 H- 1 H COSY spectrum of compound **2**.

Figure S17. HMBC spectrum of compound 2.

Figure S18. NOESY spectrum of compound 2.

Figure S20. IR spectrum of compound **3**.

Figure S21. ¹H-NMR spectrum of compound **3**.

Figure S22. ¹³C-NMR spectrum of compound **3**.

Figure S24. HSQC spectrum of compound **3**.

Figure S25. ¹H-¹H COSY spectrum of compound **3**.

Figure S26. HMBC spectrum of compound **3**.

Figure S27. NOESY spectrum of compound **3**.

Figure S29. IR spectrum of compound 4.

Figure S30. ¹H-NMR spectrum of compound **4**.

Figure S31. ¹³C-NMR spectrum of compound **4**.

Figure S33. HSQC spectrum of compound 4.

Figure S34. ¹H-¹H COSY spectrum of compound **4**.

Figure S35. HMBC spectrum of compound 4.

Figure S36. NOESY spectrum of compound 4.

S37. ECD calculation details of compound of 1.

1. Methods

Monte Carlo conformational searches were carried out by means of the Spartan's 10 software using Merck Molecular Force Field (MMFF). The conformers with Boltzmann-population of over 2% were chosen for ECD calculations, and then the conformers were initially optimized at B3LYP/6-31+g (d, p) level in MeOH using the CPCM polarizable conductor calculation model. The theoretical calculation of ECD was conducted in MeOH using Time-dependent Density functional theory (TD-DFT) at the B3LYP/6-311+g (d, p) level for all conformers of compounds **EX** . Rotatory strengths for a total of 50 excited states were calculated. ECD spectra were generated using the program SpecDis 1.6 (University of Würzburg, Würzburg, Germany) and GraphPad Prism 5 (University of California San Diego, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.3 eV.

2. Results

Table S1.2.1.Gibbs free energies^{*a*} and equilibrium populations^{*b*} of low-energy conformers of **EX** .

Conformara	In MeOH			
Comorniers	ΔG	P (%)/100		
EX1	0.00	0.605		

EX2	0.35	0.334
EX3	1.47	0.051
EX4	3.07	0.003
EX5	3.26	0.002

^{*a*}B3LYP/6-31+G(d,p), in kcal/mol. ^{*b*}From ΔG values at 298.15K.

Table S1.2.2.Cartesian coordinates for the low-energy reoptimized MMFF conformers of **EX** at B3LYP/6-311+G(d,p) level of theory in CH₃OH.

EX -1		Standard Orientation			
		(Ångstroms)			
Center	Atomic	Atomic	V	V	7
number	number	Туре	Λ	Ĭ	Z
1.	6.	0.	-5.030526	1.355006	-0.804108
2.	6.	0.	-4.043595	2.266826	-1.537109
3.	6.	0.	-2.750286	2.543253	-0.731842
4.	6.	0.	-2.120856	1.172249	-0.263416
5.	6.	0.	-3.089461	0.047210	0.228769
6.	6.	0.	-4.383851	-0.012493	-0.598678
7.	6.	0.	-1.050471	1.306788	0.842228
8.	6.	0.	-0.965536	0.004745	1.700079

9.	6.	0.	-0.905988	-1.268346	0.807796
10.	6.	0.	-2.367514	-1.347520	0.217370
11.	6.	0.	-0.688946	-2.658024	1.467092
12.	6.	0.	-0.554105	-3.541890	0.195647
13.	6.	0.	-1.896959	-3.651182	-0.574609
14.	6.	0.	-2.486909	-2.279267	-0.983281
15.	6.	0.	-3.077109	3.535496	0.407680
16.	6.	0.	-1.749274	3.247885	-1.674034
17.	8.	0.	-5.262413	-0.951436	0.033646
18.	6.	0.	-3.350833	0.261623	1.741365
19.	6.	0.	0.307383	-1.287565	-0.194338
20.	6.	0.	0.402148	-2.735592	-0.661614
21.	6.	0.	1.195044	-3.205462	-1.628726
22.	8.	0.	1.511452	-1.051908	0.627913
23.	8.	0.	-2.155917	-0.055605	2.482848
24.	8.	0.	0.192853	1.651537	0.249397
25.	8.	0.	0.078231	0.115753	2.624549
26.	6.	0.	2.635477	-0.462329	0.028653
27.	8.	0.	2.731897	0.871568	0.496740
28.	6.	0.	3.775388	1.622804	-0.160014
29.	6.	0.	5.126027	1.027263	0.273740
30.	6.	0.	5.152177	-0.483269	-0.017515

