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Abstract: Examining the kinetics of solids’ thermal decomposition with multiple overlapping steps
is of growing interest in many fields, including materials science and engineering. Despite the
difficulty of describing the kinetics for complex reaction processes constrained by physico-geometrical
features, the kinetic deconvolution analysis (KDA) based on a cumulative kinetic equation is one
practical method of obtaining the fundamental information needed to interpret detailed kinetic
features. This article reports the application of KDA to thermal decomposition of clay minerals
and indigo–clay mineral hybrid compounds, known as Maya blue, from ancient Mayan civilization.
Maya blue samples were prepared by heating solid mixtures of indigo and clay minerals (palygorskite
and sepiolite), followed by purification. The multistep thermal decomposition processes of the
clay minerals and Maya blue samples were analyzed kinetically in a stepwise manner through
preliminary kinetic analyses based on a conventional isoconversional method and mathematical
peak deconvolution to finally attain the KDA. By comparing the results of KDA for the thermal
decomposition processes of the clay minerals and the Maya blue samples, information about the
thermal decomposition steps of the indigo incorporated into the Maya blue samples was extracted.
The thermal stability of Maya blue samples was interpreted through the kinetic characterization of
the extracted indigo decomposition steps.

Keywords: Maya blue; indigo; palygorskite; sepiolite; thermal decomposition; kinetic deconvolution
analysis

1. Introduction

Thermal decomposition of inorganic solids is a complex heterogeneous reaction that is regulated
by chemical kinetics and physio-geometrical constraints [1–3]. In addition, consecutive or concurrent
reaction steps that originated from both chemical [4–9] and physio-geometrical reaction mechanisms
can occur [10–16], wherein the individual reaction steps may be kinetically dependent on one another.
For a multistep process in a homogeneous system, the kinetic behavior can be formalized using
concentrations of reactant and intermediate and each reaction step can be verified according to
probability considerations. By contrast, in the heterogeneous system, the rigorous formalization of the
kinetic equation for multistep reactions is not so easy because of the physico-geometrical constraints
of each reaction step and these complex interactions [17]. When each reaction step that exhibits
Arrhenius-type temperature dependence can be approximated to be kinetically independent from the
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other steps, kinetic deconvolution analysis (KDA) can be applied to find an empirical solution for the
kinetic description of multistep solid-state reactions [18,19], as follows:

dα
dt

=
N∑

i=1

ciAi exp
(
−

Ea,i

RT

)
fi(αi) with

N∑
i=1

ci = 1 and
N∑

i=1

ciαi = α (1)

where α, c, A, Ea, and R are the fractional reaction, contribution, Arrhenius pre-exponential factor,
apparent activation energy, and the gas constant, respectively. The subscript i denotes a reaction step
out of a total N steps. The function f (α) describes the physico-geometrical reaction mechanism as
formalized by considering the rate-limiting step of the reaction and the reaction geometry [1–3]. Despite
the empirical nature of the kinetic analysis using KDA, the results provide necessary information
to gain further insights into consecutive or concurrent kinetic features [20–22], as well as practically
useful information about the multistep process, including the contribution (ci) and apparent kinetic
parameters (Ai, Ea,i, and fi(αi)) of each reaction step i. Using the results of KDA, the overall reaction
process, under a specific heating condition, can be reproduced or simulated. By comparing the results
of KDA among a series of samples and under different reaction conditions, characteristics of multistep
kinetic behavior can be correlated to different components of a composite sample [23–26] and specific
reaction conditions [27,28]. KDA is also used to extract kinetic information about a selected reaction
step from the overall process [29,30].

A multistep heterogeneous thermal decomposition can be observed for inorganic–organic hybrid
materials. One example of such a material is Maya blue (MB), a well-known pigment used in the Mayan
civilization. MB is a hybrid compound of a microporous clay mineral and indigo [31–33]. Palygorskite
and sepiolite are the typical clay minerals used in the preparation of MB. These fibrous clay minerals
exhibit external and internal nanochannels, which are typically filled with zeolitic water [34–41].
MB is produced by the replacement of the zeolitic water with indigo molecules [31,34–36]. Notably,
MB exhibits high stabilities against thermal treatment, light exposure, and acid and/or base attacks.
Consequently, the structural characteristics of MB have been intensively studied using spectroscopic
techniques that include Fourier transform infrared (FT-IR) and Raman spectroscopies [31,34,35,41–44].
The thermal behavior of MB has also been studied using thermoanalytical techniques [34,36,42].
The formation of strong hydrogen bonds between the structural water of the clay mineral and the
carbonyl and amino functional groups of the indigo molecules was reported as a possible reason
for the high stabilities of MB [37]. MB with palygorskite as the clay mineral is expected to be more
stable compared to MB with uses sepiolite, because of the higher number of hydrogen bonds available
to form between the indigo and the substrate mineral [35]. It was also reported that the indigo
molecules incorporated into the clay mineral substrate transform into dehydroindigo during the
heating process used to prepare MB [37,43,45]. The thermal decomposition of MB begins just above
room temperature and indicates partially overlapping multistep processes upon further heating, which
may be composed of dehydration steps of zeolitic, coordinating, and structural waters; decomposition
of hydroxides in the substrate mineral; and sublimation/decomposition of indigo molecules [34,36,42].
Indigo molecules that have been incorporated into the clay mineral are known to have a higher thermal
stability, as confirmed by thermoanalytical curves, compared to pure indigo crystals [34].

