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Abstract: We performed metabolic profiling on yellowtail (Seriola quinqueradiata) muscle to develop
an objective taste evaluation method for fish meat. Dark (DM) and ordinary (OM) muscle samples
before and after storage were subjected to gas chromatography-mass spectrometry (GC-MS) analysis
and taste measurements using an electronic tongue. The metabolites identified by the GC-MS analysis
were treated as x variables, and the taste values obtained by the electronic tongue were treated as y
variables. The relationships between the metabolites and taste attributes were evaluated by two-way
orthogonal projections to latent structures (O2PLS) analysis. The O2PLS analyses were normalized in
two ways, unit variance (UV) and pareto (Par) scaling. The O2PLS (UV) analysis produced 3+1+0
models in Autofit and this model was statistically significant with R2Y (0.73) and Q2 (0.52) metrics. In
particular, significant correlations were found between DM or OM and metabolite intensity and taste
attributes, and strong associations were found between “sourness” and lysine, “irritant” and alanine
and phenylalanine, “saltiness” and pantothenic acid, and “umami” and creatinine and histidine. The
O2PLS (Par) analysis of DM generated significant predictive models for “acidic bitterness,” “irritant,”
“saltiness,” “bitterness,” “astringency,” and “richness.” Among these, only “irritant” was affected by
storage. This method was thus effective in evaluating the taste of yellowtail muscle.

Keywords: GC-MS; electronic tongue; metabolomics; metabolic profile; taste attribute; dark muscle;
ordinary muscle; fish meat; PCA; O2PLS

1. Introduction

Fish meat is generally recognized as a healthy food that is rich in high-quality proteins and n-3
fatty acids such as eicosapentaenoic acid and docosahexaenoic acid, and the demand for marine
products is increasing worldwide. However, this food type is significantly more susceptible to rotting
and degeneration than mammalian meat, and thus, aging, which is generally performed for livestock
meat, is not performed for fish meat. However, in Japan, where people eat raw fish (sashimi), the taste
is thought to improve if the meat is stored for a short time rather than being immediately consumed
after catching. It is thus important to objectively evaluate the taste of such empirically assessed
food using chemical methods. To evaluate the taste of fish meat, analyses of taste components and
sensory characteristics have been conducted. However, while it is also necessary to analyze the
relationship between taste components and sensory evaluation by humans to objectively assess such
taste attributes [1], sensory evaluation is labor-intensive and requires training, and thus it is difficult to
obtain reproducible data.
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Recently, biosensors have been developed that can chemically measure taste. For example, the
electronic tongue quantitatively measures taste based on the electrical potential responses of artificial
lipid membranes and takes into account human taste threshold values [2]. This can be applied to
various foods [3] and is considered very effective especially for foods that are difficult to assess by
sensory evaluation. In addition, for the analysis of taste components and other attributes, metabolomics
has been developed to analyze more factors comprehensively [4]. Methods such as NMR, GC-MS, and
LC-MS, among others, have been developed for such metabolomics approaches, and in particular, the
analysis of water-soluble primary metabolites by GC-MS is widely applied [5]. Further, the electronic
tongue and metabolomics can be combined to provide an objective taste evaluation, and to date have
been applied to Japanese sake [6], coffee [7], and whitefish [8], among other foods. Previously, we
analyzed the relationships between the water-soluble primary metabolic components of four whitefish
species and the taste attributes obtained by the electronic tongue [8] and identified differences in the
metabolic components among different types of yellowtail muscle [9]. However, it is still unclear how
the metabolic components of these muscle types affect the taste attributes of fish meat, and to the
best of our knowledge, no studies have investigated the effects of storage on taste attributes using an
electronic tongue and metabolic profiling.

Therefore, in this study, we applied a new taste evaluation method to yellowtail dark muscle
(DM) and ordinary muscle (OM) before and after storage. The relationships between the metabolites
and taste attributes were evaluated by two-way orthogonal projections to latent structures (O2PLS)
analysis, in which x to y and y to x can be predicted with x as the metabolic component and y as the taste
value. Significant correlations were found between DM or OM and the intensity of metabolites and
taste attributes, whereas OM storage had no effect on taste and there were no significant relationships
with metabolites. However, in DM, storage affected the taste attribute “irritant,” which was related to
a metabolic component. Therefore, this method was very effective in evaluating the taste of fish meat.

