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Abstract: Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by
stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles
in various cellular events in both macro- and micro-organisms. The identification and characterization
of G4s can help to understand their different biological roles and potential applications in diagnosis
and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4
fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in
cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of
their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly
identified in DNA and RNA aptamers against targets that include proteins and small molecules,
which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent
development of G4-containing aptamers and highlight their applications in biosensing, bioimaging,
and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent
turn-on ligands and G4-containing aptamers.
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1. Introduction

Guanine (G)-rich sequences in nucleic acids have the potential to fold into structural motifs
referred to as G-quadruplexes (G4s). G4s can be intra- or inter-molecularly folded, and they are formed
by the stacking of G-quartets to form planar 2D structures between four guanosines by hydrogen bond
interactions at their Watson–Crick and Hoogsteen edges (Figure 1A). Furthermore, a monovalent cation
occupies the central cavity of the G-quartet to stabilize the structure, with a strength of stabilization in
the order of K+ > Na+ > NH4

+ > Li+ [1,2]. The formation of intra-molecular canonical G4s requires
at least four regions of three consecutive Gs in a single strand, which are separated by 1–7 linking
nucleotides known as loops [3]. Inter-molecular G4s are formed by G-interactions among multiple
strands, from bimolecular (two strands) to tetramolecular (four strands). Generally, the stability of
the G4 structure decreases as loop length increases [4,5]; therefore, it was generally thought that
sequences that obey the consensus of (G3+N1-7G3+N1-7G3+N1-7G3+) can form G4s in the genome and
transcriptome [3]. More recently, non-canonical G4s were discovered [6], such as G4s with long loops [5],
bulges [7,8], 2-quartets [9], G-vacancies [10,11], duplexes [12], and triplexes [13], which broaden the
sequence definition and the structural diversity of G4s. G4s are polymorphic, meaning that the G-tracts
can be arranged into parallel, anti-parallel, or hybrid topologies [14,15] (Figure 1B). Guanosines can
also be oriented as anti- or syn- conformations based on whether the purine rings are flipped outward
or inwards with respect to the pentose sugar [14,15] (Figure 1C). Such conformational variety leads to
wide, medium, and narrow grooves that describe the spatial availability of the corresponding edge of
the G-quartet [14,15] (Figure 1A).
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G4s play significant roles in almost every cellular event, including but not limited to DNA
replication, transcription, translation, RNA metabolism, and epigenetic remodeling [16,17]. Recent
studies have also suggested that G4 structures can serve as promising cancer and anti-microbe
targets [18,19]. To identify such potential G4 targets, various computational methods such as QGRS
Mapper [20], quadparser [3], G4 Hunter [21], G4NN [22], and Quadron [23] have been developed to
predict G4 formations. Spectroscopic techniques such as circular dichroism (CD) [24], UV melting [25],
mass spectrometry [26], nuclear magnetic resonance (NMR) [27], and intrinsic fluorescence [28] can
also detect G4 formation based on its physical properties in a label-free manner. In addition to
these biophysical methods, biochemical methods such as polymerase stop assay [29] and dimethyl
sulfate (DMS) footprinting [30] can interrogate DNA G4 formation by template extension stalling and
measuring the guanine nucleotide’s resistance to the attachment of a chemical probe, respectively. More
recently, in vitro methods that utilize rG4-mediated reverse transcriptase stalling have been developed
to interrogate rG4 in low-abundance transcripts [31], and selective 2′-hydroxyl acylation analyzed
by a lithium ion-mediated primer extension (SHALiPE), and DMSLiPE [32] have been developed
to map distinctive structural patterns of rG4. Several next-generation sequencing-based approaches
such as G4-seq [33], G4-Chip [34], rG4-seq [35], DMS-seq [36], and G4RP [37] enable the genome-wide
and transcriptome-wide profiling of G4s. Another key category for G4 detection is to use fluorogenic
G4 ligands whose fluorescence is selectively enhanced when interacting with G4s. These fluorescent
turn-on ligands can be used to track G4 formation both in vitro and in cells, and they are discussed in
detail in this review.

Besides acting as potential targets, G4s can be used as molecular tools for diverse applications.
It is worth noting that the structure of G4s has been identified in studies using combinatorial methods
and the systematic evolution of ligands by exponential enrichment (SELEX) technique with the aim of
developing aptamers for therapeutic and diagnostic purposes [38–40]. G4s provide extra chemical
and thermal stability for aptamer-based therapeutics, and such aptamers have been successfully
designed to target a number of HIV proteins [41,42], prion proteins [43], and anti-cancer targets [44,45].
In diagnostics, G4-containing aptamers have been widely applied to target a wide range of pathogenic
proteins and small molecules to emit a fluorescence-like signal [40]. In this review, we summarize
the recent development of fluorogenic G4 ligands and G4-containing aptamers, and highlight their
latest applications in vitro and in cells (Figure 1D). We will also discuss current challenges and future
perspectives for better detection and targeting of G4s in diverse organisms, as well as for designing
and developing G4-related tools for various biological applications.
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Figure 1. Overview of G4 structure, detection, and application. (A) Chemical structure of a G-quartet, 
showing the interactions between H-bond donors and acceptors at the Watson–Crick and Hoogsteen 
edges. K+ is located at the core of G-quartet, which can provide further stabilization. (B) Parallel, anti-
parallel and hybrid topologies of G4, demonstrating its polymorphism. (C) Anti- and syn- 
conformations of guanosine in a G-quartet that leads to wide, narrow, and medium grooves in (A). 
(D) Review overview. Red or purple boxes are topics that will be covered, while topics in the grey 
boxes were reviewed elsewhere. (see references for computational prediction [46,47], structural 
probing [48,49], and biophysical characterization [46,50]). 

2. Fluorescent Turn-on G-Quadruplex Ligand 

The biological significance of G4s in cells has led to a quest to develop diverse ligands that could 
help researchers understand their different cellular roles. On the one hand, some of these ligands are 
designed as fluorescent/imaging probes to verify G4 formation. On the other hand, some ligands can 
stabilize G4s and serve as chemical tools to challenge and alter G4-dependent processes. Also, it is 
possible that some ligands can perform both functions. In this review, we mainly focus on the organic 
G4 probes that is fluorogenic for in vitro and in cell detection of G4. As shown in Figure 2, these 
organic ligands in aqueous solvents have low fluorescence intensities; however, upon interacting 
with G4, an increased fluorescence intensity is observed, making fluorescence detection and imaging 

Figure 1. Overview of G4 structure, detection, and application. (A) Chemical structure of a G-quartet,
showing the interactions between H-bond donors and acceptors at the Watson–Crick and Hoogsteen
edges. K+ is located at the core of G-quartet, which can provide further stabilization. (B) Parallel,
anti-parallel and hybrid topologies of G4, demonstrating its polymorphism. (C) Anti- and syn-
conformations of guanosine in a G-quartet that leads to wide, narrow, and medium grooves in (A).
(D) Review overview. Red or purple boxes are topics that will be covered, while topics in the grey
boxes were reviewed elsewhere. (see references for computational prediction [46,47], structural
probing [48,49], and biophysical characterization [46,50]).