31.	6.	0.	3.893942	-1.213235	0.474599
32.	8.	0.	3.952785	-2.523133	-0.072668
33.	8.	0.	5.251707	-0.608606	-1.436022
34.	8.	0.	6.215343	1.669684	-0.362564
35.	6.	0.	3.567407	3.085520	0.207175
36.	8.	0.	2.430514	3.645142	-0.420132
37.	8.	0.	-1.839831	-1.679181	-2.110147
38.	1.	0.	-5.944258	1.232137	-1.402424
39.	1.	0.	-5.341082	1.782529	0.156013
40.	1.	0.	-3.775188	1.792186	-2.491386
41.	1.	0.	-4.517727	3.221855	-1.793096
42.	1.	0.	-1.615928	0.773491	-1.149577
43.	1.	0.	-4.107356	-0.382753	-1.598334
44.	1.	0.	-1.336485	2.072542	1.573634
45.	1.	0.	-2.916431	-1.904170	0.983084
46.	1.	0.	0.234808	-2.697654	2.051423
47.	1.	0.	-1.513559	-2.946550	2.122248
48.	1.	0.	-0.178276	-4.547262	0.411383
49.	1.	0.	-1.753205	-4.272472	-1.468633
50.	1.	0.	-2.636264	-4.166752	0.050978
51.	1.	0.	-3.551626	-2.429632	-1.207980
52.	1.	0.	-3.518949	4.441215	-0.022080

53.	1.	0.	-3.789400	3.146176	1.139411
54.	1.	0.	-2.179944	3.847355	0.948734
55.	1.	0.	-2.181448	4.177981	-2.061133
56.	1.	0.	-1.498510	2.613616	-2.531327
57.	1.	0.	-0.817764	3.494025	-1.160045
58.	1.	0.	-6.082840	-0.971601	-0.476275
59.	1.	0.	-4.132267	-0.415782	2.092938
60.	1.	0.	-3.661779	1.286350	1.970238
61.	1.	0.	0.270334	-0.547369	-0.989493
62.	1.	0.	1.812212	-2.554786	-2.241200
63.	1.	0.	1.237783	-4.267505	-1.858147
64.	1.	0.	0.903962	1.430138	0.873824
65.	1.	0.	0.835655	-0.360627	2.246466
66.	1.	0.	2.548142	-0.475628	-1.066540
67.	1.	0.	3.664551	1.520623	-1.248794
68.	1.	0.	5.244715	1.185165	1.352557
69.	1.	0.	6.036316	-0.929695	0.460683
70.	1.	0.	3.885568	-1.234438	1.574835
71.	1.	0.	3.059395	-2.902615	-0.040602
72.	1.	0.	5.092539	-1.545826	-1.626904
73.	1.	0.	6.276656	1.274922	-1.246449
74.	1.	0.	4.437658	3.650562	-0.137268

75.	1.	0.	3.522096	3.170517	1.305983
76.	1.	0.	1.648434	3.126178	-0.170972
77.	1.	0.	-1.770170	-2.339943	-2.811716

EX -2		Standard Orientation			
			(Ångstroms)		
Center	Atom	Tuno	V	V	7
number	number	Type	Λ	I	Z
1.	6.	0.	-5.030222	1.355292	-0.804265
2.	6.	0.	-4.043191	2.266833	-1.537480
3.	6.	0.	-2.749837	2.543242	-0.732293
4.	6.	0.	-2.120593	1.172253	-0.263642
5.	6.	0.	-3.089308	0.047411	0.228767
6.	6.	0.	-4.383735	-0.012262	-0.598632
7.	6.	0.	-1.050177	1.306801	0.841964
8.	6.	0.	-0.965344	0.004852	1.700004
9.	6.	0.	-0.905991	-1.268393	0.807919
10.	6.	0.	-2.367506	-1.347415	0.217489