Kinetic characterization of the thermal decomposition of MB is a promising approach to evaluating
its thermal stability. However, its complex multistep thermal behavior interferes with a successful
and straight-forward kinetic analysis. Application of KDA to the thermal decomposition of MB is one
possible empirical method of separating the overlapping reaction steps and kinetically characterizing
each one to determine the reaction steps that relate specifically to the thermal decomposition of indigo
molecules. In the present study, MBs based on palygorskite (P-MB) and sepiolite (S-MB) were prepared
by heating solid mixtures of indigo and clay minerals. The thermal decomposition processes of the
purified clay mineral substrate samples and the MB samples were analyzed kinetically using KDA,
after the necessary preliminary kinetic approaches. By comparing the kinetic results for the thermal
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decomposition of MB and its clay mineral substrates, the thermal decomposition steps of the indigo
molecules were extracted. Using the kinetic information for the thermal decomposition steps of the
indigo molecules, the kinetic stabilities of the indigo molecules incorporated in different clay mineral
matrices were compared to one another and those of pure indigo crystals.

2. Results and Discussion

2.1. Sample Preparation and Characterization

The characterization details of the purchased palygorskite and sepiolite samples are described in
Section S1(1) in the Supplementary Materials. Since a CaCO3 impurity was found in both clay mineral
samples, they were purified using HCl(aq) before use. Figure 1 represents the scanning electron
microscope (SEM) images of the clay minerals after treatment with HCl(aq). The palygorskite sample is
an agglomerate of needle-like crystal with a length of approximately 2–5 µm (Figure 1a). Agglomerates
of columnar crystals, with a length of approximately 1–2 µm, are characteristic of the sepiolite sample
(Figure 1b).
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Figure 1. SEM images of the clay minerals after treatment with HCl(aq): (a) Palygorskite and
(b) sepiolite.

The coloration changes in the indigo–clay mineral mixture before and after heating are described
in Section S1(2) in the Supplementary Materials. Figure 2 compares thermogravimetry (TG)–derivative
thermogravimetry (DTG)–differential thermal analysis (DTA) curves for the heat-treated samples
with different indigo/clay mineral ratios. The major difference between the samples with different
indigo/clay mineral ratios is the mass-loss step initiated at approximately 525 K and 535 K for the
palygorskite and sepiolite substrate samples, respectively, in which the mass-loss value and the DTG
peak height increase with an increasing amount of indigo. The temperature range of the mass-loss step
agrees with that for the sublimation/decomposition of pure indigo crystals (Figure S9). Therefore, it is
likely that, in the samples with higher indigo/clay mineral ratios, excess indigo remains unreacted with
the clay mineral substrates.
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Figure 3 compares the TG–DTG–DTA curves for the heat-treated indigo/palygorskite sample
and those further treated with Na2S2O4(aq) for removing excess indigo. The TG–DTG–DTA curves
were recorded under an atmosphere of flowing N2 (Figure 3a) and clearly indicate that the mass-loss
step initiated at approximately 525 K disappears after samples are treated with Na2S2O4(aq). For the
sample treated with Na2S2O4(aq), several mass-loss steps that occur at the higher temperatures also
disappeared in the TG–DTG–DTA curves recorded in flowing air (Figure 3b). The disappeared mass-loss
steps are expected to be attributed to either oxidation or combustion of the thermal decomposition
product of indigo. The comparable results of Na2S2O4(aq) treatment were also observed for the
heat-treated indigo/sepiolite samples, as shown in Figure S10. These results indicate that the removal
of excess indigo from the MB samples was successful. Figure S11 compares the sample coloration
before and after the Na2S2O4(aq) treatment. The faded color that results after the treatment arises from
the removal of excess indigo. The color fading is characterized by a decrease in the ultraviolet-visible
(UV-Vis) absorption in the wavelength range of 425–600 nm and the appearance of a maximum
absorption at approximately 650 nm, as illustrated in Figure S12. Figure S13 presents the SEM images
of the samples treated with Na2S2O4(aq). The appearance of the synthesized MB samples was not
significantly different from those of the palygorskite and sepiolite samples (Figure 1).
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2.2. Kinetic Analysis of the Thermal Decomposition of Clay Minerals

Figure 4 presents TG–DTG curves for the purified clay minerals, recorded at different heating
rates (β) in the flow of N2 gas. The thermal decomposition processes of both clay minerals are multistep
processes comprised of three and four distinguishable DTG peaks for palygorskite (Figure 4a) and
sepiolite (Figure 4b), respectively. The systematic shift of all the distinguishable DTG peaks to higher
temperatures with increasing β was observed for both samples. This is a normal feature for the kinetic
process. The average value for the total mass loss during heating the samples to 1223 K was 13.6 ± 0.3%
and 9.9± 0.1% for palygorskite and sepiolite, respectively. The overall thermal decomposition behaviors
of palygorskite and sepiolite approximately agree with those previously reported [34,46,47]. The first
to third DTG peaks in both the samples correspond to the thermal dehydration of zeolite water,
the first coordinated water, and the second coordinated water. The fourth DTG peak in the thermal
decomposition of sepiolite is attributed to the thermal dehydration of structural water.