2. Results

2.1. Electronic Tongue

The values of each taste attribute obtained by the electronic tongue are shown in Table S1. The
results of a principal components analysis (PCA)-Y are shown in Figure 1. The unit variance scaling
(UV) and pareto scaling (Par) gave similar results. DM is to the left and OM is to the right of the
first principal component in the score plots of Figure 1A,B. “Astringency,” “irritant,” and “saltiness”
are to the left and “bitterness,” “acidic bitterness,” “richness,” “sourness,” and “umami” are to the
right of the first principal component in the loading plots of Figure 1C,D. “Astringency,” “irritant,”
and “saltiness” were related to DM, and “bitterness,” “acidic bitterness,” “richness,” “sourness,” and
“umami” were related to OM.

Subsequently, PCA-Y was performed for both muscle types to evaluate the effects of storage on
the taste attributes (Figures 2 and 3). In the DM score plots, the samples before storage are shown
lower left of the center, and there was no significant effect of storage (Figure 2A,B). The loading plots
(Figure 2C,D) show that samples before storage were related to “umami.”
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Figure 1. Score plots (A,B) and loading plots (C,D) obtained by a principal components analysis of
taste-attribute profiles. Data were pretreated with unit variance scaling (A,C) and pareto scaling (B,D).
Symbols in score plots (A,B) indicate sample IDs (Table S1).

Figure 2. Score plots (A,B) and loading plots (C,D) obtained by a principal components analysis of
taste-attribute profiles in dark muscle samples. Data were pretreated with unit variance scaling (A,C)
and pareto scaling (B,D). Symbols in score plots (A,B) indicate sample IDs (Table S1).
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Figure 3. Score plots (A,B) and loading plots (C,D) obtained by a principal components analysis of
taste-attribute profiles in ordinary muscle samples. Data were pretreated with unit variance scaling
(A,C) and pareto scaling (B,D). Symbols in score plots (A,B) indicate sample IDs (Table S1).

In contrast, in the OM score plot, the samples before storage and storage at 5 ◦C are to the left
of the first principal component and 0 ◦C storage is to the right. The before storage and 5 ◦C storage
groups were indistinguishable because of their overlapping positions (Figure 3A,B). This indicates
that the taste attributes after 5 ◦C and 0 ◦C storage differed. Most taste attributes were related to 0 ◦C
storage (Figure 3C,D).

2.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

We annotated 88 metabolic components by GC-MS analysis (Table S1). The results of PCA-X are
shown in Supplementary Figures S1 and S2. The PCA-X, which included all samples, revealed that
DM and OM were completely separate (Supplementary Figure S1), consistent with the results of our
previous research [9]. The PCA-X for each muscle type separated the samples before and after storage
in terms of their metabolic components (Supplementary Figure S2).

2.3. Two-Way Orthogonal Projections to Latent Structures (O2PLS)

O2PLS analysis was performed next to investigate the relationships between the primary metabolic
components and taste attributes. Figure 4 shows the model obtained by O2PLS analysis using
UV-pretreated data. Applying Autofit resulted in 3+0+1 model dimensions (Figure 4A). Autofit
uses cross-validation rules to automatically adjust the model to determine the number of significant
components. Because the R2Y value of this model was 0.73 and the Q2 value was 0.52, it was statistically
significant. The score plot is shown in Figure 4B and the loading plot is shown in Figure 4C. The
score plots and loading plots obtained were similar to those obtained by PCA-X (Supplementary
Figure S1) and PCA-Y (Figure 1). Figure 4D shows the cumulative R2 and Q2 values for individual
y variables. Predictive models that included significant taste attributes were created for “irritant,”
“umami,” “saltiness,” and “richness.”
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Figure 4. Two-way orthogonal projections to latent structures analysis with unit variance scaling as
a pretreatment. (A) Evaluation of the model when Autofit was applied. Model dimensionality was
3+1+0. (B) Score plot. Symbols indicate sample IDs (Table S1). (C) Loading plot. Numbers and letters
indicate variable IDs (Table S1). (D) Evaluation of the predictive model for each y variable. Letters on
the x-axis indicate y variable IDs (Table S1).