2. Fluorescent Turn-on G-Quadruplex Ligand

The biological significance of G4s in cells has led to a quest to develop diverse ligands that could
help researchers understand their different cellular roles. On the one hand, some of these ligands are
designed as fluorescent/imaging probes to verify G4 formation. On the other hand, some ligands can
stabilize G4s and serve as chemical tools to challenge and alter G4-dependent processes. Also, it is
possible that some ligands can perform both functions. In this review, we mainly focus on the organic
G4 probes that is fluorogenic for in vitro and in cell detection of G4. As shown in Figure 2, these organic
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ligands in aqueous solvents have low fluorescence intensities; however, upon interacting with G4, an
increased fluorescence intensity is observed, making fluorescence detection and imaging of G4 in vitro
and in cells possible [51,52]. It should also be of note that there are also large repertoires of inorganic
G4 probes that are luminogenic, and they have been extensively studied and several excellent reviews
can be found elsewhere [53–56]. One representative example includes iridium (III) complex based G4s
sensing methods; luminescent G4 switch-on probe for highly selective and tunable detection of cysteine
and glutathione based on iridium (III) complex [57]. This method showed an enhanced intensity in the
presence of desired metabolites [57]. Other examples of iridium (III) complex G4s based methods have
also been reported, for instance, detection method for nicking endonuclease Nb.BsmI activity [58],
for prostate specific antigen detection [59], thymine DNA glycosylase activity detection [60], for the
detection of Siglec – 5 [61] and for ribonuclease H detection [62]. Platinum (II) complexes are another
representative example of inorganic G4 ligand; Ma et al [63] reported the synthesis of platinum (II)
complexes containing dipyridophenazine ligand as a highly sensitive luminescence probe for the
detection of G4s and also showed to inhibit human telomerase enzyme (property also seen with organic
ligands) and occur via an end stacking approach with a binding affinity of ∼107 dm3 mol−1 [63]. Other
examples of platinum (II) complexes reported includes the detection of nanomolar silver (I) ion in
solution [64], as luminescence probe for G4 and c-myc downregulation [65]. Also, terpyridine ligand
containing platinum (II) complexes have been shown by Sunthaaralingam et al. [66] to strongly binds
to G4s of hTelo and c-myc through π-π stacking [66], which binding affinity and selectivity influenced
by their aromatic surface [67]. Additionally, Ruthenium (II) complexes have been also reported as a
selective luminescence probe for G4 detection, and occur via stacking of the ligand onto the G-tetrad
and also based on insertion of the complex into the groove [68]. Other examples of ruthenium (II)
complexes were also reported; for instance for sensing and methylation of duplex and G4s using
Ruthenium (II) complexes containing dipyridylphenazine (dppz) ligand [69] for selective binding to
various G4s using a bromo-substituent to the dipyridylphenazine [70]. Some advantages of inorganic
fluorogenic ligands include their tunability, distinct properties (like anticancer drug development and
their ability to induce G4s), and structures [66,68,71].
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Figure 2. Schematic representation of ligand-enhanced fluorescence of G4. In the presence of ligand 
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Figure 2. Schematic representation of ligand-enhanced fluorescence of G4. In the presence of ligand
(top), it binds to G4 and results in enhancement in fluorescence. While in the absence of ligand (bottom),
there is no such G4-ligand interaction, and hence no enhancement in fluorescence. This approach has
been applied in different areas including but not limited to biosensing [72], cell imaging [51,52,73],
enzymatic activity assay [74], and detecting G4 ligand inhibition of some enzymes [75,76] such as
telomerase and ferrochelatase.
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In the following, we will focus on the organic fluorogenic ligands/probes. Several representative
classes and examples of each class are highlighted below:

2.1. Porphyrins

Porphyrins exist in nature and are utilized by living organisms as co-factors in different enzymatic
processes [77]. Ligands in this class inhibit telomerase via stacking with the G-quartet of G4 and
its subsequent stabilization [78]. As shown in Table 1, N-methyl meso porphyrin IX (NMM) is an
asymmetric anionic porphyrin and a major example of the porphyrin class of ligands. It has fluorescence
excitation and emission wavelengths of 393 nm and 610 nm, respectively. It shows favorable binding
to parallel G4s compared with anti-parallel G4s [79,80], and thus has the potential to discriminate
between different strand orientations based on its fluorescence fold enhancement [81].

2.1.1. Application of NMM and its Derivatives (TMPyP4 and TMPipEOPP)

NMM ligands have been applied in diverse applications, including enzyme activity and inhibition,
cell imaging, and microbial detection, which are discussed below.

The NMM inhibitory effect was demonstrated by Huber et al. [75], in which NMM was applied
as an inhibitor of G4 unwinding by stabilizing and preventing helicase from accessing the desired
G4 strand [75]. In 2010, Hu and coworkers [76] demonstrated a G4-based fluorescence assay that
allowed both real-time monitoring and inhibition of RNase H. This method required an RNA–DNA
substrate (with the DNA strand containing G4-forming sequences). In the presence of RNase H, the
RNA strand gets cleaved and the DNA strand gets released, which then folds into G4 and subsequently
binds with NMM and produces an enhanced fluorescence intensity [76]. Ren et al. [82] reported the
use of NMM with tetrakis(diisopropylguanidino)-zinc-phthalocyanine (Zn-DIGP) to develop a dual
fluorescent probe for the detection of nucleic acids. This approach was shown to be applicable with
urines and serum samples [82]. NMM was also applied in a live-cell imaging study. When added to
the cells, a large Stokes shift and a red-shift emission were observed, both of which were higher than
the emissions seen with a different class of ligand, thioflavin T (ThT) [83]. This could be due to the
green fluorescence emission of ThT, which can easily coincide with the intrinsic fluorescence of the
cell’s other components [83].

Interestingly, NMM was also applied to microbial pathogen detection using integrated quaternized
magnetic nanoparticles and a DNA amplification assay coupled with NMM. This method was based
on the conformational transition from hairpin to G4 (assisted by Exo III nuclease) and subsequent
specific interaction of the G4 with NMM. The method was able to detect as few as 50 cells mL−1

and 80 cells mL−1 of E. coli and S. aureus, respectively [84]. In 2016, Waller et al. [85] demonstrated
ligand-specific regulation of nitrate assimilation in Paracoccus denitrificans (a Gram-negative soil
bacterium). This method was based on stabilization of the nasT gene (which contains G4) by the
5,10,-15,20-tetra-(N-methyl-4-pyridyl)porphine (TMPyP4) ligand. Although NMM is an asymmetric
porphyrin, cationic derivatives such as 5,10,15,20-tetra-4-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl
porphyrin (TMPipEOPP) and TMPyP4 were also applied as significant G4 binding ligands [86].
Notably, the TMPipEOPP ligand was shown to allow visual discrimination between G4s, duplexes
and single-stranded DNA [86]. Limitation of some of these derivatives include off-target effects that
lead to cell cytotoxicity [87] and they were not shown to have inhibitory properties like NMM [87].
More studies into these aspects are needed to fast track and improve the potentials of these ligands in
live-cell investigations at both the macro- and micro-organism level.