Molecules 2019, 24, 2515 5 of 18

Molecules 2019, 24, x 4 of 18 

 

sample treated with Na2S2O4(aq), several mass-loss steps that occur at the higher temperatures also 
disappeared in the TG–DTG–DTA curves recorded in flowing air (Figure 3b). The disappeared mass-
loss steps are expected to be attributed to either oxidation or combustion of the thermal 
decomposition product of indigo. The comparable results of Na2S2O4(aq) treatment were also 
observed for the heat-treated indigo/sepiolite samples, as shown in Figure S10. These results indicate 
that the removal of excess indigo from the MB samples was successful. Figure S11 compares the 
sample coloration before and after the Na2S2O4(aq) treatment. The faded color that results after the 
treatment arises from the removal of excess indigo. The color fading is characterized by a decrease in 
the ultraviolet-visible (UV-Vis) absorption in the wavelength range of 425–600 nm and the 
appearance of a maximum absorption at approximately 650 nm, as illustrated in Figure S12. Figure 
S13 presents the SEM images of the samples treated with Na2S2O4(aq). The appearance of the 
synthesized MB samples was not significantly different from those of the palygorskite and sepiolite 
samples (Figure 1). 

 
Figure 3. Comparison of the TG–DTG–DTA curves for the heat-treated indigo/palygorskite samples 
before and after treatment with Na2S2O4(aq) recorded in (a) flowing N2 and (b) flowing air. 

2.2. Kinetic Analysis of the Thermal Decomposition of Clay Minerals 

Figure 4 presents TG–DTG curves for the purified clay minerals, recorded at different heating 
rates (β) in the flow of N2 gas. The thermal decomposition processes of both clay minerals are 
multistep processes comprised of three and four distinguishable DTG peaks for palygorskite (Figure 
4a) and sepiolite (Figure 4b), respectively. The systematic shift of all the distinguishable DTG peaks 
to higher temperatures with increasing β was observed for both samples. This is a normal feature for 
the kinetic process. The average value for the total mass loss during heating the samples to 1223 K 
was 13.6 ± 0.3% and 9.9 ± 0.1% for palygorskite and sepiolite, respectively. The overall thermal 
decomposition behaviors of palygorskite and sepiolite approximately agree with those previously 
reported [34,46,47]. The first to third DTG peaks in both the samples correspond to the thermal 
dehydration of zeolite water, the first coordinated water, and the second coordinated water. The 
fourth DTG peak in the thermal decomposition of sepiolite is attributed to the thermal dehydration 
of structural water. 

 
Figure 4. TG–DTG curves for the thermal decomposition of the purified clay minerals recorded at 
different β in a flow of N2 gas: (a) Palygorskite and (b) sepiolite. 

Figure 4. TG–DTG curves for the thermal decomposition of the purified clay minerals recorded at
different β in a flow of N2 gas: (a) Palygorskite and (b) sepiolite.

As part of the preliminary kinetic approach to the multistep thermal decomposition process,
the isoconversional kinetic analysis was examined for the overall thermal decomposition. For the ideal
single-step reaction, Equation (2) can be used as the fundamental kinetic equation [48].

dα
dt

= A exp
(
−

Ea

RT

)
f (α) (2)

Taking the natural logarithm of both sides of Equation (2), one can obtain the following equation:

ln
(dα

dt

)
= ln[A f (α)] −

Ea

RT
(3)

At the selected α, the plot of the left-hand side of Equation (3) versus the reciprocal temperature
should exhibit a linear correlation when the value of ln[Af (α)] is constant. The apparent Ea values at
different α can be calculated from the slope of the plot, known as a Friedman plot [49]. The application
of the Friedman plot to the overall kinetic data of the multistep thermal decomposition process recorded
at different β is not supported by theory, because more than one reaction step overlaps at each α.
Even so, some possibility of finding α region characterized by a relevant Ea values or a specific trend
of the Ea variation is still anticipated. Figure 5 illustrates the Ea values at different α for the overall
thermal decomposition. For the thermal decomposition of palygorskite, four distinguishable reaction
steps are expected from the constant Ea regions and the region that exhibits specific Ea variation trends
(Figure 5a). The regions assigned as (1), (3), and (4) correspond to the major reaction steps observed as
distinguishable DTG peaks. Five distinguishable α regions were found for the thermal decomposition
of sepiolite (Figure 5b), in which the regions assigned as (1), (3), (4), and (5) correspond to the major
DTG peaks.
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Based on the results of the empirical application of the isoconversional method to the multistep
thermal decomposition process, the component reaction steps were deconvolved based on the DTG
curves by mathematical deconvolution analysis (MDA); that is, the statistical shape analysis assuming
overlapping independent peaks are present [18,50,51].

dm
dt

=
N∑

i=1

Fi(t) (4)

In Equation (4), N is the number of component peaks. The value Fi(t) is the statistical function used
to satisfactorily fit the component peak i. As the component DTG peaks typically have an asymmetric
shape, one of the statistical functions that are applicable to symmetric peaks, such as the Weibull and
Frazer–Suzuki functions, is favorable for MDA [18,50,51]. According to the number of distinguishable
regions of α observed in the results of the isoconversional kinetic analysis (Figure 5), MDA for the
thermal decomposition of palygorskite and sepiolite was carried out by setting N = 4 and N = 5,
respectively. The Weibull function (Equation (S1)) was applied to fit all the component peaks.