The regression analyses derived from the predictive models for each taste attribute had high
R2 values and low root mean square errors of estimation (RMSEE) and root mean square errors of
cross-validation (RMSEcv) values (Figure 5). The metabolites that were related to taste attributes
for which significant models could be generated were identified from the loading plots (Figure 4C).
“Sourness” was located near stearic acid and lysine, and therefore, these metabolic components were
highly related to “sourness.” In addition, “irritant” was related to alanine, glycine, and phenylalanine,
“saltiness” was related to pantothenic acid and N-acetylmannosamine, and “umami” was related to
creatinine and histidine.

The O2PLS analysis of Par-pretreated data is shown in Supplementary Figure S3. When Autofit
was applied to the model, the model had a dimensionality of 1+1+3. In this model, R2Y was 0.49 and
Q2 was 0.29, and a statistically significant model could not be created (Supplementary Figure S3A). In
Supplementary Figure S3B, DM is to the left and OM is to the right and are separate, as in the PCA
results. However, as shown in Supplementary Figure S3C, galactose and taurine were related to DM
and phosphoric acid, and lactic acid were related to OM, and these were important x variables for
discrimination in the score plot. The taste attributes and many metabolic components were located at
the center (near 0), and no relationship between the metabolic components and taste attributes was
found. Cumulative R2Y and Q2 values of the model for each taste attribute are shown in Supplementary
Figure S3D. “Umami,” “saltiness,” and “richness” were in the statistically significant model, indicating
that the metabolic components can be predicted from the strength of these attributes.
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Figure 5. Regression analyses of the predictive model for each y variable. (A) Sourness. (B) Acidic
bitterness. (C) Irritant. (D) Umami. (E) Saltiness. (F) Bitterness. (G) Astringency. (H) Richness.
Symbols indicate sample IDs (Table S1). RMSEE, root mean square errors of estimation; RMSEcv, root
mean square errors of cross-validation.

The O2PLS analysis of Par-pretreated data is shown in Supplementary Figure S3. When Autofit
was applied to the model, the model had a dimensionality of 1+1+3. In this model, R2Y was 0.49 and
Q2 was 0.29, and a statistically significant model could not be created (Supplementary Figure S3A). In
Supplementary Figure S3B, DM is to the left and OM is to the right and are separate, as in the PCA
results. However, as shown in Supplementary Figure S3C, galactose and taurine were related to DM
and phosphoric acid, and lactic acid were related to OM, and these were important x variables for
discrimination in the score plot. The taste attributes and many metabolic components were located at
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the center (near 0), and no relationship between the metabolic components and taste attributes was
found. Cumulative R2Y and Q2 values of the model for each taste attribute are shown in Supplementary
Figure S3D. “Umami,” “saltiness,” and “richness” were in the statistically significant model, indicating
that the metabolic components can be predicted from the strength of these attributes.

The regression analyses derived from the predictive model for each taste attribute had high R2

values and low RMSEE and RMSEcv values (Supplementary Figure S4). There were taste attributes
that were difficult to predict from the metabolic components after O2PLS analysis using Par as a
pretreatment method, and thus, O2PLS analysis was performed again using only predictable taste
attributes. As a result, when Autofit was applied, the dimensionality of the model was 2+5+0, R2Y
was 0.97, Q2 was 0.84, and the model had good predictive ability (Supplementary Figure S5).

Next, O2PLS analysis was performed for each muscle type, and the results for the DM samples are
shown in Supplementary Figure S6 (UV) and Supplementary Figure S7 (Par). When O2PLS analysis
of the DM samples using UV-pretreated data was conducted with Autofit applied, the model had a
dimensionality of 1+0+3, R2Y was 0.25, and Q2 was −0.11, and a statistically significant model could
not be created (Supplementary Figure S6). In contrast, when preprocessing using Par, Autofit created a
1+3+3, statistically significant model, because R2Y was 0.65 and Q2 was 0.55 (Supplementary Figure S7).
The cumulative R2Y and Q2 values of the model for each taste attribute are shown in Supplementary
Figure S7D. A significant model was created with many taste attributes.