11.	6.	0.	-0.689212	-2.658005	1.467416
12.	6.	0.	-0.554527	-3.542090	0.196091
13.	6.	0.	-1.897367	-3.651218	-0.574211
14.	6.	0.	-2.486987	-2.279236	-0.983114
15.	6.	0.	-3.076500	3.535665	0.407116
16.	6.	0.	-1.748777	3.247595	-1.674643
17.	8.	0.	-5.262386	-0.951004	0.033878
18.	6.	0.	-3.350610	0.262030	1.741331
19.	6.	0.	0.307388	-1.287968	-0.194230
20.	6.	0.	0.401920	-2.736108	-0.661258
21.	6.	0.	1.194856	-3.206254	-1.628196
22.	8.	0.	1.511487	-1.052332	0.627856
23.	8.	0.	-2.155710	-0.055207	2.482817
24.	8.	0.	0.193170	1.651367	0.249077
25.	8.	0.	0.078426	0.115851	2.624456
26.	6.	0.	2.635378	-0.462524	0.028642
27.	8.	0.	2.731784	0.871220	0.497198
28.	6.	0.	3.774981	1.622832	-0.159589
29.	6.	0.	5.125804	1.027320	0.273646
30.	6.	0.	5.152064	-0.483123	-0.018063
31.	6.	0.	3.894013	-1.213401	0.474101
32.	8.	0.	3.952918	-2.523124	-0.073583

33.	8.	0.	5.251334	-0.608005	-1.436621
34.	8.	0.	6.214853	1.670089	-0.362762
35.	6.	0.	3.566852	3.085405	0.208086
36.	8.	0.	2.429764	3.645094	-0.418738
37.	8.	0.	-1.839635	-1.679388	-2.109961
38.	1.	0.	-5.943982	1.232452	-1.402551
39.	1.	0.	-5.340654	1.783070	0.155785
40.	1.	0.	-3.774873	1.791965	-2.491666
41.	1.	0.	-4.517214	3.221872	-1.793634
42.	1.	0.	-1.615717	0.773249	-1.149720
43.	1.	0.	-4.107296	-0.382734	-1.598229
44.	1.	0.	-1.336103	2.072632	1.573331
45.	1.	0.	-2.916498	-1.903958	0.983228
46.	1.	0.	0.234549	-2.697758	2.051729
47.	1.	0.	-1.513867	-2.946278	2.122629
48.	1.	0.	-0.178915	-4.547512	0.411968
49.	1.	0.	-1.753703	-4.272697	-1.468123
50.	1.	0.	-2.636826	-4.166511	0.051414
51.	1.	0.	-3.551713	-2.429369	-1.207908
52.	1.	0.	-3.518278	4.441371	-0.022732
53.	1.	0.	-3.788773	3.146493	1.138952
54.	1.	0.	-2.179252	3.847485	0.948056

55.	1.	0.	-2.180832	4.177708	-2.061833
56.	1.	0.	-1.498181	2.613169	-2.531868
57.	1.	0.	-0.817189	3.493654	-1.160759
58.	1.	0.	-6.083447	-0.969935	-0.475065
59.	1.	0.	-4.132110	-0.415287	2.092927
60.	1.	0.	-3.661474	1.286812	1.970120
61.	1.	0.	0.270361	-0.547931	-0.989539
62.	1.	0.	1.812175	-2.555767	-2.240718
63.	1.	0.	1.237473	-4.268342	-1.857443
64.	1.	0.	0.904344	1.429635	0.873335
65.	1.	0.	0.835813	-0.360613	2.246425
66.	1.	0.	2.547886	-0.475410	-1.066547
67.	1.	0.	3.663907	1.520923	-1.248372
68.	1.	0.	5.244752	1.184894	1.352488
69.	1.	0.	6.036336	-0.929598	0.459841
70.	1.	0.	3.885886	-1.234943	1.574331
71.	1.	0.	3.059613	-2.902778	-0.041371
72.	1.	0.	5.092302	-1.545184	-1.627786
73.	1.	0.	6.276106	1.275473	-1.246715
74.	1.	0.	4.436973	3.650630	-0.136406
75.	1.	0.	3.521851	3.170061	1.306941
76.	1.	0.	1.647794	3.125749	-0.169943