Figure 6 illustrates a typical result of the MDA. The second DTG peaks in both samples are
described by the partial overlapping of two peaks in the MDA results. The primary outcome from the
MDA is the rough estimation of the contribution ci of each reaction step i with reference to the overall
reaction. Table S1 lists the contribution of each component step i. In both the samples, the first and fourth
deconvolved steps, which correspond to the dehydration of zeolite water and the second coordinated
water, have been indicated as significant contributions to the overall thermal decomposition.
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Figure 6. Typical results of MDA applied to the multistep thermal decomposition of the clay minerals:
(a) Palygorskite and (b) sepiolite.

The other outcome from MDA is the separated kinetic curves for each reaction step. The features
of the separated kinetic curves and the formal kinetic analyses for these kinetic curves are described in
Section S2 in the Supplementary Materials.

Based on the results obtained by the preliminary kinetic approaches using the conventional
isoconversional method and MDA, the overall kinetic curves were analyzed by assuming that the
overlapping multistep process was comprised of independent reaction steps. In this case, the cumulative
kinetic equation in Equation (1) is applicable [17–19]. For the kinetic model function fi(αi) for each
reaction step i, an empirical kinetic model that accommodates different types of the physico-geometrical
reaction mechanisms and those that deviate are needed to obtain the sophisticated fit for the calculated
kinetic curve to the experimental kinetic curve. The Šesták–Berggren (SB) model with three kinetic
exponents [52–54], SB(m, n, p), is one such empirical kinetic model with the high flexibility needed for
the fitting, as follows:

f (α) = αm(1− α)n[− ln(1− α)]p (5)
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The nonlinear least squares analysis for fitting the calculated kinetic curve to the calculated kinetic
curve while simultaneously optimizing all the kinetic parameters in Equations (1) and (5) is a typical
procedure of KDA [17–19]. For reliable KDA, appropriate initial values of all the kinetic parameters
that will be optimized through KDA are necessary. For the thermal decomposition of palygorskite and
sepiolite, the initial ci and Ea,i values were adapted from the results of the MDA (Table S1). The initial
kinetic exponents in the SB model were set to SB(0, 1, 0), which is the first-order kinetic model. Then,
the order of Ai values was determined graphically by monitoring the fit of the calculated kinetic curve
to the experimental kinetic curve. After inputting all the initial values, KDA was run to optimize
the values through nonlinear least squares analysis to minimize the sum of squares of the differences
between the experimental and calculated kinetic curves, as follows:

F =
M∑

j=1

[(dα
dt

)
exp, j
−

(dα
dt

)
cal, j

]2

(6)

where M is the total number of data points in the experimental kinetic curve at a β value.
Figure 7 illustrates typical results of the KDA for the thermal decomposition of the purified

palygorskite (Figure 7a) and sepiolite (Figure 7b). Regardless of the kinetic curve recorded at different
β values, the calculated kinetic curve was fit to the experimental kinetic curve with a determination
coefficient for the nonlinear least squares analysis (R2) better than 0.99. The optimized kinetic
parameters for each reaction step for the thermal decompositions of the purified palygorskite and
sepiolite are summarized in Table 1. The contributions for the first reaction step, attributed to the
thermal dehydration of zeolite water, were comparable between the two samples. This was also true
for the thermal dehydration of the second coordinated water, which appeared as the fourth reaction
step for the thermal decompositions of palygorskite and sepiolite. The optimized Ea values for each
reaction step did not significantly change from the initial values in both samples. The rate behavior of
each reaction step was simulated from the SB(mi, ni, pi) model with the optimized kinetic exponents,
as illustrated in Figure 8. The first reaction step, i.e., the thermal dehydration of zeolite water, exhibits
nearly linear deceleration in both samples. The linear deceleration behavior was also seen for the
third reaction step of the thermal decomposition of sepiolite. The corresponding reaction step for
the thermal dehydration of the first coordinated water in the thermal decomposition of palygorskite
exhibited zero-order-like behavior in a wide α3 range. For the other reaction steps in both samples,
deceleration behavior characterized by concaved shapes was observed, possibly indicating that the
process was controlled by diffusional removal of evolved water vapor.
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Table 1. The average kinetic parameters optimized by KDA for each reaction step of the thermal decomposition of the purified clay minerals.

