Supplementary information

Concentration effects in the interaction of monoclonal antibodies (mAbs) with their immediate environment characterized by EPR spectroscopy

Haleh H. Haeri¹, Jacob Blaffert¹, Florian A. Schöffmann¹, Michaela Blech², Josef Hartl^{1,2}, Patrick Garidel^{1,2} and Dariush Hinderberger¹

 ¹ Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
²Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Strasse 65, D-88397 Biberach/Riss, Germany

Figure Captions

Figs.S1-S4-TEMPO containing systems

S1: δA_{iso} and $\delta \tau c$ time of mAb1-TEMPO in water and buffer

S2: δA_{iso} and $\delta \tau c$ time of mAb2-TEMPO in water and buffer

S3 and S3-1: Experimental (black) and simulated (red) EPR spectra of mAb1 and mAb2-TEMPO system in water and buffer at different concentrations.

S4: mAb-TEMPO dynamics in buffer.

Figs.S5-S8-CAT1 containing systems

S5: δA_{iso} and $\delta \tau c$ time of mAb1-CAT1 in water and buffer

S6: δA_{iso} and $\delta \tau c$ time of mAb2-CAT1 in water and buffer

S7 and S7-1: Experimental (black) and simulated (red) EPR spectra of mAb1 and mAb2-CAT1 system in water and buffer at different concentrations.

S8: mAb-CAT1 dynamics in buffer.

Figs.S9-S12- CITPRO containing systems

S9 and S9-1: Experimental (black) and simulated (red) EPR spectra of mAb1and mAb2-CITPRO system in water and buffer at different concentrations.

S10: δA_{iso} and $\delta \tau c$ time of mAb1-CITPRO in water and buffer

S11: δA_{iso} and $\delta \tau c$ time of mAb2-CITPRO in water and buffer

S12: mAb-CITPRO dynamics in buffer.

Figs.S13-S18- viscosity related data

S13: Glycerol viscosity as reference data

S14: Experimental (black) and simulated (red) EPR spectra of CAT1-Glycerol at different concentrations of Glycerol.

S15: Experimental (black) and simulated (red) EPR spectra of CITPRO-Glycerol at different concentrations of Glycerol.

S16: Rheology results of (a) mAb1 and (b) mAb2 per concentration at different pH values.

S17: Correlation diagram between viscosity and rotational correlation time for CAT1-containing systems.

S18: Correlation diagram between viscosity and rotational correlation time for CITPRO-containing systems.

Fig.S19 (a, b): IR data and H-NMR and C-NMR characterization of CITPRO

List of Tables

TableS1: Simulation data of mAbs in water ad buffer

Table S2: Glycerol concertation based on its viscosity

Fig.S1.mAb1-TEMPO

concentration (mg/ml)

δτ*c* **mAb1**

Fig.S2.mAb2-TEMPO

δτ*c* **mAb2**

Fig.S4. mAb-TEMPO dynamics in buffer

mAb-Tempo dynamics in buffer

δτ*c* **mAb1**

Fig.S6.mAb2-CAT1

concentration(mg/ml)

concentration(mg/ml)

mAb-CAT1 dynamics in buffer

concentration(mg/ml)

Fig.S11.mAb2-CITPRO

concentration(mg/ml)

water buffer

Fig.S12.mAb-CITPRO dynamics in buffer

mAb-CITPRO dynamics in buffer

Fig.S15. EPR Spectra of CITPRO-buffer mixed with Glycerol at different concentrations

Fig.S16. Rheology results for (a)mAb1 and (b)mAb2 per concentration at different pH values.