The regression analyses derived from the predictive model for each taste attribute had high R2

values (Supplementary Figure S8). The “irritant” value increased after storage (Supplementary
Figure S8C), and the “richness” value increased after 0 ◦C and decreased after 5 ◦C storage
(Supplementary Figure S8H). No relationships were found between “acidic bitterness,” “saltiness,”
“bitterness,” or “astringency” and storage. The metabolites that were related to taste attributes for
which significant models could be generated were identified from the loading plots. “Acidic bitterness”
was related to lactitol and maltose, “irritant,” “saltiness,” and “richness” were related to glucose,
“bitterness” and “astringency” were related to niacinamide, and “richness” was related to creatinine
(Supplementary Figure S7C).

The O2PLS analysis using both UV and Par for OM did not create a significant model, and no
significant R2 or Q2 values for any taste attribute were generated (Supplementary Figure S9).

3. Discussion

Metabolomics can be applied to various fields, and is important in foodomics [10,11]. For food,
this approach is applied for various food quality evaluation methods [4,11]. When evaluating the taste
of food using metabolomics, methods based on the correlations between data obtained by sensory
evaluation and metabolic components, such as the quantitative descriptive analysis (QDA) method,
are used [12]. However, in the case of fish meat, unlike processed products, it is difficult to perform
sensory evaluation such as the QDA method. Therefore, we devised a way of using an electronic
tongue as an alternative to sensory evaluation. This method has previously revealed taste components
related to differences in whitefish species [8]. We believe that the use of metabolomics will result in
a unified method of taste evaluation for fish meat. To increase the effectiveness of this method, in
this study, we used the yellowtail as a model and evaluated the effects of differences in muscle type
and storage on taste attributes. We investigated the relationships between the taste attributes and
metabolic components in yellowtail muscle by performing O2PLS analysis, which is a very effective
analysis method when used for datasets with many y variables, as in this study.

Studies of yellowtail DM and OM components have focused on lipids, K values, extractive
components, and volatile or flavor components [13–17]. Previously, we found that short-term storage
has different effects on these components in DM and OM, which were separated by GC-MS-based
metabolomics that targeted primary metabolic components [9]. This was confirmed in the present
study by PCA-X (Supplementary Figure S1). The PCA-Y distinguished DM and OM from the values of
each taste attribute that were obtained by the electronic tongue (Figure 1). Therefore, an electronic
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tongue can distinguish between DM and OM, as can other evaluation methods. A previous study
utilizing taste tests found that OM “umami,” “richness,” and “astringency” are unaffected by ice
storage for 20 days [13]. In contrast, DM is affected by storage because “umami” and “richness”
decrease after ice storage [13]. The PCA-Y revealed that OM was unaffected by storage, but DM was
affected. This is consistent with the results of the taste test described previously herein. However,
PCA-X found that OM was affected by storage. This indicates that components other than metabolic
components are involved in the taste changes caused by storage.

O2PLS analysis was performed to evaluate the PCA-X and PCA-Y results, and statistically
significant models were obtained under the following analysis conditions—O2PLS (UV) analysis
(Figure 4), O2PLS (Par) analysis, in which significant taste attributes were analyzed with y variables
(Supplementary Figure S5), and O2PLS (Par) analysis of DM (Supplementary Figure S7). The diverse
methods of pretreating the same data had differing results on the statistical significance of the model.
When using UV, each of the variables (after centering) is divided by its standard deviation, such that
the result does not reflect the quantitative contributions of the variables. In contrast, when using Par,
the quantitative contributions are considered in the calculations after centering. Therefore, because UV
and Par differ in variables that might be important, when performing O2PLS, it is necessary to use
different data pretreatment methods.

The O2PLS (UV) analysis created a significant model, and a valid predictive model for the taste
attributes “irritant,” “umami,” “saltiness,” and “richness” was generated (Figure 4). Although the
O2PLS (Par) analysis did not produce a significant model, effective predictive models for “umami,”
“saltiness,” and “richness” were formed (Supplementary Figure S3). “Umami,” “saltiness,” and
“richness” were important taste attributes for distinguishing between DM and OM according to both
O2PLS (UV) and O2PLS (Par) analyses. Many of the metabolic components that were related to these
important taste attributes were amino acids, which are taste components, and many of these are related
to the taste of fish and shellfish. Among the components that were found to be related to taste attributes
in this study, alanine, glycine, phenylalanine, histidine, and lysine are the main taste components of fish
and shellfish [1]. “Umami” and “richness” were related to creatinine and histidine, and creatinine is
one of the most important components that determines the taste of yellowtail meat based on omission
tests [18]. We also found that creatinine is an important taste component of this type of meat.