77.	1.	0.	-1.769503	-2.340398	-2.811246

		Standard Orientation				
EX	-3	(Ångstroms)				
Center	Atom	Tuno	V	V	7	
number	number	Гуре	Λ	Ĩ	L	
1.	6.	0.	-4.961468	1.364578	-0.941023	
2.	6.	0.	-3.932147	2.303468	-1.573471	
3.	6.	0.	-2.700453	2.558520	-0.670699	
4.	6.	0.	-2.094780	1.174094	-0.211821	
5.	6.	0.	-3.087179	0.026468	0.177387	
6.	6.	0.	-4.325911	-0.007772	-0.732951	
7.	6.	0.	-1.084855	1.275949	0.958801	
8.	6.	0.	-1.046891	-0.061285	1.754733	
9.	6.	0.	-0.914040	-1.286623	0.816866	
10.	6.	0.	-2.354189	-1.365356	0.171161	
11.	6.	0.	-0.687303	-2.685508	1.442130	
12.	6.	0.	-0.510752	-3.533988	0.153362	

13.	6.	0.	-1.833141	-3.646582	-0.650212
14.	6.	0.	-2.428462	-2.274721	-1.050197
15.	6.	0.	-3.114809	3.505400	0.478849
16.	6.	0.	-1.642976	3.303967	-1.514942
17.	8.	0.	-5.244284	-0.959575	-0.180159
18.	6.	0.	-3.448647	0.188212	1.673252
19.	6.	0.	0.323644	-1.249688	-0.161604
20.	6.	0.	0.444724	-2.688318	-0.665033
21.	6.	0.	1.258620	-3.127954	-1.628970
22.	8.	0.	1.502683	-1.001671	0.658534
23.	8.	0.	-2.290266	-0.147372	2.468295
24.	8.	0.	0.184083	1.658291	0.466292
25.	8.	0.	-0.047135	-0.043820	2.732544
26.	6.	0.	2.628570	-0.447128	0.046307
27.	8.	0.	2.726726	0.909571	0.451981
28.	6.	0.	3.767576	1.630832	-0.229858
29.	6.	0.	5.120430	1.055419	0.222964
30.	6.	0.	5.145467	-0.468465	0.014445
31.	6.	0.	3.884919	-1.171103	0.539925
32.	8.	0.	3.949845	-2.510065	0.062976
33.	8.	0.	5.251407	-0.673614	-1.395085
34.	8.	0.	6.206759	1.663983	-0.453276

35.	6.	0.	3.553916	3.102664	0.096654
36.	8.	0.	2.353275	3.602705	-0.457251
37.	8.	0.	-1.766391	-1.643717	-2.151093
38.	1.	0.	-5.830458	1.257344	-1.605268
39.	1.	0.	-5.342323	1.759258	0.008016
40.	1.	0.	-3.594528	1.861385	-2.521296
41.	1.	0.	-4.393236	3.264473	-1.830623
42.	1.	0.	-1.533522	0.809429	-1.077926
43.	1.	0.	-3.985316	-0.353085	-1.720993
44.	1.	0.	-1.433405	2.013829	1.696745
45.	1.	0.	-2.925417	-1.941698	0.905627
46.	1.	0.	0.225473	-2.703398	2.042509
47.	1.	0.	-1.520186	-3.008552	2.071700
48.	1.	0.	-0.120729	-4.537679	0.351416
49.	1.	0.	-1.662213	-4.250901	-1.551214
50.	1.	0.	-2.582926	-4.179895	-0.052246
51.	1.	0.	-3.485763	-2.433421	-1.302898
52.	1.	0.	-3.533834	4.423653	0.052873
53.	1.	0.	-3.873676	3.084496	1.143536
54.	1.	0.	-2.259849	3.803567	1.091574
55.	1.	0.	-2.057859	4.243044	-1.899157
56.	1.	0.	-1.326481	2.702457	-2.373862