100 120 140 160 180 200 220

c_{mAb2} (mg/ml)

Fig.S17. Correlation diagram between viscosity and rotational correlation time for CAT1-containing systems

Fig.S18. Correlation diagram between viscosity and rotational correlation time for CITPRO-containing systems

Fig.S19(a). ¹H-NMR CITPRO

¹H-NMR: 400 MHz, CDCl₃; δ = 1.10 – 1.75 (m, 12 H, -CH₃); 2.05 – 2.15 (m, 2 H, -CH₂-); 2.25 – 2.40 (m 1H, -CHCOOC); 2.90 – 3.00 (t, 4 H, -CH₂-COOH); 3.48 (s, 1 H, -CNHC-);

Fig.S19(b). ¹³C-NMR CITPRO

¹³C-NMR: 500 MHz, CDCl₃; δ = 23.63 – 25.88 (m, 4 C, -CH₃); 38.55 – 39.24 (m, 2 C, -CH₂-COOH); 72.08 (s 1C, -C-CH₃); 76.26 – 77.51 (m, 1 C, HOOC-C-CH₂-COOH);

¹H and ¹³C NMR spectra were recorded on an Agilent Technologies 400 MHz VNMRS spectrometer (400/100 MHz) or an Agilent Technologies 500 MHz DD2 spectrometer (500/125 MHz) with the use of CDCl3 or CD3OD as the internal standard. Chemical shifts (δ) are reported in ppm unit.

IR measurements were performed on a Tensor 27 FT-IT Spectrometer equipped with a BioATRCell II and a Nitrogen-cooled photovoltaic MCT Detector (all devices from Bruker Optics GmbH, Karlsruhe, Germany).

IR: OH: 3120 cm⁻¹; .CH₃ 2973 cm⁻¹; CH₂ 2932 cm⁻¹; -COOH 1718 cm⁻¹; -NO° 1362 cm⁻¹, 1573 cm⁻¹; -CH₂-1462 cm⁻¹; -COO⁻ 1323-1320 cm⁻¹

TableS1. mAb-spin probes simulation data in water and buffer. A_{iso} and τ_c are given in MHz and ps (* denotes confined structures).

		mAb [mg/ml]	(Aiso, ⊗c)	mAb [mg/ml]	(Aiso, ⊚c)
	references	0	(48.33, 19.70)	0	(48.30, 27.40)
TEMPO		15	(48.50, 33.80)	10	(48.53, 40.00)
	mAb1	75	(48.33, 46.80)	50	(48.30, 40.00)
		135	(48.33, 29.50)	200	(48.13, 113.00)
				200*	(46.50, 1660.00)
		15	(48.50, 33.80)	10	(48.30, 33.80)
	mAb2	75	(48.50, 38.00)	50	(48.16, 33.80)
		190	(48.50, 40.00)	200	(48.16, 40.00)
	references	0	(47.26, 16.60)	0	(47.36, 37.19)
		15	(47.16, 48.70)	10	(47.36, 37.19)
	mAb1	75	(47.16, 30.00)	50	(47.36, 37.19)
		135	(47.16, 30.00)	200	(47.06, 145.00)
~				200*	(46.50, 1660.00)
CAT					
		15	(47.03, 18.50)	10	(47.36, 32.48)
	mAb2	75	(47.36, 45.20)	50	(47.36, 33.80)
		190	(47.30, 41.60)	200	(47.10, 37.20)
	references	0	(45.43, 37.19)	0	(45.76, 54.37)
		15	(45.43, 42.57)	10	(45.60, 43.46)
	mAb1	75	(45.43, 37.19)	50	(45.60, 45.12)
		135	(45.43, 44.90)	200	(45.60, 65.86)
02					
Ч		15	(45.76, 37.19)	10	(45.60, 45.86)
Ö	mAb2	75	(45.76, 45.80)	50	(45.60, 45.86)
					(45.60,63.59)
		190	(45.76, 42.57)	200	
Table	S2. Glycerol c	concentration base	ed on its viscosity		

Viscosity%Glycerol(mPa.s)Glycerol(mg/ml)000

10	1.5	22.0
20	2.0	44.0
30	3.0	71.0
40	4.7	89.0
50	8.5	111.0
60	15.0	129.0
70	33.0	152.0
80	83.0	180.0