2.1.2. Mechanism of NMM and its Derivatives (TMPyP4 and TMPipEOPP)

The mechanisms of interaction by this class of ligand were demonstrated to occur through both
direct interaction with G4 and indirect interactions such as partial charge neutralization [88]. It was
hypothesized that the interaction of porphyrin and G4s is based on intercalation with the adjacent
G-quartets [77]. It was later shown that, when bound to G4, NMM fine-tuned its shape to fit the end
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face of the G4, resulting in enhanced fluorescence [76,89,90]. Another insight into the interactions
was demonstrated in a triplet excited and decay study of zinc cationic porphyrin [5,10,15,20-tetrakis
(1-methyl-4-pyridyl)-21H, 23H-porphine] (ZnTMPyP4). The interaction was demonstrated to occur
via π–π stacking of the G4s ([AG3(T2AG3)3, (G4T4G4)2, and (TG4T)4]) and the macrocycle of
ZnTMPyP4 [91]. The parent ligand, TMPyP4, from which ZnTMPyP4 was derived, was also shown to
inhibit telomerase via external stacking on the G-tetrads [92]. However, the mechanism of interaction
for the TMPipEOPP ligand was demonstrated to be dependent on the concentration of either the
ligand or the targeted G4. At lower concentrations, one G4 binds two TMPipEOPP ligands via an
‘end stacking and outside binding’ approach [86]. Wheelhouse et al. previously demonstrated a
similar effect [92]. At higher concentrations, two G4s bind one TMPipEOPP ligand via a ‘sandwich
end-stacking’ approach [86].

2.2. Benzothiozole

Thioflavin T (ThT), a 3,6-dimethyl-2-(4-dimethylaminophenyl) benzothiazolium cation, is also a
commercially available dye like NMM, but unlike NMM, ThT is cationic (benzothiozole). ThT has
excitation and emission wavelengths of 425 nm and 490 nm, respectively. It also has the advantage of
low background fluorescence intensity, which translates to a high signal-to-noise ratio [6,87]. Prior
to 2013, ThT was mainly used to bind other structures such as protein fibrils and amyloids through
extensive π-stacking with tyrosine and tryptophan amino acids [93]. ThT was also demonstrated to
inhibit interactions between fibrils and proteins [94].

2.2.1. Application of ThT, its Derivatives (ThT-DB, ThT-HE, & ThT-NE), and IMT

Because of its high sensitivity, ThT attracts the attention of chemists and has been applied in
diverse applications, including biosensing, G4-specific probes, toxin detection, cell imaging, and
microbial detection, among others, which are discussed below.

ThT was first reported in 2013 as a G4 ligand to study the human telomere G4 22AG
[dAGGG(TTAGGG)3], and it was demonstrated to differentiate between G4, duplexes and single
strands with high fluorescence intensity [87,95]. This fluorescence turn-on ligand has been widely
applied as a sensor, for instance, for Ag+ [96] and Hg+ [97] detection, based on the interaction between
the ligand and G4. ThT has also been applied as a label-free fluorescent turn-on ligand for sensing
bio-thiols based on its ability to induce unique G4 structures [72], and it was demonstrated as a probing
method for structural changes in i-motif (four stranded DNA secondary structures that consist of
hemi-protonated and intercalated cytosine base pairs (C:C+)) [98]. It was applied as a highly sensitive
sensor for thrombin detection using Förster resonance energy transfer (FRET). This method is based on
the ability of ThT to induce G4, which is then used as an energy acceptor, with a conjugated polymer
on the other side as the energy donor [99]. More recently, ThT was applied as a G4-based aptasensor
for the detection of adenosine deaminase activity and inhibition [74]. ThT was also applied in toxin
detection, as demonstrated using a G4-based aptasensor that selectively quantified the amount of
toxins in food materials. This method was based on an aptamer (selected against a toxin) binding
to ThT to form a G4–ThT complex (in the absence of the target toxin). When the toxin is present,
it binds to the G4-based aptamer, which leads to the release of ThT, and a subsequent change in
fluorescence is observed [100]. As shown in Table 1, unlike NMM, some G4 studies have indicated that
ThT-induced G4s can potentially cause topological changes [101], producing false positive and false
negative results [97]. It was also shown to bind tightly to non-G4 G–A-rich containing sequences and
dimerise them into a parallel double-stranded modes [96]. Furthermore, ThT was found to be difficult
to use for effective monitoring of G4s in the chromatin of live cells because of its inability to stain the
nuclei [102]. This led to the synthesis of some ThT derivatives.

Some derivatives of ThT have been reported, such as ethyl-substituted ThT, which was applied
as a fluorescence probe with high specificity for G4 structure detection and discrimination from
other nucleic acid forms [103]. Interestingly, this method allows naked-eye visualization of G4
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in solution under ultraviolet light. In a similar study, Kataoka and coworkers [101] synthesized
two derivatives of ThT by replacing the N3 methyl on the benzothiozole ring with either a
((p-(dimethylamino)-benzoyl)-oxy)-ethyl group (ThT-DB) or a hydroxyethyl group (ThT-HE) and
applied them as parallel G4 probes. Their results showed over 200-fold enhancement in fluorescence
intensity compared with normal ThT, and also great specificity to parallel G4s. Other benzothiazoles
have been reported, such as IMT, which can selectively bind G4s in a cell’s chromatin (with negligible
cytotoxicity). It can be applied in vivo to demonstrate the changing response of G4s to different
chemicals in real time [51]. This method is simpler than the triangulenium method reported earlier [52],
which requires a longer acquisition time and specialized equipment.

Lastly, ThT has also been applied in studies of G4 prevalence in micro-organisms. For example,
in 2016, Burrows and coworkers [104] applied ThT as a fluorescence probe to study the prevalence
of G4s in the zika virus. Two years later, the same group applied ThT as a fluorescence probe for
the detection of G4s in Chlamydomonas reinhardtii [105]. That same year, Zahin et al. [106] applied
ThT for the identification of G4-forming sequences in papillomaviruses (using ThT as a fluorescence
probe to screen for G4-forming sequences). Similarly, ThT derivatives have been applied in viral
RNA genome detection and monitoring. This was demonstrated very recently by Luo et al. [107],
who developed the ligand ThT–NE, with the excitation and emission wavelengths shown in Table 1
(ThT derivative). The ligand was a cell permeable and highly specific G4-based fluorescence turn-on
probe for real-time imaging of native viral RNA in the hepatitis C virus (HCV). This method was shown
to allow subcellular monitoring and continuous live-cell monitoring of infected cells [107]. However,
the limitation of this ligand class include the fact that only few were shown to penetrate the cells [107]
and reach their desired target. The possible reasons could be due to their physical size, non-selectivity
in complex samples or conditions or the potential to form aggregates in cells [108]. Some of the other
imperative factors in designing novel fluorescence G4 probes include permeability, affinity, selectivity,
and cytotoxicity. Some G4-containing aptamers (such as Mango) have been shown to discriminate
between this class of ligands via a concerted mechanism, whereas others (such as Spinach) enhance the
fluorescence intensities of many ligands with no discriminating properties between them [109]. Hence,
there is a need for G4 ligand with higher specificity, affinity, and low toxicity for live cell application.

2.2.2. Mechanism of ThT, ThT-NE, and IMT

The mechanism of interaction between ThT and G4s was demonstrated to be ligand concentration
dependent, in which several ThT ligands bound cooperatively to the 5′-G4 unit [87]. Unlike the
NMM derivative TMPipEOPP (which also depends on ligand concentration), in this case, the
fluorescence enhancement was higher when a single ThT ligand was bound to G4. The enhanced
fluorescence intensity was demonstrated to be a result of the restriction in circular movement and
subsequent conformational changes between the benzothiazole and dimethylaminobenzene rings [87].
However, the fluorescence intensity diminished when more than one ThT ligand was bound to the
rearranged/changed G4 structure [87]. It was also demonstrated that the interaction between ThT
and G4 may be due to end stacking with the upper G-tetrad of RNA G4; that is, the benzothiazole
unit stacks onto the upper G-quartet of the G4, thereby donating most of the π-stacking force in its
binding [110]. Similarly, the mechanism of interaction for ThT-NE was demonstrated to occur via pi–pi
stacking of the ligand and the ending G-quartet of the G4, resulting in rotational restriction of the
ligand. Likewise, the mechanism of IMT interaction with G4s was shown to occur via stacking to the
terminal (5′-end) G-quartet [51].