Sample i ci Ea,i/kJ mol−1 Ai/s−1 fi(αi)=αi
m(1−αi)n[−ln(1−αi)]p

R2

m n p

Palygorskite

1 0.32 ± 0.01 63.7 ± 0.2 (4.35 ± 0.07) × 107 −0.63 ± 0.04 1.26 ± 0.03 0.73 ± 0.03

0.99 ± 0.01
2 0.12 ± 0.02 90.5 ± 1.7 (2.94 ± 0.01) × 108 −0.33 ± 0.02 1.13 ± 0.09 –0.35 ± 0.02
3 0.11 ± 0.01 114.4 ± 0.2 (2.00 ± 0.02) × 1011 0.03 ± 0.01 0.61 ± 0.07 0.21 ± 0.01
4 0.45 ± 0.01 190.0 ± 1.5 (4.79 ± 0.05) × 108 –32.8 ± 3.8 13.8 ± 1.7 29.5 ± 3.7

Sepiolite

1 0.31 ± 0.01 80.4 ± 0.1 (3.25 ± 0.02) × 1010 0.33 ± 0.02 2.34 ± 0.04 –0.27 ± 0.01

0.99 ± 0.01
2 0.14 ± 0.01 64.6 ± 0.9 (1.28 ± 0.01) × 104 −0.01 ± 0.01 2.30 ± 0.05 –0.59 ± 0.01
3 0.04 ± 0.01 213.0 ± 1.0 (1.01 ± 0.01) × 1019 –0.02 ± 0.01 1.41 ± 0.02 –0.09 ± 0.01
4 0.41 ± 0.01 124.3 ± 1.4 (2.37 ± 0.01) × 105 –0.46 ± 0.01 2.93 ± 0.05 –1.43 ± 0.02
5 0.10 ± 0.01 738.4 ± 1.6 (9.50 ± 0.01) × 1032 –1.29 ± 0.01 2.30 ± 0.01 –1.78 ± 0.02
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2.3. Kinetic Deconvolution Analysis for the Thermal Decomposition of MB

Figure 9 presents the TG–DTG curves recorded at different β values in a flow of air for the thermal
decomposition of the synthesized P-MB and S-MB samples. The number of distinguishable DTG peaks
was 5 and 6 for the thermal decomposition of P-MB and S-MB samples, respectively. In comparison
with the TG–DTG curves for the clay mineral substrates (Figure 4), the third and fifth distinguishable
DTG peaks in the thermal decomposition of P-MB appeared in addition to those expected from the
thermal decomposition of palygorskite. For S-MB, the third and fourth distinguishable DTG peaks
were the additional peaks. These additional peaks can be interpreted as the sublimation/decomposition
of indigo incorporated into the clay mineral substrates.
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(a) P-MB and (b) S-MB.

MDA for the thermal decomposition of the MB samples was carried out by adding several minor
peaks to the major discernable peaks in the DTG curves (Figure 9). Figure 10 illustrates typical results of
MDA carried out by applying a Weibull function to each peak. By comparing the results of MDA for the
thermal decomposition of clay mineral substrates, four additional peaks were revealed in both the P-MB
and S-MB samples. These additional peaks (that is, the fourth, fifth, seventh, and eighth peaks for P-MB
and the fourth, sixth, seventh, and eighth peaks for S-MB) are attributed to the thermal decomposition
of the indigo molecules incorporated into the clay mineral matrix. The details of the analysis of the
mathematically separated peaks are provided in Section S3 in the Supplementary Materials.
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and (b) S-MB.

Further, the overall thermal decomposition of the MB samples was analyzed by KDA. The initial
values of ci were substituted in for the values determined by MDA (Table S2). For the reaction steps
attributed to the thermal decomposition of the clay mineral substrates, the initial values of the kinetic
parameters were substituted with values from the results of the KDA for thermal decomposition of
the substrates (Table 1). For the reaction steps attributed to the thermal decomposition of indigo,
the apparent Ea,i values determined for the corresponding steps using MDA (Table S2) were used as
the initial values. The fi(αi) for the reaction steps of the thermal decomposition of indigo were set to be
SB(0, 1, 0) as the initial setting. Then, the order of apparent Ai values was determined by graphically
comparing the fit of the calculated curves with the experimental kinetic curve.

Figure 11 illustrates typical results of KDA for the thermal decomposition of the MB samples.
The nearly perfect fit using Equation (1) with SB(m, n, p) in Equation (5) as the kinetic model function
was realized by using the optimized kinetic parameters for each reaction step, as listed in Table 2.
The optimized kinetic parameters for each reaction step from the overall kinetic curves recorded at
different β values were practically invariant, as was determined by the acceptably small standard
deviation values of each kinetic parameter. The sums of all the contributions from the reaction steps
attributed to the thermal decomposition of indigo, that is, i = 4, 5, 7, and 8 for the P-MB sample and
i = 4, 6, 7, and 8 for the S-MB sample, were 0.415 and 0.226, respectively. Compared to the initial sample
mass m0, the fractional mass loss attributed to the thermal decomposition of indigo were calculated to
be 5.35% and 2.58% for the P-MB and S-MB samples, respectively. These fractional mass-loss values
are smaller than the initial mass ratio of indigo added to the clay mineral, 5.66%, before heat treatment
and purification, in both samples. The difference in the mass-loss fractions between both samples
indicates that the P-MB sample incorporates twice as much indigo as the S-MB sample.
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Table 2. Kinetic parameters for each reaction step for the thermal decomposition of MB, as determined by KDA.

