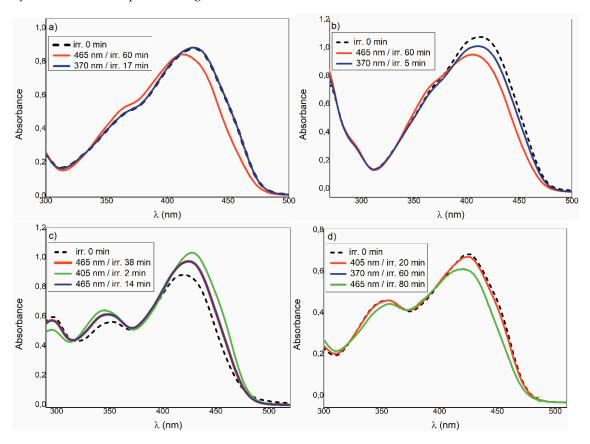
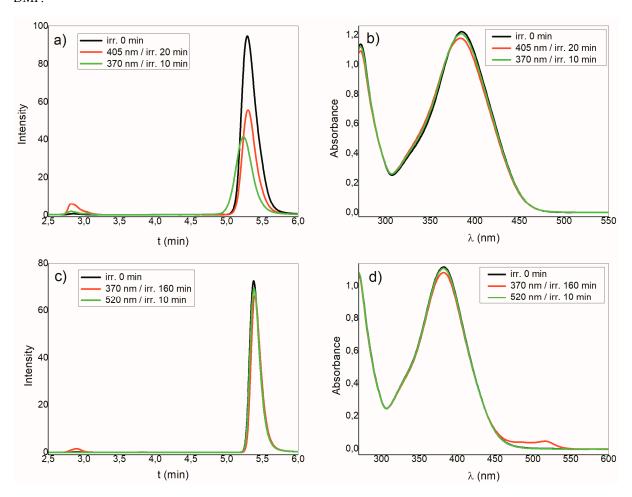
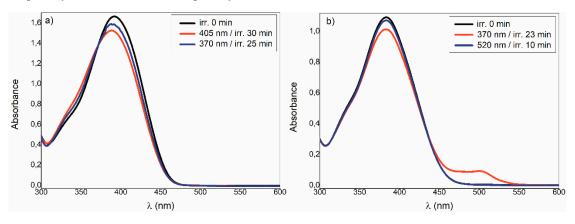
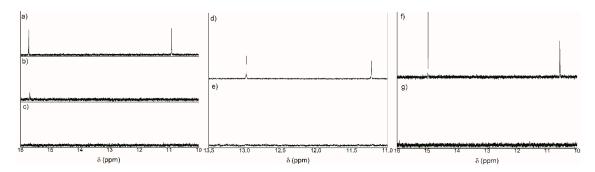

Róbert Šandrik ¹, Pavol Tisovský ^{1,*}, Klaudia Csicsai ¹, Jana Donovalová ¹, Martin Gáplovský ², Róbert Sokolík ¹, Juraj Filo ¹, Anton Gáplovský ¹

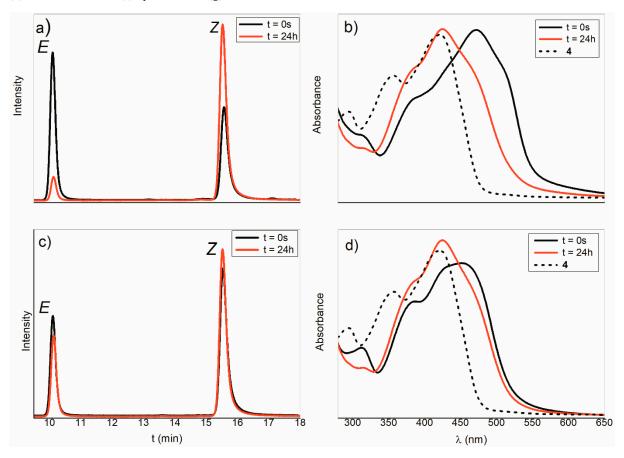

¹Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Ilkovičova 6,

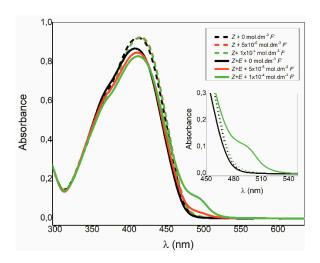
Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia;

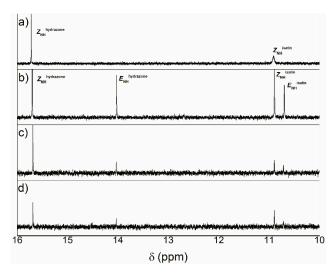

²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava


Figure S1. Hydrazone **4** kinetics of heat-stimulated E-Z isomerization (5 × 10⁻⁵ mol dm⁻³) at 80 °C in DMF. In set hydrazone **4** UV-Vis spectra during isomerization.


