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Abstract: Chalcogen atoms are a class of substituents capable of generating inner and outer derivatives
of boron clusters. It is well known that chalcogenated boron clusters can form strong σ-hole
interactions when a chalcogen atom is a part of an icosahedron. This paper studies σ-hole interactions
of dicarbaboranes with two exopolyhedral chalcogen atoms bonded to carbon vertices. Specifically, a
computational investigation has been carried out on the co-crystal of (1,2-C2B10H10)2Se4•toluene and
a single crystal of (1,2-C2B10H10)2Te4.
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1. Introduction

Polyhedral boron hydrides (boranes) are known for the presence of delocalized electron-deficient
bonding. It is characterized by the aggregation of atoms to form 3-center-2-electron (3c-2e) bonds [1],
which result in the formation of trigonal faces and hypercoordination. The three-dimensional
deltahedral shapes typical of boron clusters are classified according to their formal electron counts,
namely by the terms closo, nido, arachno, and hypho [2]. The closo clusters are of particular current interest
as they exhibit especially high thermal and chemical stability. The number of vertices, n, can range
from 5 to 12 with the formula BnHn

2−, with the 12-vertex icosahedral cluster (an example in Figure 1),
B12H12

2− (point-group symmetry Ih), being the most common and most stable [3]. The replacement
of one or more boron atoms at a vertex by atoms of other elements results in the formation of
closo heteroboranes. For example, the replacement of two formally neutral BH groups by two CH+

moieties yields the neutral dicarbaboranes C2B10H12 in a variety of three isomers differing in the
relative positions of the hypercarbon atoms within the icosahedral cage. The 1,2-isomer, the so-called
o-carbaborane with C2v symmetry, is the least stable isomer and has the largest dipole moment [4]
among them. This dipole moment directs from the middle point of the C-C vector toward the rest of
the cluster. The fact that C vertices are the center of partial positive charge might be surprising because
it contradicts the electronegativity concept. Such an electron distribution is, however, common in
multicenter bonding [1]. Carboranes are considered 3D aromatic systems [5] and have rich substitution
chemistry. Outer functionalization can be achieved by replacing terminal hydrogen atoms by various
substituents to maintain the overall neutral charge. Chalcogen atoms belong to a class of substituents
capable of generating derivatives of the icosahedral cage both as part of the cage [1] and as a peripheral
group; the latter has so far been exemplified by thiolated carbaboranes. Very recently, a selenolated
carbaborane with two SeH groups on both carbons has been prepared and structurally characterized [6].
However, the preparation of 1,2-(SeH)2-closo-1,2-C2B10H10 has been very difficult since the necessary
intermediate for obtaining it, the lithium 1,2-diselenolato-1,2-dicarba-closo-dodecaboranate salt
(Li+)2[1,2-(Se)2-closo-1,2-C2B10H10]2−, tends to dimerize in an oxidative manner [7] via two C-Se-Se-C
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diselenide bridges (see Figure 1). Analogous disulfide bridges are well known among cystein amino
acids. It has been shown that the replacement of an interchain disulfide bridge with a diselenide bridge
increases the lifetime of insulin without impairing its hormonal function [8]. The same dimerization
as in (Li+)2[1,2–(Se)2-closo-1,2-C2B10H10]2− also applies to (Li+)2[1,2–(Te)2-closo-1,2-C2B10H10]2− [9].
Consequently, (1,2-C2B10H10)2E4 (E = Se, Te) have been obtained and structurally characterized as
reported in references [7] and [9], respectively (see Figure 1). Note that such a molecular shape
with the two o-carbaborane moieties and four chalcogens that form an eight-membered ring in a
chair conformation also exist for E = S, but this structure has not been structurally described [10].
Cyclic molecules containing divalent chalcogen atoms have been receiving a great deal of attention as
they can form columnar structures and even nanotubes via intermolecular diE-bonds [11–13].
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between 3D and 2D aromatics was also spotted in the cocrystal of closo-1,7-P2B10Cl10 and toluene [16]. 
Since toluene cocrystallizes with (1,2-C2B10H10)2Se4 (abbreviated as Se4C4) and (1,2-C2B10H10)2Te4 
(abbreviated as Te4C4) crystallizes itself, we have carried out a computational investigation on these 
two crystals to examine the intensity of chalcogen (E-) and dichalcogen (diE-) bonding in the 
corresponding crystal packing. We have opted for these two crystals because the chalcogen atoms 
are located outside the icosahedron here in contrast to the previously studied heteroboranes with 
chalcogens directly involved in the icosahedron [15]. 