Sample i ci Ea,i/kJ mol−1 Ai/s−1 fi(αi)=αi
m(1 − αi)n[−ln(1 − αi)]p

R2

m n p

P-MB

1 0.08 ± 0.01 61.7 ± 0.5 (4.33 ± 0.02) × 107 –0.57 ± 0.10 1.69 ± 0.09 0.73 ± 0.05

0.99 ± 0.01

2 0.10 ± 0.01 46.4 ± 0.3 (1.95 ± 0.01) × 103 −0.04 ± 0.01 2.68 ± 0.22 –0.18 ± 0.01
3 0.10 ± 0.01 113.0 ± 0.6 (1.70 ± 0.01) × 1011 0.02 ± 0.01 0.85 ± 0.01 –0.07 ± 0.01
4 0.09 ± 0.01 43.7 ± 2.0 (1.96 ± 0.02) × 102 1.19 ± 0.06 1.05 ± 0.03 –1.10 ± 0.05
5 0.15 ± 0.03 143.2 ± 0.3 (1.99 ± 0.02) × 109 –0.11 ± 0.01 1.64 ± 0.17 –0.35 ± 0.03
6 0.31 ± 0.03 183.2 ± 2.5 (4.99 ± 0.03) × 108 –26.61 ± 3.69 11.94 ± 2.27 24.50 ± 4.38
7 0.13 ± 0.01 634.3 ± 3.6 (1.70 ± 0.01) × 1032 –2.44 ± 0.19 3.79 ± 0.57 –3.82 ± 0.43
8 0.05 ± 0.01 448.3 ± 2.8 (8.84 ± 0.08) × 1017 –0.39 ± 0.03 1.21 ± 0.12 –0.48 ± 0.06

S-MB

1 0.22 ± 0.01 82.4 ± 0.5 (2.16 ± 0.01) × 1010 0.25 ± 0.01 5.57 ± 0.09 –0.35 ± 0.01

0.98 ± 0.02

2 0.15 ± 0.01 64.5 ± 0.8 (1.29 ± 0.01) × 104 −0.01 ± 0.01 2.45 ± 0.08 –0.40 ± 0.01
3 0.02 ± 0.01 206.2 ± 1.9 (9.68 ± 0.01) × 1018 –0.02 ± 0.01 1.26 ± 0.01 –0.11 ± 0.01
4 0.05 ± 0.01 160.3 ± 0.4 (4.48 ± 0.02) × 1011 0.06 ± 0.01 1.35 ± 0.08 0.24 ± 0.01
5 0.34 ± 0.01 127.9 ± 2.4 (2.33 ± 6.98) × 105 –0.46 ± 0.01 1.17 ± 0.02 –1.39 ± 0.05
6 0.04 ± 0.01 180.6 ± 0.7 (1.36 ± 0.01) × 1011 –0.20 ± 0.01 0.78 ± 0.01 –0.20 ± 0.01
7 0.08 ± 0.01 120.8 ± 3.3 (9.94 ± 0.02) × 103 0.06 ± 0.01 1.07 ± 0.01 0.12 ± 0.01
8 0.06 ± 0.01 314.0 ± 5.5 (1.51 ± 0.01) × 1013 –0.40 ± 0.01 1.09 ± 0.01 –0.33 ± 0.01
9 0.05 ± 0.01 780.9 ± 9.1 (9.65 ± 0.01) × 1032 –0.73 ± 0.01 2.14 ± 0.03 –0.66 ± 0.01
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Figure 12 presents typical optical microscopic views of the P-MB sample as it was heated to
different temperatures at β = 10 K min−1 in flowing air. The brilliant blue color of the original P-MB
(Figure 12a) was maintained until the sample reached 573 K (Figure 12b), which is a higher temperature
than the completion of the fourth reaction step, i.e., the first reaction step of the thermal decomposition
of the indigo. This observation supports our previous assumption that the first decomposition step of
indigo is the sublimation/decomposition of indigo adsorbed on the surface of the clay mineral substrate,
not the indigo incorporated into the clay mineral matrix. Color degradation was observed in the
temperature range that corresponds to the fifth reaction step, which is the second decomposition step of
incorporated indigo (Figure 12b–d). Thus, the second decomposition step of indigo was interpreted as
the decomposition of indigo incorporated into the micropores of the clay mineral substrate. The grayish
color of the sample after the fifth reaction step was completed (Figure 12d) was due to the products of
indigo decomposition. Upon further heating, the grayish color gradually disappeared after the seventh
and eighth reaction steps (Figure 12e,f, respectively), which corresponded to the third and fourth
decomposition steps of indigo, respectively. This observation was understood to be the oxidative
decomposition of the residues in the flowing air atmosphere.
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To compare the thermal decomposition behavior between the indigo incorporated into the MB
and pure indigo crystals, thermally induced changes in pure indigo were subjected to a formal
kinetic study. Approximately 97.8 ± 0.1% of mass loss was observed during the thermally induced
sublimation/decomposition of the pure indigo crystals. The residue (2.2%) was lost by the oxidative
decomposition at a higher temperature. The sublimation/decomposition process was characterized by
a constant Ea value of 150.7 ± 4.7 kJ mol−1 and a phase-boundary controlled model. The details of the
kinetic analysis are described in Section S4 in the Supplementary Materials.