The O2PLS (Par) analysis of DM generated significant predictive models for “acidic bitterness,”
“irritant,” “saltiness,” “bitterness,” “astringency,” and “richness.” Among these, only “irritant” was
affected by storage. Storage did not have a significant effect on taste, and therefore, it is important to
consider other factors (e.g., safety aspects) when storing yellowtail. In addition, the storage method
used in this study did not increase the number of viable bacteria [19], so is considered safe.

4. Materials and Methods

4.1. Chemicals

All the reagents used were special-grade chemicals. Methanol, chloroform, pyridine, and ribitol
were purchased from Wako (Osaka, Japan). The derivatization reagents methoxyamine hydrochloride
and N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) were purchased from Sigma-Aldrich (St.
Louis, MO, USA) and GL Sciences (Tokyo, Japan), respectively.

4.2. Experimental Samples

DM and dorsal OM from a previous study [19] were used. Two yellowtails were purchased at a
local market in Hiroshima, Japan on three occasions, July 14, September 29, and November 5, 2014,
totaling six fish (mean weight, 5.4 ± 1.2 SD kg). All six fish had been reared by aquaculture and were
killed using the ikejime fish-slaughtering method. They were then transported on ice to a laboratory
within 8 h. Muscle samples of the same type from two fish that were purchased on the same date were
minced together using a food processor (MK-K60P, Panasonic, Japan). The minced muscle samples
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were stored in ice (0 ◦C) for 14 days or at 5 ◦C for 7 days, before being stored at −80 ◦C until analysis.
As previously reported, the samples were stored under conditions in which the number of viable
bacteria did not significantly increase [19].

4.3. Electronic Tongue

4.3.1. Sample Preparation

The method employed is described elsewhere [8]. Briefly, fish meat (5 g) was added to 20 mL
ultrapure water and homogenized with an ACE HOMOGENIZER AM-7 (NIHONSEIKI KAISHA Ltd.,
Tokyo, Japan) at 5,000 rpm for 5 min over ice. After centrifugation (15,000× g for 15 min at 4 ◦C), the
supernatant was collected and made up to 70 mL. Half of the sample (35 mL) was used to measure the
initial taste and the other half was used to determine the aftertaste (see Section 4.3.2.).

4.3.2. Method of Measurement

Taste was measured using a TS-5000Z taste sensor system (Insent, Japan) following the method
described in a previous report [8]. Each sample solution was tested using five types of sensors as
follows—AAE, CT0, CA0, C00, and AE1. The differences in human perception of taste intensity were
estimated based on Weber’s law from the average of three repeated measurements, and the resultant
value was taken as the intensity of each taste attribute. This system detects two types of taste including
the initial taste and aftertaste. In this study, the relative potentials obtained from the AAE (“umami”),
CT0 (“saltiness”), CA0 (“sourness”), C00 (“acidic bitterness”), and AE1 (“irritant”) sensor probes were
used to measure the selective initial tastes. The changes in membrane potential caused by adsorption
values obtained from the C00 (“bitterness”), AE1 (“astringency”), and AAE (“richness”) sensor probes
were used to measure selective aftertastes [20].

4.4. GC-MS Analysis

4.4.1. Pretreatment

Sample preparation was conducted as described in previous studies [8,9]. Briefly, fish fillets
were freeze-dried and powdered in a mill. Mixed solutions of methanol/ultrapure water/chloroform
(2.5/1/1 v/v/v, 1 mL) and ribitol (internal reference standard, 0.2 mg/mL, 60 µL) were added to 50 mg
of the powdered sample. After stirring for 5 min, the mixture was centrifuged (16,000× g, 0, 5 min).
Ultrapure water (400 µL) was then added to 800 µL of the supernatant, followed by stirring for
1 min and then centrifugation (16,000× g, 0 ◦C, 5 min). A 400-µL aliquot of the supernatant was
concentrated for 1 h using a centrifugal evaporator (CVE-2000, Eyela, Japan), before being freeze-dried
overnight. Methoxyamine hydrochloride solubilized with pyridine (20 mg/mL, 50 µL) was added to
the freeze-dried sample, and oxime was formed in a reaction at 30 ◦C for 90 min. Subsequently, 100 µL
of MSTFA was added, and trimethylsilylation was conducted by reaction at 37 ◦C for 30 min. The
derivatized samples were then subjected to GC-MS analysis.