2.3. Triphenylmethane (TPM)

The TPM class of ligands has many members, including methyl violet (MV), ethyl violet (EV),
methyl green (MEG), malachite green (MG), and crystal violet (CV). This class was shown to distinguish
intramolecular from intermolecular G4s and single DNA strands from duplex DNAs [111]. For this
review, we focus on CV and MG. Prior to its application in G4 detection, CV was widely used as a
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dye for staining papers, textiles, drugs, and food materials [112]. It then began to attract enormous
attention as a stain for biological studies. It has fluorescence excitation and emission wavelengths of
540 nm and 640 nm, respectively, as shown in Table 1.

2.3.1. Application of CV and MG

Like NMM and ThT, CV has been widely applied in diverse areas, including sensing that can
distinguish single strand and duplex structures from G4 [113–115], and it preferentially binds to
intramolecular rather than intermolecular G4 [113]. It is also applied in biosensing and thrombin
detection. Other applications are discussed below.

G4-based aptasensors (discussed in detail in Section 3 of this review) are attracting enormous
scientific interest. Nonetheless, in this section, we touch on the G4 ligand-based fluorescence
turn-on aspect of some representative aptasensors. One example is an aptasensor selected through
modified-affinity chromatography to replace G4 binding [116] and subsequent detection of CV. CV
was also applied as a biosensor for the detection of Pb2+ based on the electrochemical current of a
G4–CV complex [114]. He et al. [117] developed a label-free G4-based aptamer probe for the selective
detection of ATP in aqueous solution using CV as a G4 fluorescent probe. In this method, the ATP
aptamer is in a duplex format (i.e., hybridized to its complementary sequence); in the absence of
ATP, it gives a weak fluorescence intensity. However, in the presence of ATP, the duplex dissociates,
resulting in an aptamer–G4 complex via a ‘population shift mechanism’. The presence of CV results in
its specific binding to the G4 complex, thus enhancing the fluorescence (depicted in Figure 2). CV was
demonstrated to distinguish between parallel and anti-parallel topologies [118]; it preferentially binds
to anti-parallel G4 and produces enhanced fluorescence intensity due to the shielding effect of the G4
end-loop on CV against the solvent, whereas the parallel G4 cannot provide CV with such a shield due
to the lack of the end-loop.

Jin et al. [119] reported another G4-based aptasensor and demonstrated its ability to detect
human thrombin protein. This method was based on the enhanced fluorescence of CV as a result
of its binding to a thrombin–G4 aptamer complex. In 2009, Kong et al. [113] demonstrated a simple
and sensitive method for discriminating between G4s, single strands and duplexes based on the
fluorescence enhancement of CV or CV energy transfer fluorescence. Interestingly, in the presence
of C-rich sequences (complementary strands to G-rich), this method was shown to measure the
amount of G-rich sequences that partake in G4 formation based on the fluorescence enrichment of
G4–CV complexes. That same year, a novel biosensor for the homogenous sensing of K+ was also
reported. This biosensor was based on increasing and decreasing fluorescence intensity with increasing
K+ [120]. A similar approach (of decreased fluorescence with increasing K+) for the determination
of K+ was reported. However, this method was based on the interaction between G4 containing a
thrombin-binding aptamer (TBA) and CV. The interaction of TBA with CV (in the absence K+) produces
enhanced fluorescence. However, in the presence of K+, TBA-based G4 is formed, and when it interacts
with CV, the difference in fluorescence intensity is measured (depending on the K+ concentration) [121].
Thus, the amount of K+ can be determined. MG has also been applied as fluorescence G4-based
aptasensors for binding recognition to MG ligands. However, the limitation of this class includes the
fact that it does not allow naked-eye visualization of G4s in solution. Also, they have different binding
modes such as the stacking and end loop protection modes (as discussed in Section 2.3.2 below), and
G4 and other nucleic acid structural motifs and topologies can sometimes significantly influence the
ligand’s fluorescence enhancement [122].

2.3.2. Mechanism of CV and MG

In 2009, the mechanism of interaction was demonstrated to occur via stacking of CV to the two
outside G-quartets of G4 [118] and the binding of two CVs per one G4. This stacking increased
the rigidity of the ligand and subsequently the fluorescence intensity. In the same year, Kong et al.
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demonstrated the end-loop protection mechanism of bound ligands in an antiparallel topology [120].
The stacking mechanism was also reported for CV interactions with i-motif [123].

2.4. Other Ligands Reported in the Literature as G4 Fluorescence Turn-On Ligands

As summarized in Table 1, several fluorescence turn-on ligands were also demonstrated
to recognize G4. However, acridine-based ligands are largely used as efficient G4 stabilizers,
such as trisubstituted acridines. N,N′-[9-[[4-(Dimethylamino)phenyl]amino]-3,6-acridinediyl]bis
[1-pyrrolidinepropanamide], known as BRACO-19, has attracted much scientific interest due to its
G4 stabilization and inhibition of telomerase enzyme activity [37,124,125]. It also shows antiviral
activity as it impairs HIV-1 long terminal repeats promoter activity, which controls the viral gene
transcription [126]. Pyridostatin (PDS) was also reported to bind to G4 with high specificity through an
end-stacking approach [127–129], but it did not fluoresce. Later they synthesized a PDS analogue which
allows the evaluation of the cellular localization of the drug (“by promoting telomere dysfunction
and long-term growth inhibition in human cancer cells”) [130], more so, they explored how PDS
interferes with the roles of proteins that operates on G4s and how that in turn affects targeting of G4s by
small molecules [131]. This changed with the very first fluorogenic acridine dyes containing cyanine,
which allowed a wide spectrum ranging from orange to the near infrared region, as demonstrated by
Mahmood and coworkers [132]. Later on, the same group (motivated again by the incredible potential
of BRACO-19) demonstrated the development of a tri-substituted (3,6,9-trisubstituted acridine; cyanine
dye 1) water-soluble acridine-based dual probe, a pH-sensitive and G4 fluorescence probe containing
monomethine cyanine dye (which has fluorescence excitation and emission wavelengths of 400 nm
and 475 nm, respectively) [133]. Cellular pH is an essential factor in cell activities, and the probe
was demonstrated to be sensitive to a pH range of 5–9. In acidic conditions, the probe showed
enhanced fluorescence due to the protonation of acridine. A positive charge delocalises between the
acridine and indole moieties and fluorescence is reduced at higher pH values (as the acridine can no
longer be protonated). The system was reported to operate based on a ‘push–pull mechanism’ [133].
The limitation of this ligand is that its application was not demonstrated in vivo. BRACO-19 was
shown to bind to G4 via three modes of interaction: stacking to the top quartet, intercalation on the
lower quartet and groove binding [124,134].