Figure 13 compares the extracted kinetic curve (β = 5 K min−1) and Arrhenius plots for the
respective reaction steps, drawn using the optimized Arrhenius parameters listed in Table 2 for
the thermal decomposition of indigo incorporated in P-MB (i = 5) and S-MB (i = 6), with those for
the thermally induced sublimation/decomposition of pure indigo crystals. Although the thermal
decomposition of indigo in P-MB starts at roughly the same temperature, the reaction proceeds at a
slower rate and continues to higher temperatures in comparison to the pure indigo crystals (Figure 13a).
Despite the differences in the kinetic data, the Arrhenius plots for these reactions are comparable
(Figure 13b), as follows: (Ea/kJ mol−1, A/s−1) values for P-MB (i = 5) are (143.2 ± 0.3, (1.99 ± 0.02) × 109).
Mechanistic differences are a possible reason for the different kinetic behaviors. By contrast, the kinetic
data and the Arrhenius plot for the thermal decomposition of the indigo incorporated into S-MB are
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very different from those of other indigo, having a higher thermal stability and a slower reaction rate.
The larger Arrhenius parameters for S-MB (i = 6), i.e., (180.6 ± 0.7, (1.36 ± 0.01) × 1011), explain the
difference between its thermal behavior and that of P-MB.
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Figure 14 is the plot of fi(αi) (= SB(mi, ni, pi)) versus αi for the thermal decomposition step of
indigo incorporated into the pores of the substrate minerals, i.e., P-MB (i = 5) and S-MB (i = 6). In both
samples, the curves exhibit a concaved shape, which is characteristic of the deceleration process
being controlled by diffusion. The curve was empirically fitted by a model for nucleation and growth
controlled by diffusion, i.e., JMA(m) with m < 1 [55–58], or for three-dimensional shrinkage of reactant
particle controlled by diffusion, i.e., the Jander model, D(3) [59].

JMA(m) : f (α) = m(1− α)[− ln(1− α)]1−1/m (7)

D(3) : f (α) =
3(1− α)2/3

2
[
1− (1− α)1/3

] (8)

The removal of gaseous products, which include sublimated indigo, by diffusion from the pores of
the substrate mineral is likely the rate-limiting step. A reaction mechanism that is controlled by diffusion
is very different from that of the sublimation/decomposition of pure indigo crystals (Figure S22c),
which is also one reason for the thermal stability of the indigo incorporated into MB samples.
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3. Materials and Methods

3.1. Sample Preparation

The fibrous clay minerals, i.e., palygorskite and sepiolite, were purchased from SEPIO Japan.
Each clay mineral was ground using an agate mortar and a pestle. The ground sample was sieved
to different particle sizes using a series of sieves with different mesh sizes and an electric shaking
apparatus (MVS-1, AS ONE). The sample particles sieved to 170–200 µm in diameter were used to
synthesize MB. The clay mineral samples were immersed in 1 M-HCl(aq) and the slurry was stirred for
approximately 10 h to remove the CaCO3 impurity included in the clay mineral [60]. The precipitate
was filtered and washed repeatedly until the chloride ions were not detected in the filtrates against
AgNO3(aq). The separated clay minerals were dried in an electric oven (DK240S, YAMATO) at 343 K
for 24 h.

MB was prepared following previously reported procedures [31,33,35,40,41,43,61]. The clay
minerals treated with HCl(aq) were used as the substrates for synthesizing MB. Indigo (≥95.0%,
NACALAI Tesque) was used as the pigment. Indigo and the clay mineral substrate were mixed in the
following mass ratios: 0.01, 0.02, 0.06, or 0.10. Approximately 2.5 g of the mixed sample was placed
into a ceramic crucible and covered with a ceramic lid. Samples were heated in an electric furnace
(KDF P-70, DENKEN) at 368 K for 24 h and subsequently at 413 K for 24 h.

Excess indigo that was not reacted with the clay mineral substrate was removed as follows [62].
Approximately 0.5 g of the heat-treated sample was dispersed into 20 mL of a 0.25 M-NaOH(aq)
solution, to which 0.5 g of sodium dithionate (Na2S2O4) had been dissolved. The samples were kept at
348 K and stirred using a magnetic stirrer for 5 min. After filtration, the separated solid was washed
repeatedly with water and dried in air.