2. Methods 

The molecular electrostatic potential (ESP) surfaces of isolated molecules were computed on the 
0.001 a.u. molecular surfaces at the HF/def2-TZVP level using the Gaussian09 [17] and Molekel4.3 
[18,19] programs. 

The interactions in the crystal structures considered (CCDC codes 613,551 and 608,807) [7,9] 
were studied by employing a cluster model. The clusters were created around each unique molecule. 
The first layer consisted of molecules within 5 Å of the central molecule. Similarly, the second layer 
was formed by molecules within 5 Å of the first layer. Hydrogen atoms of the central molecule and 
the first layer were optimized by the DFT-D3/BLYP/DZVP method [20]. We selected the DFT-
D3/BLYP/DZVP method because it makes it possible to obtain geometries close to more expensive 
calculations [20] for our extended clusters consisting of about 300–800 atoms. The resolution-of-
identity (RI) approximation to the DFT method was also used. Due to the size of the second layer 
(comprising more than 1000 atoms), hydrogen atoms of the second layer were optimized by the 

Figure 1. Molecular diagram of the Se4C4 and Te4C4 molecules that contain two icosahedral moieties
connected by chalcogen bridges. The atom color coding is as follows: cyan—B; black—C; orange—E
(E = Se, Te); white—H.

Chalcogen atoms belong to a class of substituents capable of also generating icosahedral derivatives
in which chalcogen atoms are part of the icosahedron, closo-1-EB11H11 (E = S, Se, Te) [2]. The substitution
chemistry of closo-1-SB11H11 has also been researched, but to a lesser extent than in the case of
o-carborane. Therefore, 12-ph-closo-1-SB11H10 was prepared and a very strong chalcogen bonding
between a partially positively charged sulfur [14] atom and the π-electron cloud of the phenyl from the
neighboring molecule in the crystal packing was detected [15]. Pnictogen bonding between 3D and
2D aromatics was also spotted in the cocrystal of closo-1,7-P2B10Cl10 and toluene [16]. Since toluene
cocrystallizes with (1,2-C2B10H10)2Se4 (abbreviated as Se4C4) and (1,2-C2B10H10)2Te4 (abbreviated as
Te4C4) crystallizes itself, we have carried out a computational investigation on these two crystals to
examine the intensity of chalcogen (E-) and dichalcogen (diE-) bonding in the corresponding crystal
packing. We have opted for these two crystals because the chalcogen atoms are located outside the
icosahedron here in contrast to the previously studied heteroboranes with chalcogens directly involved
in the icosahedron [15].

2. Methods

The molecular electrostatic potential (ESP) surfaces of isolated molecules were computed
on the 0.001 a.u. molecular surfaces at the HF/def2-TZVP level using the Gaussian09 [17] and
Molekel4.3 [18,19] programs.