Other reports on G4 fluorescence turn-on ligands include that of Jin et al. [135]. In 2014, they
applied a BPBC ligand composed of benzimidazole and carbazole groups as a fluorescence turn-on
probe for parallel G4 detection. The ligand was shown to bind parallel G4s via an end-stacking
approach. It was also shown to have incredible selectivity towards parallel G4s due to its possession of
a ‘crescent-shaped pi-conjugated planar core’, which is bigger than the G4 plane dimension. Likewise,
Yang et al. [136] reported a new class of bis(4-aminobenzylidene)acetone derivative called GD3 as an
effective red-emitting fluorescence turn-on ligand for parallel G4s. They demonstrated the biological
application of this ligand in fixed cells and showed that it allows the visualization and monitoring of G4
structures. The mechanism of interaction was the dipole moment created in the microenvironment of the
ligand and the restriction of the fluorophores, resulting in altered charge transfer in the system and hence
enhanced fluorescence [136]. However, the limitation of this ligand is that it can only allow monitoring
of G4s in fixed cells. Other parallel G4 binding ligands were reported by Chen and coworkers [137],
who demonstrated the use of 2,4,5-triaryl-substituted imidazole (IZCM-1) as an effective ligand that
binds specifically to parallel G4s without affecting their topology or thermal stability. Later, the
same team [138] synthesized another G4 fluorescence turn-on triaryl-substituted imidazole ligand called
[2-(4-(4,5-bis(4-(4-methylpiperazin-1-yl)phenyl)-1H-imidazol-2-yl)phenyl)-6-(4-methylpiperazin-1-yl)-
1H-benzo[de]isoquinoline-1,3(2H)-dione] (IZNP-1) and demonstrated its application to highly and
specifically target telomeric multimeric G4 structures (i.e., it can discriminate between telomeric
multimeric G4s and monomeric G4s) through intercalation of the ligand into the ‘pocket’ of two
G-quartet units of G4. This ligand was demonstrated to induce apoptosis and senescence in cancer cells
as result of telomeric DNA damage and telomere functional disruption due to the ligand intercalation
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into the G4 structure [138]. Shavalingam et al. [52] applied a triaryl methyl carbocation (triangulenium)
derivative called DAOTA-M2 that localizes in the nuclei (with low toxicity) and interact with G4.
Also, a “one-to-one G4-specific sensor”, IZFL-2, that can distinguish between different G4s was
demonstrated [139]. This method allows the visualization of interactions between ligands and G4s by
fluorescence lifetime microscopy. The binding mechanism of this ligand occurred via π–π stacking
between the guanine moieties of the outer G-quartet and core of the ligand [140].

Most of the fluorescence turn-on probes can only accommodate one output. In 2014,
Yan et al. [141] developed a multifunctional probe called (E)-3-((7-(diethylamino)-2-oxo-2H-chromen-
3-yl)methylene)-6,7-difluoro-4-methyl-9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b]quinazolin-4-ium iodide
(ISCH-1) that utilized two different outputs (i.e., colorimetric and fluorescence). These types of probes
are reliable and applicable to diverse applications. The ligand was designed based on an isaindigotone
framework that incorporated coumarin–hemicyanine to achieve a multifunctional probe. The
application of this probe to detect G4s was demonstrated [141]. The limitation of this ligand is that it
cannot allow specific targeting of G4s at a given RNA region (such as the 5′ UTR). To address this issue,
Chen et al., refined ISCH-1 by attaching an oligonucleotide (which had a complementary sequence to
an adjacent sequence of the G4 sequence of interest) that would allow subsequent fluorescence in
situ hybridization (FISH) to be performed. Hence, the probe consisted of two distinct segments, the
fluorescence turn-on and oligonucleotide hybridization segments. They referred to the probe as a
G4-triggered fluorogenic hybridization (GTFH) probe [142]. The refined ISCH-1 ligand was called
(E)-3-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-7-fluoro-4-methyl-9-oxo-6-(prop-2-yn-
1-yloxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-4-ium (ISCH-oa1) [142]. The application of
this ligand was demonstrated with 5′ UTR of NRAS mRNA by incorporating an oligonucleotide
complimentary to the adjacent sequence of the NRAS G4 sequence to form ISCH-nras1 ligand that
can selectively bind and uniquely allow the visualization of G4s in this region both in vitro and in
cells [142], however, this ligand has limitations of not able to detect the ‘in-situ spots’ of a given RNA in
single cell and also requires RNAs to be transfected into cells to increase their concentration. Amazingly,
the same team developed yet another ligand that was also based on an isaindigoton framework,
but it contained coumarin aldehyde and an N-methylated quinoline moiety, this ligand was named
(E)-2-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)vinyl)-6-fluoro-1-methyl-7-(4-methylpiperazin-1-
yl)quinolin-1-ium iodide (QUMA-1). Unlike GD3 ligand that was only shown in fixed cells, QUMA-1
was demonstrated through live-cell imaging to be a highly selective fluorescence turn-on probe for
real-time and continuous tracking and monitoring of rG4 structural dynamics in live cells. It was
also applied in the visualization of rG4s unwinding by helicase [143]. Nonetheless, the fluorescence
intensity of this ligand decreases in the presence of other competing G4s ligands. The interaction
between QUMA-1 and rG4 was demonstrated to be caused by the rotational constraint experienced by
the ligand at higher energy levels because of a conformational rearrangement [143].

Laguerre et al. [144] reported another multifunctional G4 smart probe (ligand and fluorescence
turn-on probe) developed using the template-assembled synthetic G-quartets (TASQ) method. They
used TASQ to develop pyrene template-assembled synthetic G-quartets (PyroTASQ) as both a smart
G4 ligand and a fluorescence probe. This ligand and probe were demonstrated to recognize and bind
to both DNA and RNA G4s and it was shown to occur through an interesting approach, in which the
ligand causes a ‘quadruplex-promoted conformational switch’ that leads to the assembling of four
guanines into a G-quartet. Subsequently, the pyrene’s fluorescence is released [144]. However, the
application of PyroTASQ to detect G4s in live cells proved difficult as it aggregates in the cells [108].
To address this issue, the same group demonstrated another multitasking G4 probe synthesized
in an approach similar to that of PyroTASQ but replacing the pyrene group with naphthalene to
form a Naptho-TASQ (N-TASQ) [108]. The authors were able to visualize RNA G4s in live cells
using the multi-photon microscopy method [108] and both RNA and DNA imaging using confocal
microscopy [145]. The interaction occurs through an approach similar to that of PyroTASQ [108].
However, no binding competition with other G4 ligands was shown.
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Table 1. Representative fluorescent turn-on G4 ligands and their corresponding characteristics and applications

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Porphyrin

N-methyl mesoporphyrin
IX (NMM), Yes
(142234-85-3)
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5,10,15,20-tetra-{4-[2-(1-methyl-
1-piperidinyl)ethoxy]phenyl

porphyrin
(TMPipEOPP), No
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Pyridinium,
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10,15,20-tetrayl)tetrakis[1-methyl-,
4-methylbenzenesulfonate

(1:4)
(TMPyP4), Yes

(36951-72-1)
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— Cationic porphyrin
— Metabolic regulator nitrate assimilation
— Not shown to provide visual discrimination of
various G4s.
— Not shown to have inhibitory potentials

[85]
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Table 1. Cont.

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Benzothiozole

3,6-dimethyl-2-(4-
dimethylaminophenyl)
benzothiazolium cation
Thioflavin T (ThT), Yes

(2390-54-7)
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— Real time fluorescence probe for monitoring the
formation of G4 in live cells and its response to
chemical treatment demonstrated.

— Live cell monitoring of G4 formation in real
time
— Selectively bind G4s in a cell’s chromatin (with
negligible cytotoxicity)
— Toxicity analysis only performed using single
method instead of using two different methods in
parallel

[51]

ThT-NE, No
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—Fluorescence G4 based aptasensor for 
binding recognition to MG ligand. 