57.	1.	0.	-0.751536	3.541293	-0.930860
58.	1.	0.	-6.021681	-0.980559	-0.753511
59.	1.	0.	-4.241657	-0.507954	1.954371
60.	1.	0.	-3.778127	1.202064	1.921818
61.	1.	0.	0.261458	-0.505416	-0.952709
62.	1.	0.	1.877552	-2.458861	-2.218934
63.	1.	0.	1.321944	-4.185538	-1.874578
64.	1.	0.	0.878677	1.286546	1.036987
65.	1.	0.	-0.403810	0.494749	3.455561
66.	1.	0.	2.564071	-0.502591	-1.050409
67.	1.	0.	3.656765	1.493263	-1.315406
68.	1.	0.	5.246318	1.269126	1.291458
69.	1.	0.	6.028487	-0.888199	0.518779
70.	1.	0.	3.865590	-1.135042	1.638822
71.	1.	0.	3.049938	-2.873567	0.084639
72.	1.	0.	5.067363	-1.616279	-1.530609
73.	1.	0.	6.264940	1.217329	-1.312282
74.	1.	0.	4.379265	3.677727	-0.331771
75.	1.	0.	3.588220	3.227963	1.192480
76.	1.	0.	1.621022	3.047206	-0.141381
77.	1.	0.	-1.611355	-2.305776	-2.837382

		Standard Orientation				
EA	-4		(Ångs	stroms)		
Center	Atom	Type	X	V	7	
number	number	Type	1	1	IJ	
1.	6.	0.	-5.381248	-0.518577	0.923898	
2.	6.	0.	-4.604746	-1.536810	1.760917	
3.	6.	0.	-3.422491	-2.183872	0.999039	
4.	6.	0.	-2.511832	-1.055933	0.371409	
5.	6.	0.	-3.218959	0.213914	-0.231708	
6.	6.	0.	-4.456609	0.643995	0.573216	
7.	6.	0.	-1.544924	-1.581839	-0.735073	
8.	6.	0.	-1.151930	-0.385563	-1.654376	
9.	6.	0.	-0.796380	0.897552	-0.853018	
10.	6.	0.	-2.201548	1.405367	-0.369999	
11.	6.	0.	-0.169370	2.072501	-1.637119	
12.	6.	0.	0.145479	3.040670	-0.472205	
13.	6.	0.	-1.150870	3.594715	0.176493	
14.	6.	0.	-2.117893	2.499719	0.693329	
15.	6.	0.	-3.982945	-3.202575	-0.020075	

16.	6.	0.	-2.578338	-2.979439	2.020466
17.	8.	0.	-5.122871	1.670013	-0.175255
18.	6.	0.	-3.545451	-0.086305	-1.714857
19.	6.	0.	0.278095	0.714243	0.290970
20.	6.	0.	0.841019	2.115214	0.507686
21.	6.	0.	1.758025	2.474166	1.407234
22.	8.	0.	1.236982	-0.278179	-0.180781
23.	8.	0.	-2.308547	-0.108953	-2.461846
24.	8.	0.	-0.472336	-2.359623	-0.252221
25.	8.	0.	-0.138844	-0.707939	-2.572780
26.	6.	0.	2.617514	-0.096566	-0.201617
27.	8.	0.	3.159400	-0.484252	1.054489
28.	6.	0.	4.575131	-0.234628	1.119202
29.	6.	0.	5.306035	-1.105067	0.080066
30.	6.	0.	4.699455	-0.921542	-1.318715
31.	6.	0.	3.170307	-1.004016	-1.304028
32.	8.	0.	2.721425	-0.583918	-2.579327
33.	8.	0.	5.109529	0.370541	-1.767328
34.	8.	0.	6.695200	-0.821263	0.061754
35.	6.	0.	4.987660	-0.536220	2.554789
36.	8.	0.	4.220701	0.213752	3.484063
37.	8.	0.	-1.730133	1.932446	1.950101