The interactions in the crystal structures considered (CCDC codes 613,551 and 608,807) [7,9] were
studied by employing a cluster model. The clusters were created around each unique molecule. The first
layer consisted of molecules within 5 Å of the central molecule. Similarly, the second layer was formed
by molecules within 5 Å of the first layer. Hydrogen atoms of the central molecule and the first layer
were optimized by the DFT-D3/BLYP/DZVP method [20]. We selected the DFT-D3/BLYP/DZVP method
because it makes it possible to obtain geometries close to more expensive calculations [20] for our
extended clusters consisting of about 300–800 atoms. The resolution-of-identity (RI) approximation to
the DFT method was also used. Due to the size of the second layer (comprising more than 1000 atoms),
hydrogen atoms of the second layer were optimized by the semiempirical quantum mechanical
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PM6-D3H4X method [21]. Heavy atoms were kept in crystallographic positions. The clusters obtained
were used for energy calculations. Interaction energy (∆E) was computed as the energy difference
between the energy of the dimer and the sum of monomer energies. The energies were determined using
the DFT-D3/TPSS/TZVPP level. ∆E values were decomposed by symmetry-adapted perturbation-theory
(SAPT) methodology. The simplest truncation of SAPT (SAPT0) decomposition [22] was performed
with the recommended jun-cc-pVDZ basis set [23]. The noncovalent interaction index (NCI) [24,25] was
calculated for selected motifs in order to elucidate all possible interactions in these motifs. It was carried
out at the recommended B3LYP/6-31G* level [24]. The stability of the selected binding motifs was also
examined by optimizations of all atoms. Here, we combined the DFT-D3/BLYP/DZVP method with the
LBFGS algorithm and the strict optimization criteria (energy change < 0.0006 kcal mol−1, the largest
gradient component < 0.12 kcal mol−1Å−1 and the root-mean-square gradient < 0.06 kcal mol−1Å−1).
Vibrational frequencies were calculated numerically at the same level. Turbomole (7.0) [26], PSI4 [27],
MOPAC2016 [28] and Cuby4 [29] programs were used.

3. Results and Discussion

3.1. Charge Distribution of Isolated Molecules

The charge distribution in isolated molecules has been studied by computing molecular electrostatic
potential (ESP) surfaces (see Table 1 and Figure 2). The σ-holes [30] of the E atoms are the most positive
areas of the molecular surfaces of the Se4C4 and Te4C4 molecules with large VS,max values of 28.6 and
35.6 kcal mol−1. The Se4C4 and Te4C4 molecules are thus supposed to form strong σ-hole interactions.
The higher value of Te4C4 corresponds to the larger atomic number, smaller electronegativity, and larger
polarizability of the Te atoms. The large VS,max values of Se4C4 and Te4C4 molecules might be caused
by the fact that the E atoms are bound to the C vertex of the carborane moiety. It has been shown that
the S atom bound to the B vertex in 9,12-(SH)2-closo-1,2-C2B10H10 has a negative ESP molecular surface
without a positive σ-hole in contrast to the carbon-bound S atom of 1,2-(SH)2-closo-1,2-C2B10H10, which
has a σ-hole with the VS,max value of 16.0 kcal mol−1 [31]. Analogically, halogenated dicarbaboranes
could form halogen bonds only when they were bound to the C vertex [32]. It should be noted that
the Se4C4 and Te4C4 molecules have zero dipole moments due to their symmetry, while the parental
carborane molecule has a very large dipole moment. BH vertices have a negative ESP surface, as a
result of which they could form attractive contacts with the σ-holes of the Se and Te atoms. The π ring
of the toluene molecule has a more negative molecular ESP surface than the BH vertices (see Table 1
and Figure 2), and its interaction with the σ-holes should thus be more favorable.

Table 1. The Dipole moment (µ) and the maximaum and minimum values of the electrostatic potential
of the molecular surfaces (VS,max and VS,min, respectively) computed at the HF/def2-TZVP level.
Energies are in kcal mol−1 and µ in D.

µ VS,max VS,min

Toluene 0.4 14.6 −19.8

Se4C4 0.0 28.6 −8.2

Te4C4 0.0 35.6 −10.1
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3.2. Interactions in the Crystal of Se4C4•toluene and in the Single Crystal of Te4C4