—Widely employed in (bio)sending 
—Not shown to allow naked eye visualization of 
G4s in solution 
 

[146] 

— Cell permeable and highly specific G4 based
fluorescence turn-on probe for real time imaging of
native viral RNA genome in hepatitis C virus (HCV).
This method was shown to allow subcellular
monitoring and continuous live-cell monitoring of
infected cells.

— Allows real time subcellular and continuous
live-cell monitoring of native viral RNA genome
— Toxicity effect to cells not shown/reported

[107]



Molecules 2019, 24, 2416 13 of 34

Table 1. Cont.

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Triphenylmethane
(TPM)

Crystal Violet (CV), Yes
(548-62-9)
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binding recognition to MG ligand. 

—Widely employed in (bio)sending 
—Not shown to allow naked eye visualization of 
G4s in solution 
 

[146] 

— Label free fluorescence aptasensor for specific
detection of CV based on G4 interaction with CV.
— A label-free G4 based fluorescence turn-on probe
for the selective detection of ATP in aqueous
medium. This is based on the ability of CV to
specifically binds to G4.
— Live cells visualization of G4 role in alternative
splicing via RNA-binding protein hnRNPF.
— G4-based fluorescence aptasensor for the selective
detection of thrombin protein. Based on CV-G4
fluorescence.
— Fluorescence probe for monitoring G4 structural
differences (as a function of cation) and sensing
of K+.
— Fluorescence probe for homogenous detection of
K+ based on the fluorescence intensity changes of
CV-G4 complex.

— Distinguishes intramolecular from
intermolecular G4s
— Distinguishes single DNA strands from duplex
DNAs
— Widely employed in biosensing
— Distinguishes between parallel and anti-parallel
G4 topologies (preferentially binds to anti-parallel
G4s)

[73,116–120]

Malachite Green (MG),
Yes (569-64-2)
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2,4,5-triaryl-substituted 
imidazole (IZCM-1), No 

 
 
 
 

—Fluorescence turn-on probe for the 
specific detection of parallel G4 without 
affecting their topology and thermal 
stability.  

—Effectively and specifically binds to parallel G4s 
 

[137] 

— Fluorescence G4 based aptasensor for binding
recognition to MG ligand.

— Widely employed in (bio)sending
— Not shown to allow naked eye visualization of
G4s in solution

[146]

Triangulenium

Morpholino containing
bis-substituted
triangulenium

(DAOTA-M2), No
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1-yl)phenyl)-1H-
imidazol-2-

yl)phenoxy)methyl)-1H-
1,2,3-triazol-1-yl)butoxy)-

3-oxo-3H-xanthen-9-
yl)benzoate (IZFL-2), No 

 

 
λex. max., λem. max  

(450 nm, 520 nm) 
 

—A tunable fluorescence activation probe 
for the specific detection of c-Myc G4. This 
was demonstrated to differentiate 
between wild-type c-Myc G4 and other 
G4s.  

—Its fluorescence can be tuned 
—Distinctive smart sensor specific only for c-Myc 
G4s 
—Not yet demonstrated in live cells 
 

[139] 

2,4,5-triaryl-substituted 
imidazole (IZCM-1), No 

 
 
 
 

—Fluorescence turn-on probe for the 
specific detection of parallel G4 without 
affecting their topology and thermal 
stability.  

—Effectively and specifically binds to parallel G4s 
 

[137] 

— Fluorescence probe for G4 visualization in live
cells, based fluorescence lifetime imaging
microscopy. This probe was demonstrated to be cell
permeable, have low toxicity, and be localized in the
nucleus.

— Allows live cell visualization of G4
— High cell permeability
— Low cytotoxicity
— Can localize in the nucleus
— One-to-one G4-specific sensor
— Allows the visualization of interactions between
ligands and G4s by fluorescence lifetime
microscopy

[52]
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Table 1. Cont.

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Imidazole

Ethyl
2-(6-(4-(4-((4-(4,5-bis(4-(4-
methylpiperazin-1-yl)phenyl)-
1H-imidazol-2-yl)phenoxy)
methyl)-1H-1,2,3-triazol-1-yl)
butoxy)-3-oxo-3H-xanthen-9-
yl)benzoate (IZFL-2), No
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—A tunable fluorescence activation probe 
for the specific detection of c-Myc G4. This 
was demonstrated to differentiate 
between wild-type c-Myc G4 and other 
G4s.  

—Its fluorescence can be tuned 
—Distinctive smart sensor specific only for c-Myc 
G4s 
—Not yet demonstrated in live cells 
 

[139] 

2,4,5-triaryl-substituted 
imidazole (IZCM-1), No 

 
 
 
 

—Fluorescence turn-on probe for the 
specific detection of parallel G4 without 
affecting their topology and thermal 
stability.  

—Effectively and specifically binds to parallel G4s 
 

[137] 

— A tunable fluorescence activation probe for the
specific detection of c-Myc G4. This was
demonstrated to differentiate between wild-type
c-Myc G4 and other G4s.

— Its fluorescence can be tuned
— Distinctive smart sensor specific only for
c-Myc G4s
— Not yet demonstrated in live cells

[139]

2,4,5-triaryl-substituted
imidazole (IZCM-1), No
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2-oxo-2H-chromen-3-

yl)methylene)-6,7-
difluoro-4-methyl-9-oxo-
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—Multifunctional (colorimetric and red-
emitting fluorescence) turn-on probe for 
specific G4 detection. This method is ideal 
for reliability and diverse applications.  

—Multifunctional (colorimetric and fluorescence) 
—Reliable and potential for numerous applications 
—Not shown to allow specific targeting of G4s in a 
given region (such as the 5` UTR) 

[141] 

— Fluorescence turn-on probe for the specific
detection of parallel G4 without affecting their
topology and thermal stability.

— Effectively and specifically binds to parallel G4s [137]

[2-(4-(4,5-bis(4-(4-
methylpiperazin-1-yl)phenyl)-
1H-imidazol-2-yl)phenyl)-6-(4-
methylpiperazin-1-yl)-1H-benzo
[de]isoquinoline-1,3(2H)-dione]

(IZNP-1), No
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yl)methylene)-6,7-
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1,2,3,9-
tetrahydropyrrolo[2,1-

 
 
 
 
 
 
 

—Multifunctional (colorimetric and red-
emitting fluorescence) turn-on probe for 
specific G4 detection. This method is ideal 
for reliability and diverse applications.  

—Multifunctional (colorimetric and fluorescence) 
—Reliable and potential for numerous applications 
—Not shown to allow specific targeting of G4s in a 
given region (such as the 5` UTR) 

[141] 

— Fluorescence turn-on probe for the specific
targeting of telomeric multimeric G4 structures,
shown to occur via intercalation into the pocket
between two G-quartet units.

— Can discriminate between telomeric multimeric
G4s and monomeric G4s— Induce apoptosis and
senescence in cancer cells

[138]

Acridine 3,6,9-trisubstitutedAcridine;
cyanine dye 1, No

Molecules 2019, 24, x FOR PEER REVIEW 12 of 36 

 

 
 
 
 
 
 

 
λex. max., λem. max  

(450 nm, 525 nm) 
 

[2-(4-(4,5-bis(4-(4-
methylpiperazin-1-

yl)phenyl)-1H-imidazol-
2-yl)phenyl)-6-(4-

methylpiperazin-1-yl)-
1H-

benzo[de]isoquinoline-
1,3(2H)-dione] (IZNP-1), 

No 

 

 
λex. max., λem. max 

(400 nm, 540 nm) 
 

—Fluorescence turn-on probe for the 
specific targeting of telomeric multimeric 
G4 structures, shown to occur via 
intercalation into the pocket between two 
G-quartet units.  