Figure S2. UV-Vis spectra change during irradiation: (a) hydrazone **3** (5×10^{-5} mol dm⁻³) in CHCl₃; (b) hydrazone **3** (5×10^{-5} mol dm⁻³) in DMF; (c) hydrazone **4** (1×10^{-4} mol dm⁻³) in CHCl₃; (d) hydrazone **4** (1×10^{-4} mol dm⁻³) in DMF.


Figure S3. UV-Vis spectra and chromatograms change during hydrazone **2** (5×10^{-5} mol dm⁻³) photolysis: (**a**) and (**b**) photolysis in CHCl₃;(**c**) and (**d**) photolysis in DMF.


Figure S4. UV-Vis spectrum change: (a) hydrazone **1** (1×10^{-4} mol dm⁻³) a light-stimulated change in CHCl₃; (b) hydrazone **1** (5×10^{-5} mol dm⁻³) reversible light-stimulated change in DMF.


Figure S5. H-D exchange in DMSO: (a) hydrazone 3; (b) solution a + D₂O; (c) solution b after 24 h; (d) hydrazone 1; (e) solution d + D₂O; (f) hydrazone 4; (g) solution f + D₂O.

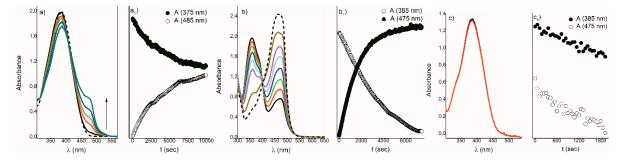
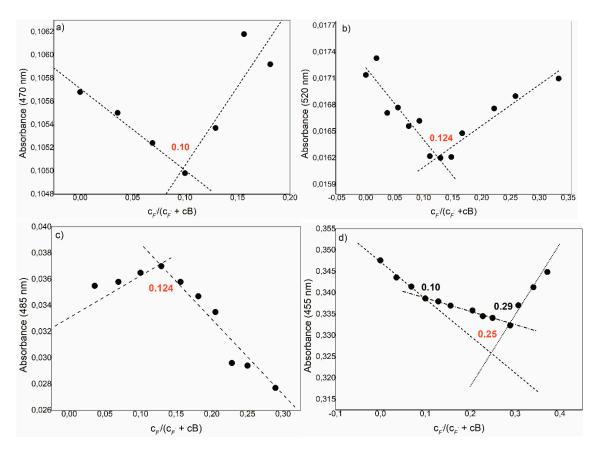
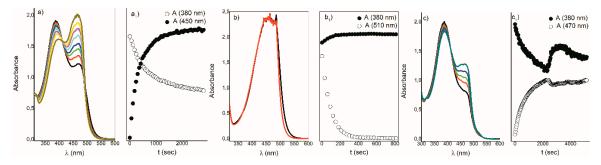
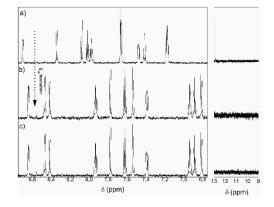
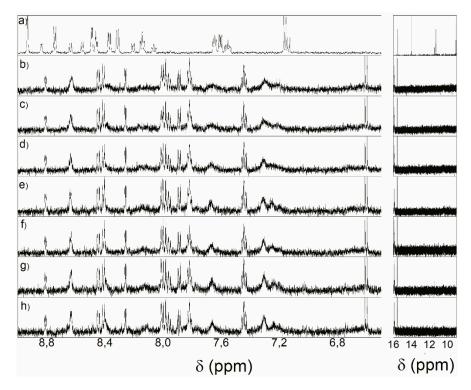

Figure S6. Thermic change of hydrazone **4** (1 × 10⁻⁴ mol dm⁻³) in the TBAF presence: (a), (c) chromatogram - $c_{TBAF} = 5 \times 10^{-3}$ mol dm⁻³; (b), (d) UV-Vis spectra - $c_{TBAF} = 4 \times 10^{-4}$ mol dm⁻³ in DMF.

Figure S7. UV Vis spectra change of the *Z*-isomer and an *E* and *Z*-isomers mixture of the hydrazone **3** (5×10^{-5} mol dm⁻³) depending on the TBAF concentration in DMF.

Figure S8. Hydrazone **3** E and Z isomers (1 × 10⁻³ mol dm⁻³) ¹H-NMR spectrum change during H-D hydrogen exchange in DMSO: (**a**) Z-isomer from hydrazone **3**; (**b**) a mixture of Z and E isomers from hydrazone **3**; (**c**) solution b + 3 drops of D₂O; (**d**) solution c after 1 h.