The crystal packing of the studied crystals is shown in Figure 3. First, we focus on the crystal
structure of Se4C4•toluene. The ∆E values of all crystal motifs are computed at the DFT-D3 level.
Selected motifs are also examined by the SAPT0 method. The comparison of DFT-D3 and SAPT0
results verifies the accuracy of the selected DFT-D3 method (RMSE of 0.31 kcal mol−1). In the case
of toluene, the sums of the ∆E values for the first and second layers are −28.50 and −1.90 kcal mol−1,
respectively. The most negative ∆E value of the toluene molecules had the motif stabilized mainly by
the C-Se···π E-bond with the separation between the Se atom and the center of the aromatic ring of the
toluene being 3.30 Å, which corresponds to 91.7% of the sum of van der Waals radii (ΣrvdW) [33] of
the C and Se atoms (Figure 4A). This motif had a highly negative ∆E value, exceeding −9 kcal mol−1.
It thus forms about 30% of the sum of ∆E values for the toluene molecule. The most important term of
this motif in the SAPT decomposition is dispersion, followed by the electrostatic term. They form 64
and 27% of the attractive energy terms, respectively (Table 2). Similar results were reported for the EDA
decomposition of the bifurcated type of Se···π interactions in diphenyl selenide [34]. The induction
term which also includes charge transfer (orbital mixing) forms only about 9% of the attractive energy
terms in the SATP decomposition, which agrees with findings that this contribution is smaller and does
not determine the character of σ-hole interactions [35,36]. Additionally, this E-bond can be compared
with the B-P···π pnictogen (Pn) bond found in the crystal of closo-1,7-P2B10Cl10•toluene, which had the
∆E value of −9.9 kcal mol−1 computed at the same DFT-D3 level, the length of 3.08 Å (88% of ΣrvdW),
and a larger contribution of the electrostatic term in the SAPT0 decomposition (35% of the attractive
energy terms) [16]. It should also be mentioned that the free optimization followed by the frequency
analysis confirmed that this motif represents true minimum on potential energy surface. The second
most stable interaction of the toluene molecule of the studied crystal structure is a stacking motif,
which has no contact shorter than ΣrvdW (Figure 4B) and the ∆E value of −4.07 kcal mol−1. In this
motif, the dispersion is even more pronounced. It forms about 75% of the attractive energy terms in
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the SAPT decomposition. This motif was not stable in gas phase optimization and the comparison of
the X-ray motif with the optimized geometry is shown in Figure 4.

In the case of the Se4C4 molecule, the sum of the ∆E values for the first and second layers are
−85.96 and −3.61 kcal mol−1, respectively. Here, two motifs have highly negative ∆E values. One of
them (i.e., the motif stabilized by the C-Se···π E-bond) was already described above. Interestingly,
the Se4C4 dimer has even more negative ∆E value exceeding −10 kcal mol−1, although it has no
contact bellow ΣrvdW (see Figure 4c). It has two dichalcogen contacts of 3.87 Å (102% of ΣrvdW) and
two Se···H-B chalcogen contacts of 3.24 Å (108% of ΣrvdW). Additionally, it has numerous B-H···H-B
contacts with the H···H separation of about 3 Å (136% of ΣrvdW). According to NCI analyses, these
homopolar contacts also contribute to the binding. This is in agreement with the fact that the BH
vector of dicarbaborane is another type of amphiphilic moiety [37], besides more the known CF3

moiety of trifluorotoulene [38]. Interestingly, the crystal structure also contain the Se4C4 dimer motif
stabilized exclusively via two homopolar B-H···H-B contacts (see Figure S2a) with the H···H separation
of 2.60 Å (118% of ΣrvdW). This contact has the ∆E value of −2.67 kcal mol−1 at the DFT-D3 level.
Additionally, we have computed the ∆E value of a hypothetical dimer that has two B-H···H-B contacts
(see Figure S2b) with the elongated H···H separation of 2.89 Å. This hypothetical dimer has the ∆E
value of −2.22 kcal mol−1. We can thus speculate that the B-H···H-B contacts could form about 40% of
the ∆E value for the interaction motif shown in Figure 4c.
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Table 2. Computed DFT-D3/TPSS/TZVPP interaction energy (∆E) values for the most stable motifs
in the crystal of Se4C4•toluene. Interaction energies were decomposed into electrostatic (Eelec),
induction (Eind), dispersion (Edisp), and exchange (Eexch) contributions using the SAPT0/jun-cc-pVDZ
methodology. Energies are in kcal mol−1. The relative values in parentheses show the contribution to
the sum of all the attractive energy terms of SAPT0.