—Can discriminate between telomeric multimeric 
G4s and monomeric G4s 
—Induce apoptosis and senescence in cancer cells 

[138] 

Acridine 
3,6,9-

trisubstitutedAcridine; 
cyanine dye 1, No 

 

 
λex. max., λem. max  

(400 nm, 475 nm) 
 

—Water soluble dual function probe for 
G4 specific binding; pH sensitive and 
fluorescence probe for G4 stabilization 
and detection that operate by a push–pull 
mechanism. 

—Highly water soluble 
—pH sensitive 
—Application not demonstrated in vivo 

[133] 

Alkaloid 

(E)-3-((7-(diethylamino)-
2-oxo-2H-chromen-3-

yl)methylene)-6,7-
difluoro-4-methyl-9-oxo-

1,2,3,9-
tetrahydropyrrolo[2,1-

 
 
 
 
 
 
 

—Multifunctional (colorimetric and red-
emitting fluorescence) turn-on probe for 
specific G4 detection. This method is ideal 
for reliability and diverse applications.  

—Multifunctional (colorimetric and fluorescence) 
—Reliable and potential for numerous applications 
—Not shown to allow specific targeting of G4s in a 
given region (such as the 5` UTR) 

[141] 

— Water soluble dual function probe for G4 specific
binding; pH sensitive and fluorescence probe for G4
stabilization and detection that operate by a
push–pull mechanism.

— Highly water soluble
— pH sensitive
— Application not demonstrated in vivo

[133]
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Table 1. Cont.

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Alkaloid

(E)-3-((7-(diethylamino)-2-oxo-
2H-chromen-3-yl)methylene)-6,7-
difluoro-4-methyl-9-oxo-1,2,3,9-
tetrahydropyrrolo[2,1-b]
quinazolin-4-ium iodide

(ISCH-1), No
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—G-quadruplex-triggered fluorogenic 
hybridization (GTFH) probe, that 
selectively allows the visualization of the 
G-quadruplexes that form in a particular 
region interest (NRAS mRNA 5′-UTR 
region was demonstrated) both in vitro 
and in cells. The ligand consists of two 
segments, which are a fluorescent light-up 
fluorophore and oligonucleotide sequence 
that can hybridize with the sequence 
adjacent to the guanine rich sequence in 
the NRAS mRNA 5′-UTR or other regions 
of interest.  

—Allows specific targeting of G4s in a particular 
region such as 5`-UTR 
—Can be use both in vivo and in vitro 
—Cannot detect the in situ spots of a given RNA in 
single cell 
—Requires RNAs to be transfected into cells to 
increase their concentration 
 

[142] 

(E)-2-(2-(7-
(diethylamino)-2-oxo-2H-

chromen-3-yl)vinyl)-6-
fluoro-1-methyl-7-(4-
methylpiperazin-1-

yl)quinolin-1-ium iodide 
(QUMA-1), No 

 

 
λex. max., λem. max  

(555 nm, 660 nm) 
 

—Highly selective fluorescence turn-on 
probe for real time and continuous 
tracking and monitoring of rG4 structural 
dynamics in live cells, this application has 
been demonstrated in through live cell 
imaging. Also, applied in visualization of 
rG4s unwinding by helicase.  

—Allows live cell monitoring and tracking of rG4s 
—Allows the imaging of rG4 unwinding 
—Fluorescence intensity decreases in the presence of 
competing G4s ligands  
 

[143] 

Acetone 

Bis(4-
aminobenzylidene)aceton
e derivative referred to as 

GD3, No 
 

λex. max., λem. max  

(450 nm, 600 nm) 

—An effective red emitting fluorescence 
turn-on ligand for parallel G4s structures. 
Its biological application was 
demonstrated in fixed cells and shown to 
allow the visualization and monitoring of 
G4s structures. It was also shown to occur 
based on dipole moment created in the 
microenvironment of the ligand and 
restriction of the fluorophore resulting in 
altered charge transfer in the system, 
hence an enhanced light-up observed 

—Red emitting ligand 
—Specific for parallel G4s 
—Allows monitoring of G4s in fixed cells 
 

[136] 

— Multifunctional (colorimetric and red-emitting
fluorescence) turn-on probe for specific G4 detection.
This method is ideal for reliability and diverse
applications.

— Multifunctional (colorimetric and fluorescence)
— Reliable and potential for numerous applications
— Not shown to allow specific targeting of G4s in a
given region (such as the 5′-UTR)

[141]

(E)-3-((7-(diethylamino)-2-oxo-
2H-chromen-3-yl)methylene)-7-
fluoro-4-methyl-9-oxo-6-(prop-2-
yn-1-yloxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-4-ium

(ISCH-oa1), No
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—Highly selective fluorescence turn-on 
probe for real time and continuous 
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—Allows live cell monitoring and tracking of rG4s 
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Acetone 

Bis(4-
aminobenzylidene)aceton
e derivative referred to as 

GD3, No 
 

λex. max., λem. max  

(450 nm, 600 nm) 

—An effective red emitting fluorescence 
turn-on ligand for parallel G4s structures. 
Its biological application was 
demonstrated in fixed cells and shown to 
allow the visualization and monitoring of 
G4s structures. It was also shown to occur 
based on dipole moment created in the 
microenvironment of the ligand and 
restriction of the fluorophore resulting in 
altered charge transfer in the system, 
hence an enhanced light-up observed 

—Red emitting ligand 
—Specific for parallel G4s 
—Allows monitoring of G4s in fixed cells 
 

[136] 

— G-quadruplex-triggered fluorogenic
hybridization (GTFH) probe, that selectively allows
the visualization of the G-quadruplexes that form in
a particular region interest (NRAS mRNA 5′-UTR
region was demonstrated) both in vitro and in cells.
The ligand consists of two segments, which are a
fluorescent light-up fluorophore and oligonucleotide
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Table 1. Cont.

Class Ligand and Commercial
Availability (CAS no.)

Structure and Fluorescence
Properties Representative Applications Advantages and Limitations Ref.

Pyrene

Pyrene
template-assembled
synthetic G-quartet

(PyroTASQ), No
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2.5. Future Perspectives of the Development and Applications of Fluorescent Turn-On Ligands

As seen from above sections, most ligands have different binding modes, and G4 and other nucleic
acid structural motifs can sometimes significantly influence the ligand’s fluorescence enhancement [122].
This raises some concerns that need to be addressed: is the ligand-binding mechanism to G4s dependent
on the loop length, bulge, inter versus intra-molecular G4s, parallel versus antiparallel G4 topologies,
or number of G-quartets? Understanding the binding modes between the ligands and G4s, as well as
the dimensions of the G4s grooves, is critical to understanding the mechanism of interactions between
the ligands and G4s. Also, future high-resolution 3D structures with bound ligands will potentially
allow a better picture of the ligand binding modes for future ligand design and G4 targeting.

Also, some of these ligands showed a decreased fluorescent enhancement in presence of other
competing ligands, as such, ligand competition studies with other ligands are needed to fully ascertain
the selectivity of the ligands of interest, this will allow the design and development of ligands with
better fluorescent properties and this could prevent the off-target effects of some of these ligands (that
leads to cell cytotoxicity) [87], and can also address the false positive and false negative results [97]
produced by some of the ligands as a result of their abilities to induce topological changes [101]. More
so, as mentioned earlier, only few of these ligands can effectively penetrate the cells [107] and reach
their desired target [108]. Therefore, permeability, affinity, and selectivity are critical factors that need
to be further improved when designing and developing advance novel fluorescence G4 probes.