38.	1.	0.	-6.236645	-0.134209	1.496786
39.	1.	0.	-5.793047	-0.971197	0.014426
40.	1.	0.	-4.217287	-1.027871	2.654450
41.	1.	0.	-5.271842	-2.327684	2.124377
42.	1.	0.	-1.897872	-0.698755	1.203475
43.	1.	0.	-4.090875	1.059954	1.524232
44.	1.	0.	-2.105638	-2.247565	-1.400884
45.	1.	0.	-2.586509	1.967751	-1.226865
46.	1.	0.	0.754687	1.766532	-2.137994
47.	1.	0.	-0.843794	2.482474	-2.393221
48.	1.	0.	0.783661	3.878306	-0.771972
49.	1.	0.	-0.885706	4.267090	1.003475
50.	1.	0.	-1.690745	4.204159	-0.559325
51.	1.	0.	-3.113576	2.953127	0.794528
52.	1.	0.	-4.625873	-3.918059	0.504183
53.	1.	0.	-4.587159	-2.747100	-0.809703
54.	1.	0.	-3.186462	-3.780597	-0.496039
55.	1.	0.	-3.184862	-3.764989	2.486387
56.	1.	0.	-2.211173	-2.325411	2.819655
57.	1.	0.	-1.712418	-3.440566	1.541456
58.	1.	0.	-5.893873	1.948355	0.336214
59.	1.	0.	-4.158341	0.709124	-2.143156

60.	1.	0.	-4.073125	-1.036401	-1.849073
61.	1.	0.	-0.134955	0.321438	1.217620
62.	1.	0.	2.231628	1.766774	2.079707
63.	1.	0.	2.094708	3.505942	1.473838
64.	1.	0.	0.286899	-1.772944	-0.081087
65.	1.	0.	-0.500217	-1.393693	-3.153640
66.	1.	0.	2.878086	0.946066	-0.412344
67.	1.	0.	4.766444	0.826586	0.901424
68.	1.	0.	5.195743	-2.156656	0.373004
69.	1.	0.	5.098498	-1.694008	-1.992569
70.	1.	0.	2.859814	-2.035744	-1.078052
71.	1.	0.	1.744337	-0.595928	-2.567503
72.	1.	0.	4.559418	0.565476	-2.541900
73.	1.	0.	6.794826	-0.042357	-0.507910
74.	1.	0.	6.036264	-0.263951	2.692832
75.	1.	0.	4.890185	-1.618405	2.738598
76.	1.	0.	3.299829	-0.027178	3.309842
77.	1.	0.	-1.496196	2.652504	2.550228

EV 5		Standard Orientation				
EX	2-3		(Ångstroms)			
Center	Atom	Trues	V	V	7	
number	number	Гуре	Χ	Ŷ	Z	
1.	6.	0.	-4.913731	1.543811	-0.578593	
2.	6.	0.	-3.883438	2.544656	-1.105027	
3.	6.	0.	-2.609629	2.632390	-0.228970	
4.	6.	0.	-2.035113	1.182471	0.021536	
5.	6.	0.	-3.046927	0.002864	0.239771	
6.	6.	0.	-4.309044	0.143269	-0.628535	
7.	6.	0.	-1.067064	1.086158	1.216410	
8.	6.	0.	-1.001259	-0.375418	1.758879	
9.	6.	0.	-0.904344	-1.429694	0.617131	
10.	6.	0.	-2.344196	-1.375300	-0.022679	
11.	6.	0.	-0.703432	-2.926134	0.980212	
12.	6.	0.	-0.520539	-3.526632	-0.440012	
13.	6.	0.	-1.843823	-3.475803	-1.250168	
14.	6.	0.	-2.430440	-2.048492	-1.388618	
15.	6.	0.	-2.942211	3.419271	1.059365	
16.	6.	0.	-1.558507	3.451825	-1.010918	
17.	8.	0.	-5.231976	-0.874879	-0.222376	
18.	6.	0.	-3.373785	-0.090239	1.754993	