Interaction Motif

∆E

DFT-D3
SAPT0

Total Eelec Eind Edisp Eexch

Se4C4···toluene (E-bonding) 1 −9.22 −9.28 −5.47 (27%) −1.81 (9%) −12.66 (64%) 10.66

Se4C4···toluene (stacking) 2 −4.07 −3.62 −1.32 (19%0 −0.39 (5%) −5.13 (75%) 3.22

Se4C4···Se4C4 (stacking_1) 3 −10.23 −10.27 −5.06 (22%) −1.53 (7%) −16.04 (71%) 12.36

Se4C4···Se4C4 (stacking_2) 4 −5.02 −5.43 −1.86 (19%) −0.37 (4%) −7.61 (77%) 4.41
1 The motif is shown in Figure 4a. 2 The motif is shown in Figure 4b. 3 The motif is shown in Figure 4c. 4 The motif
is shown in Figure 4d.
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similar ΔE, specifically of −11.14 kcal mol−1. This motif has two C-Te···H-B E-bonds with the Te···H 
separation of 3.10 Å (98.1% of ΣrvdW)—see Figure 5B. This motif also has several C-Te···H-B contacts 
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of the sum of the ΔE values of Te4C4. In contrast to unusual C-Te···H-B E-bonds, the Te···Te diE-bonds 
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Figure 4. Four most stable binding motifs of the crystal structure of Se4C4•toluene (a), (b), (c) and
(d). The left column: X-ray geometries (only the positions of H atoms optimized) and distances in Å.
Distances larger than ΣrvdW are in gray. The middle column: NCI bonding isosurfaces. The NCI color
scale is from −0.04 (blue) to 0.02 (red) a.u. The right column: A comparison of X-ray geometries (blue)
with fully optimized structures in the gas phase (yellow).

In the second step, we focus on the single crystal of Te4C4. Here, the sums of the ∆E values of the
first and second layers are −91.86 and −4.58 kcal mol−1, respectively. The most stable motif is stabilized
by the C-Te···Te-C diE-bond with the Te···Te separation of 4.05 Å (98.3% of ΣrvdW), two C-Te···H-B
E-bonds with the Te···H separation of 3.13 Å (99.1% of ΣrvdW), and numerous homopolar B-H···H-B
contacts with the H···H separation of about 2.8 Å (127% of ΣrvdW)—see Figure 5A. It has the ∆E value
of −11.77 kcal mol−1, which is approximately 24.4% of the sum of the ∆E values of Te4C4 considering
that each molecule has this motif twice. The free optimization and frequency analysis have again
confirmed the local minimum character of this motif. The second most stable motif has similar ∆E,
specifically of −11.14 kcal mol−1. This motif has two C-Te···H-B E-bonds with the Te···H separation of
3.10 Å (98.1% of ΣrvdW)—see Figure 5B. This motif also has several C-Te···H-B contacts with the Te···H
separation of about 3.4 Å. Together, these diE- and E- bonds thus represent about 48% of the sum of the
∆E values of Te4C4. In contrast to unusual C-Te···H-B E-bonds, the Te···Te diE-bonds are considerably
less rare; as an example, one can mention a very short Te···Te contact with the separation of 3.78 Å
(91.7% of ΣrvdW) in the crystal structure of 2,7-ditelluraocta-3,5-diyne [12].
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In summary, we have shown that the dicarbaboranes with two exopolyhedral chalcogen atoms
bonded to the carbon vertices have highly positive σ-holes and thus a great ability to form chalcogen
bonds. A computational investigation carried out on the crystal of Se4C4•toluene and the single crystal
of Te4C4 has highlighted the importance of E···π, E···HB and E···E types of E- and diE-bonding.
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