Figure S9. Hydrazone **1** reaction kinetics in the TBAF presence in DMSO: (a), (a1) initial concentration TBAF CTBAF = 1×10^{-3} mol dm⁻³; (b), (b1) TBAF concentration increased to CTBAF = 5×10^{-2} mol dm⁻³; (c), (c1) -TBAF diluted to CTBAF = 1×10^{-3} mol dm⁻³.


Figure S10. Job's plots for: (a) hydrazone 1; (b) hydrazone 2; (c) hydrazone 3; (d) hydrazone 4 in DMF. Titration with TBAF.

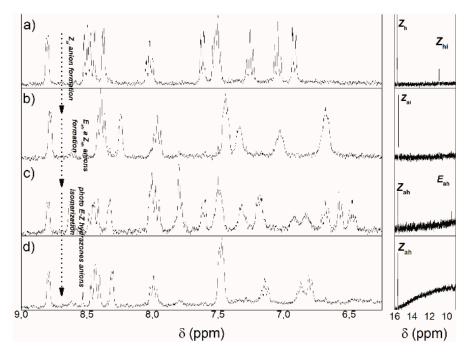

Figure S11. Hydrazone **2** reaction kinetics in the TBAF presence in DMSO: (**a**), (**a**₁) - initial concentration TBAF CTBAF = 1×10^{-3} mol dm⁻³; (**b**), (**b**₁) -TBAF concentration increased to CTBAF = 2×10^{-2} mol dm⁻³; (**c**), (**c**₁) -TBAF diluted to CTBAF = 1×10^{-3} mol dm⁻³.

Figure S12. *Z*-isomer of hydrazone **2** (1 × 10⁻³ mol dm⁻³) 1 H-NMR spectra change in DMSO at TBAF (2 × 10⁻² mol dm⁻³) presence: (a) hydrazone **2** *Z*-isomer; (b) immediately after TBAF addition - *E*-isomer of hydrazone **2** formation from E_{mah} ; (c) after 3 h since TBAF addition.

Figure S13. System hydrazone **4** (1×10^{-3} mol dm⁻³) + TBAF (1×10^{-3} mol dm⁻³) 1 H-NMR spectra changes as the time function in DMSO.

Figure S14. Hydrazone **3** thermally and photochemically stimulated change of 1 H-NMR spectrum (1 × 10^{-3} mol dm⁻³) + TBAF in DMF: (a) without TBAF; (b) with TBAF (1 × 10^{-3} mol dm⁻³); (c) solution b) after 3 h; (d) solution c) irradiated 20 min. with light 465 nm.

Table S1. Calculated Gibbs energies [M062x 6-31+g(dp)] level (T = 298.15 K) for E and Z isomers of studied hydrazones and their tautomeric forms.

Zisomer	Compound	ΔG/ ΔGDMF	ΔG/ ΔGDMF	Compound	Eisomer
	1	kJ.mol⁻¹	kJ.mol ⁻¹	1	
Z-1		0/0	19.7/10.7	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-1
Z-1-c ₁		16.7/8.6	21.5/13.6		E-1-t ₁
Z-1-t ₁		40.0	31.2		E-1-t ₂
Z-1-t ₂		45.3	55.1	100 0000000000000000000000000000000000	E-1-c1
			74.1		E-1-t3
Z-1-t ₃		57.9	78.0		E-1-t4
Z-1-t ₄		69.2	83.4	18 de 1 18 de 1 18 de 1 18 de 1 18 de 1	E-1-t ₅
		<u> </u>		<u> </u>	1
	3			3	
Z-3		0/0	14.8/3.4		E-3
Z-3-c1		34.7/18.7	57.4	183 83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E-3-c1
Z-3-t ₁	, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	56.3	90.8		E-3-t1

Z-3-t ₂		99.9		96.9		E-3-t ₂
-	-	-		113.7		E-3-t ₃
	4				4	
Z-4		21.3	-	0.0		E-4
Z-4-t ₁		68.3				
Z-4-t ₂		127.2				

Table S2. Calculated Gibbs energies [M062x 6-31+g(dp)] level (T = 298.15 K) for *E* and *Z* isomers anions of studied hydrazones.

Anion Zisomer	Compound 3	$\Delta G/\Delta G_{ m DMF}$ - $kJ.mol^{-1}$	ΔG/ΔGDMF kJ.mol ⁻¹	Compound 3	Anion Eisomer
Z-3-A1i		3.6/5.0	0.0/0.0		E-3-A1h
Z-3-A1h		14.4/21.5	5.6/39.5	193-95-9 193-95-9 193-95-9	E-3-A2h
Z-3-A2h		31,4/16.1	34.7/15.9		E-3-A1i