4.4.2. Analytical Conditions

The GC-MS device used was a GCMS-QP2010 Ultra System (Shimadzu, Japan), and the GC
column was an Agilent J&W DB-5 (length, 30 m; internal diameter, 0.25 mm; film thickness, 1.00 µm;
Agilent Technologies, USA). The GC oven temperature was set at 100 ◦C for 4 min before being
increased to 320 ◦C at 10 ◦C/min, and held for 11 min at 320 ◦C. The injection port temperature was
280 ◦C. A derivatized sample (1 µL) was injected in split-injection mode with a split ratio of 10:1.
Helium was the carrier gas, and its linear velocity was kept constant (39.0 cm/s). The purge flow rate
was 5 mL/min. Quadrupoles were used for MS mass separation, and electron impact was used for
ionization. The ion source temperature was 200 ◦C, the interface temperature was 280 ◦C, and the
ionization voltage was 70 eV. The measurements were taken in scan mode in the range 45–600 m/z.
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4.4.3. Data Processing

Retention time correction (retention index) was conducted based on the retention time of a
standard alkane-series mixture (C-6 to C-33) by applying the “automatic adjustment of retention
time” function of Shimadzu GCMSsolution software. Peak annotation was performed using the
GC/MS Metabolite Component Database Ver. 2 (Shimadzu Co., Kyoto, Japan), which contains a mass
spectral library. Peaks were annotated when they had a similarity index of >80 and a target ion with a
confirmation ion ratio of ≥50% in absolute tolerance.

4.5. Multivariate Analysis

SIMCA 14 (MKS Instruments, USA) was used for the multivariate analysis. The values of each
taste attribute obtained by the electronic tongue and each metabolic component identified by GC-MS
analysis were averaged for each sample group (n = 3). The metabolites identified by GC-MS analysis
were treated as x variables, and the taste values obtained by the electronic tongue were treated as y
variables. Only compounds that were detected in all three samples were included in the dataset. PCA-X
or Y, which are unsupervised learning analyses without y or x variables, respectively, were conducted
with UV or Par pretreatment (normalization) to identify the differences in metabolic components or
taste-attribute profiles between the samples. Next, O2PLS was used to investigate the relationships
between the x and y variables. O2PLS not only predicts y to x, as does PLS and OPLS, but can also
predict y from x [21,22], which is ideal for analyzing datasets containing multiple y variables. The
model obtained by the O2PLS analysis was statistically significant (R2Y ≥ 0.65 and Q2

≥ 0.5) [23].

5. Conclusions

In this study, we evaluated the taste of yellowtail muscle by metabolic profiling combined with
GC-MS analysis and an electronic tongue. We identified differences in taste attributes between types of
yellowtail muscle, as well as metabolites that were significantly related to taste attributes. OM storage
had no effect on taste, and there were no significant relationships with metabolites. However, in DM,
storage affected the taste attribute “irritant,” which was related to a metabolic component. Therefore,
this method was very effective in evaluating the taste of fish meat.

Supplementary Materials: The following are available online, Table S1: List of taste attributes and metabolites,
Figure S1: Score plots (A, B) and loading plots (C, D) obtained by a principal components analysis (PCA)-X of
the metabolic profiles, Figure S2: Score plots (A, B, E, F) and loading plots (C, D, G, H) obtained by a principal
components analysis (PCA)-X of metabolic profiles in dark (A–D) and ordinary (E–H) muscle, Figure S3: Two-way
orthogonal projections to latent structures analysis with pareto scaling as a pretreatment, Figure S4: Regression
analyses of the predictive model for each y variable, Figure S5: Two-way orthogonal projections to latent
structures analysis using y variables for which significant models were created in Figures S3 and S4, Figure S6:
Two-way orthogonal projections to latent structures analysis with unit variance scaling as a pretreatment of dark
muscle samples, Figure S7: Two-way orthogonal projections to latent structures analysis with pareto scaling as a
pretreatment in dark muscle samples, Figure S8: Regression analyses of the predictive model for each y variable in
Figure S7, Figure S9: Two-way orthogonal projections to latent structures analysis of ordinary muscle samples.
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