19.	6.	0.	0.331488	-1.241510	-0.335400
20.	6.	0.	0.445277	-2.553898	-1.091977
21.	6.	0.	1.230531	-2.799075	-2.143124
22.	8.	0.	1.501221	-1.152610	0.564374
23.	8.	0.	-2.221236	-0.595915	2.462766
24.	8.	0.	0.210711	1.599009	0.872234
25.	8.	0.	0.017351	-0.466301	2.718813
26.	6.	0.	2.704511	-0.699268	-0.006570
27.	8.	0.	2.488534	0.597462	-0.502918
28.	6.	0.	3.628619	1.279871	-1.042222
29.	6.	0.	4.744490	1.371743	0.015563
30.	6.	0.	5.029771	-0.001709	0.633562
31.	6.	0.	3.750721	-0.689577	1.111127
32.	8.	0.	4.113209	-2.010918	1.495182
33.	8.	0.	5.653282	-0.781351	-0.388253
34.	8.	0.	5.927374	1.915558	-0.545026
35.	6.	0.	3.088573	2.651059	-1.455588
36.	8.	0.	2.415403	3.294492	-0.391455
37.	8.	0.	-1.770844	-1.230410	-2.359616
38.	1.	0.	-5.815745	1.567198	-1.206047
39.	1.	0.	-5.234396	1.789227	0.440237
40.	1.	0.	-3.598281	2.243504	-2.122788

41.	1.	0.	-4.324509	3.544388	-1.194117
42.	1.	0.	-1.471280	0.934995	-0.883406
43.	1.	0.	-4.002263	-0.032294	-1.671260
44.	1.	0.	-1.459630	1.649953	2.071586
45.	1.	0.	-2.923151	-2.063757	0.600596
46.	1.	0.	0.199121	-3.088730	1.576741
47.	1.	0.	-1.548154	-3.343141	1.532727
48.	1.	0.	-0.143098	-4.554393	-0.425149
49.	1.	0.	-1.675892	-3.903058	-2.247845
50.	1.	0.	-2.598277	-4.105724	-0.762232
51.	1.	0.	-3.490007	-2.153479	-1.660041
52.	1.	0.	-3.365291	4.393176	0.789173
53.	1.	0.	-3.671181	2.917656	1.702150
54.	1.	0.	-2.047220	3.614700	1.655858
55.	1.	0.	-1.943935	4.454370	-1.230256
56.	1.	0.	-1.319087	2.972082	-1.966598
57.	1.	0.	-0.627915	3.561967	-0.450242
58.	1.	0.	-6.024534	-0.782840	-0.767172
59.	1.	0.	-4.184583	-0.801365	1.924335
60.	1.	0.	-3.673386	0.874794	2.178855
61.	1.	0.	0.319381	-0.352479	-0.958213
62.	1.	0.	1.829398	-2.024203	-2.611545

63.	1.	0.	1.286811	-3.790146	-2.587340
64.	1.	0.	0.798568	1.345207	1.599439
65.	1.	0.	0.778970	-0.847649	2.250900
66.	1.	0.	3.030163	-1.375944	-0.810283
67.	1.	0.	4.016451	0.743551	-1.921938
68.	1.	0.	4.407360	2.062489	0.795548
69.	1.	0.	5.714176	0.115709	1.486447
70.	1.	0.	3.332221	-0.124617	1.958753
71.	1.	0.	3.294935	-2.514216	1.609229
72.	1.	0.	5.700353	-1.686534	-0.046347
73.	1.	0.	6.364884	1.180928	-1.002652
74.	1.	0.	2.432393	2.521944	-2.330297
75.	1.	0.	3.929869	3.285837	-1.748057
76.	1.	0.	1.668310	2.725269	-0.138680
77.	1.	0.	-1.584782	-1.767306	-3.140762

Figure S38. ¹H-NMR spectrum of compound **5**.

Figure S39. ¹³C-NMR spectrum of compound **5**.

Figure S40. ¹H-NMR spectrum of compound **6**.

Figure S41. ¹³C-NMR spectrum of compound **6**.

Figure S42. ¹H-NMR spectrum of compound **7**.

Figure S43. ¹³C-NMR spectrum of compound **7**.