3.2. Sample Characterization

The clay mineral samples were identified using powder X-ray diffractometry (XRD) and FT-IR.
Samples were press-fitted to sample holders to carry out XRD measurement on a diffractometer
(RINT-2200V, Rigaku, Tokyo, Japan) with a radiation source (Cu-Kα, 40 kV, 20 mA) in the 2θ range
of 5–60◦ at a scan speed of 4◦ min−1. FT-IR spectra were measured in a wavenumber range of
400–4600 cm−1 using the diffuse reflectance method in a spectrophotometer (FT-IR8400S, Shimadzu,
Kyoto, Japan) after diluting the sample with KBr. The clay mineral substrates and MB samples were
subjected to simultaneous TG–DTA, UV-Vis spectroscopy, and morphological observation using a
SEM. Approximately 10 mg of each sample was weighed into a platinum pan (5 mm in diameter
and 2.5 mm in height) and heated at a β of 10 K min−1 from room temperature to 1223 K in flowing
N2 (flowrate: 300 cm3 min−1) for recording TG–DTA curves using an instrument (STA7300, Hitachi
High-Tech. Sci., Tokyo, Japan). The UV-Vis spectra of the samples press-fitted to a glass slide were
recorded in a wavelength range of 400–700 nm using a spectrophotometer (V-560, JASCO, Tokyo,
Japan) equipped with an integrating sphere. For SEM observations, the sample was coated with a thin
Pt layer by sputtering (30 mA, 40 s, JFC-1600, JEOL, Tokyo, Japan) and observed using an instrument
(JSM-6510, JEOL).

3.3. Tracking of the Thermal Decomposition Process

Thermal behaviors of the clay minerals received and those that were treated with HCl(aq) were
investigated by TG/DTA–mass spectrometry (MS). Approximately 10 mg of each sample was weighed
into a platinum pan (5 mm in diameter and 2.5 mm in height) and TG–DTA measurements were
carried out using an instrument (Thermoplus TG-8120, Rigaku). The sample was heated from room
temperature to 1223 K in flowing He (200 cm3 min−1). During the TG–DTA measurement, the outlet
gas from the instrument was transferred into a MS instrument (M-200QA, Anelva, Kanagawa, Japan)
through a capillary tube (0.007 mm in inner diameter and 0.8 m in length) that was heated at 500 K.
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MS measurements (EMSN: 1.0 A; SEM: 1.0 kV) for the outlet gas were continuously repeated in a m/z
range of 10–50.

Using the TG–DTA instrument (STA7300), approximately 10 mg of MB samples were heated to
different temperatures at β = 10 K min−1 in flowing air (300 cm3 min−1). After the sample was cooled
to room temperature, the partially decomposed samples were observed using an optical microscope
(SZX7, Olympus, Tokyo, Japan) for recording the color of the sample.

3.4. Measurement of the Kinetic Data for the Thermal Decomposition

To record the kinetic data for the thermal decomposition of the clay mineral substrates treated with
HCl(aq) and the MB samples, TG–DTA measurements were carried out using the STA7300 instrument.
Approximately 5 mg of each sample was weighed into a platinum pan (5 mm in diameter and 2.5 mm
in height) and heated from room temperature to 1223 K at various β values between 2 and 10 K min−1

in flowing N2 or air (flowrate: 300 cm3 min−1). The TG–DTA instrument was previously calibrated in
view of mass change values and temperature using standard procedures.

4. Conclusions

Thermal decompositions of palygorskite and sepiolite were characterized by three and four
distinguished DTG peaks, respectively, which were attributed to the dehydration of zeolite, coordinating,
and structural water. Kinetically, the second mass-loss process in both palygorskite and sepiolite was
further separated into two reaction steps. Consequently, the thermal decompositions of palygorskite
and sepiolite were kinetically separated into four and five reaction steps, respectively. The processes
occurring in MB samples, i.e., P-MB and S-MB, were separated by KDA into eight and nine reaction
steps, respectively. The additional four reaction steps that were observed for MB samples are attributed
to the thermal decomposition of the indigo incorporated into the clay mineral substrates. Discoloration
of MB samples occurred during the second reaction step of the thermal decomposition of the indigo
incorporated into the clay mineral substrates. The second reaction step is expected to be directly
correlated to the thermal stability of the MB samples as a pigment. The second step of the thermal
decomposition of indigo in P-MB started at approximately the same temperature as the thermally
induced sublimation/decomposition of pure indigo crystals. In addition, the apparent Arrhenius
parameters evaluated for these reaction processes were also comparable. However, the second step
in the thermal decomposition of indigo in P-MB occurs at a slower rate and continues to higher
temperatures compared to pure indigo crystals. This is explained by different physico-geometrical
reaction mechanisms; the thermally induced sublimation/decomposition of pure indigo crystals is a
phase boundary-controlled reaction and the second reaction step of indigo decomposition in P-MB
is a diffusion-controlled reaction. Even though the second reaction step of indigo decomposition
in S-MB started at a higher temperature in comparison to that in P-MB, both reactions ended at
around the same temperature. The difference in starting temperatures can be explained by the larger
Arrhenius parameters for S-MB. Although the stability of MB is commonly discussed in connection
with the strength of the chemical bonds between indigo and the clay mineral substrate, the present
study indicates that the physico-geometrical kinetic behavior of the thermal decomposition of indigo
incorporated into the clay mineral substrate is another important factor in discussing the thermal
stability of MB.

Supplementary Materials: The following are available online, S1: Sample preparation and characterization
(Figures S1–S13), S2: Kinetic analysis for the thermal decomposition of clay mineral substrate (Table S1,
Figures S14–S16), S3: Kinetic analysis for the thermal decomposition of Maya blue (Table S2, Figures S17–S20),
S4: Kinetic analysis for the thermally induced sublimation/decomposition of indigo (Figures S21 and S22).
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