Supporting Information

β-peltoboykinolic acid from *Astilbe rubra* attenuates TGF-β1-induced epithelial-to-mesenchymal transitions in lung alveolar epithelial cells

In Jae Bang ^{1,†}, Ha Ryong Kim ^{2,†}, Yukyoung Jeon ¹, Mi Ho Jeong ¹, Yong Joo Park ¹, Jong Hwan Kwak ¹, Kyu Hyuck Chung ^{1,*}

1School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;injae753@naver.com (I.J. Bang); jeon1112@skku.edu (Y. Jeon); algh8906@naver.com (M.H. Jeong);pyj084@msn.com (Y.J. Park); jhkwak@skku.edu_(J.H. Kwak)

² College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; kimhr@cu.ac.kr (H.R. Kim)

* Correspondence: khchung@skku.edu (K.H. Chung)

Received: date; Accepted: date; Published: date † These authors contributed equally to this work

Cell viability assay

The WST-1 assay was conducted to find an appropriate treatment concentration of test samples in A549 cells. The cells were seeded in 96-well plates at a density of 15×10^3 cells/well. After culture for 24 h, the cells were treated with samples for 48 h. Ten microliters of WST-1 reagent (Roche Diagnostics, Montclair, NJ, USA) were added to each well, in accordance with the manufacturer's instructions, and the plates were incubated in 5% CO₂ at 37 °C for 30 min. Cell viability was quantified through the measurement of the absorbance at 440 nm and 690 nm by using a VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Identification of β -peltoboykinolic acid

β-peltoboykinolic acid was identified by spectroscopic analysis including 1H-NMR (850 MHz; Bruker AVNACE III HD 850 MHz NMR spectrometer, Ettlingen Germany) and 13C-NMR (100 MHz; Bruker Ascend 400 MHz NMR spectrometer, Ettlingen, Germany).

Results

Figure S1. A549 cells were incubated with 70% ethanol extract of *A. rubra* whole plant (ARE; 2, 8, 31, 125, and 500 µg/mL) for 48 h, and the WST-1 assay was conducted. ARE decreased the viability of A549 cells in a dose-dependent manner; a cell viability of over 80% was observed after treatment at 125 µg/mL (Figure S1A). A549 cells were incubated with the fractional extracts derived from *A. rubra* extract (8, 31, 125, 250 and 500 µg/mL) for 48 h and cell viability was measured by using the WST-1 assay. In both the rhizome and aerial parts, all solvent fractions at a concentration of 100 µg/mL, except CH₂Cl₂ fractions from the extracts of aerial part and rhizome of *A. rubra* (ARADF and ARRDF, respectively), resulted in a cell viability of over 80%. For ARADF and ARRDF, a cell viability of over 80% was obtained at a treatment concentration of 50 µg/mL (Figure S1B).

Figure S4. The treatment concentration of β -peltoboykinolic acid was determined by WST-1 assay. A549 cells were incubated with β -peltoboykinolic acid for 48 h. Because a significant cytotoxicity was observed at more 20 µg/mL of β -peltoboykinolic acid, 10 µg/mL concentration was determined as maximum treatment concentration.

Table 1. Primers used in qRT-PCR

.

-

Primer	Sequence
N-cadherin	Forward: 5'-ACAGTGGCCACCTACAAAGG-3'
	Reverse: 5'-CCGAGATGGGGTTGATAATG-3'
Vimentin	Forward: 5'-GAGAACTTTGCCGTTGAAGC-3'
	Reverse: 5'-GCTTCCTGTAGGTGGCAATC-3'
E-cadheirn	Forward: 5'-TGCCCAGAAAATGAAAAAGG-3'
	Reverse: 5'-GTGTATGTGGCAATGCGTTC-3'
CoL1A1	Forward: 5'-GGCAACAGCCGCTTCACCTAC-3'
	Reverse: 5'-GCGGGAGGACTTGGTGGTTTT-3'
Snail	Forward: 5'-GAGAACTTTGCCGTTGAAGC-3'
	Reverse: 5'-GCTTCCTGTAGGTGGCAATC-3'
Fibronectin	Forward: 5'-CAGTGGGAGACCTCGAGAAG-3'
	Reverse: 5'-TCCCTCGGAACATCAGAAAC-3'
GAPDH	Forward: 5'-AGATCATCAGCAATGCAATGCCTCC-3'
	Reverse: 5'-ATGGCATGGACTGTGGTCAT-3'

Figure S1. A549 cells were treated with different concentrations of (A) extracts, (B) solvent fractions of Astilbe rubra (left, fractions from the aerial part of A. rubra; right, fractions from the rhizome of A. rubra). Cell viability was evaluated by using the WST-1 assay

Figure S2A. 1H-NMR spectrum of β -peltoboykinolic acid isolated from Astilbe rubra (CDCl3, 850 MHz).

Figure S2B. ¹³C-NMR spectrum of β -peltoboykinolic acid isolated from *Astilbe rubra* (CDCl₃, 100 MHz).

β-peltoboykinolic acid

Figure S3. Structure of β -peltoboykinolic acid

Figure S4. A549 cells were treated with different concentrations of β -peltoboykinolic for 48 h. Cell viability was evaluated by using the WST-1 assay.