Lastly, application-wise, many of these ligands are not yet applied in vivo [133] and can only
allow monitoring of G4s in fixed cells [136], while others still requires RNAs to be transfected into
cells to increase their concentration and thus signal [142]. Therefore, more advanced ligands are
required with an improved property to reach their targets in cells and across different species, as well as
increase their potential for real-time monitoring and single G4 detection application. We anticipate that,
by addressing these issues, we could shed lights into the better understanding of the folding status,
dynamics, and localization of G4s in cells and their biological roles in different cellular processes.

3. G-Quadruplex-Containing Nucleic Acid Aptamers

While biologically-relevant G4 targets can be detected and visualized by fluorescent turn-on
ligands in vitro and in cells as described above, another exciting and emerging field of research is the
identification and development of G4-containing aptamers, which may serve as molecular tools for
diverse chemical and biological applications. Aptamers are single-stranded DNA or RNA sequences
that are able to recognize natural and synthetic targets ranging from metal ions, small molecules, dyes,
proteins, toxins, microbes, and cells [149]. The most well-established screening method for nucleic
acid aptamers is the iterative SELEX process, which selects aptamers for targets of interest from a
library of random sequences [150]. Aptamers are proposed to function as alternatives to other affinity
reagents (e.g., protein-based antibodies) owing to several key advantages, such as simple synthesis
and modification, design flexibility, high target specificity, and good stability. These properties can
be successfully exploited in drug delivery, molecular imaging, clinical diagnosis, and biochemical
research [151,152].

Aptamers can adopt various structural arrangements, which enable their recognition functionality.
Among several architectures, the G4 structures are commonly found in aptamers [153]. One possible
reason is that G4s involve sophisticated tertiary folding and display remarkable structure polymorphism
and tunable conformation depending on the oligonucleotide sequences and different conditions of
cations, ligands, or pH level [48,154], which give them strong structural discriminatory ability and
contribute to their affinity and specificity for target binding. In addition, the high negative charge
density of G4 gives them an advantage in the selection process for binding to positively charged
surfaces of targets, such as proteins with positively charged amino acids (e.g., arginine, lysine, histidine)
and metal ions via electrostatic interactions [153]. The first reported G4-containing aptamer was
a 15-nucleotide thrombin-binding DNA aptamer, with the sequence of d(GGTTGGTGTGGTTGG)
(Table 2), first selected using SELEX to bind thrombin [155]. The aptamer structure was later determined
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in NMR study to consist of two G-quartets [156]. Other G4-containing DNA aptamers have since been
reported against targets including proteins and small molecules (Table 2). RNA is also equipped to
form aptamers owing to its great structural flexibility that recognize small molecules, as exemplified in
naturally occurring riboswitches [157,158]. A list of representative G4s-containing DNA and RNA
aptamers is shown in Table 2.

The existence of G4 structures in aptamers ideally combines the superior properties of G4 and
the intrinsic binding capabilities of aptamers. These features favor the application of G4-containing
aptamers in biosensing, bioimaging, and therapeutics, as described below (Figure 3).Molecules 2019, 24, x FOR PEER REVIEW 16 of 36 
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fluorescein amidite (FAM)-labelled aptamer and graphene. A single-stranded thrombin aptamer was 
absorbed onto the surface of graphene due to noncovalent assembly and the fluorescence of FAM 
was quenched because of the FRET effect. With the addition of thrombin, it interacted with the 
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Figure 3. Representative applications of G-quadruplex-containing aptamers in biosensing, bioimaging
and therapeutics. (A) Biosensors based on the conformational change of G-quadruplex-containing
aptamers. Targets binding can destabilize/stabilize the G4 structure of aptamers and this conformational
change is designed to cause signal change in the system. (B) Imaging metabolite (e.g., SAM) in living
cells with fluorogenic RNA [159]. Reprinted with permission from [159]. Copyright 2012 American
Association for the Advancement of Science. (C) Proposed mechanism of a photodynamic therapy
strategy by using AS1411 as drug carrier to target cancer cells [160]. Reprinted with permission
from [160].Copyright 2010 American Chemical Society.

3.1. Biosensing Applications of G-Quadruplex-Containing Aptamers

Biomolecules are of great importance in regulating various biochemical reactions and cellular
metabolic processes. Aptamer-based biosensors have been widely used for biomolecule detection
and for understanding their biological functions [151,161]. In addition, by using disease-related
biomolecules as analytes, aptamer-based biosensors have become powerful diagnostic tools [162].
Various sensing strategies and signal readout techniques are used to develop sensing systems for a
variety of targets [151]. Here, we summarize the fluorometric biomolecule aptasensors that utilize
the G4 structure of aptamers in strategic design. Most aptasensors are based on the conformational
switching of aptamers. Target binding can cause distortion on aptamers and stabilize or destabilize
the G4 structure (Figure 3A). This conformational switch can be effectively monitored by several
fluorescence signal output methods, such as nanomaterials [163,164], molecular beacons [165] and
organic dyes, especially G4-selective fluorogenic ligands [99,117,166–169], which can give a fluorescence
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response upon target binding. Examples of the use of fluorometric G4 aptamer-based biosensors
include the detection of proteins, small biomolecules and cations.

Regarding protein detection, thrombin has been employed as an analyte in some aptasensors.
Li et al. [163] developed a FRET aptasensor for thrombin in both buffer and blood serum based on
a fluorescein amidite (FAM)-labelled aptamer and graphene. A single-stranded thrombin aptamer
was absorbed onto the surface of graphene due to noncovalent assembly and the fluorescence of
FAM was quenched because of the FRET effect. With the addition of thrombin, it interacted with
the aptamer and formed a G4-thrombin complex, which had weak affinity to the graphene and thus
dissociated from the graphene, resulting in fluorescence recovery. A similar aptasensor was developed
by Chu and coworkers using MoS2 nanosheets and an FAM-labelled thrombin aptamer [164]. In some
other assays, nucleic acid-interacting dyes are used to avoid labelling of aptamers. Zhou et al. [166]
designed a thrombin aptasensor based on a four-branched pyrazine derivative (TASPI). The thrombin
aptamer can eliminate the fluorescence of TASPI, whereas in the presence of thrombin, its aptamer
specifically bound to thrombin and folded into a G4 structure, releasing TASPI molecules. Liu et al. [99]
reported a FRET-based aptasensor for thrombin by using ThT as an energy acceptor and a water-soluble
conjugated polymer (CP) as an energy donor. In this approach, ThT was bound to a thrombin aptamer
(TBA) first, which induced TBA to fold into a G4 structure, forming a fluorescent ThT–TBA complex.
The electrostatic attractions between the ThT–TBA complex and CP resulted in a high FRET signal.
While in the presence of thrombin, TBA formed a G4-thrombin complex first, resulting in a longer
distance between ThT and CP, which led to a low FRET signal. This method can also be used for
human serum thrombin detection.

Regarding G4 aptamer-based fluorometric biosensors for small biomolecules, ATP has been
used as a target in many assays because of its biological significance. In these assays, G4-selective
fluorescent ligands were widely used to transduce the target binding into a fluorescence signal change.
For example, Ji et al. [167] developed an ATP detection method using an ATP aptamer and ThT. The G4
structure of the ATP aptamer allowed the intercalation of ThT to produce strong fluorescence. However,
upon ATP binding to its aptamer, a conformation change occurred in the aptamer. ThT was released
into the solution, causing drastic suppression of the fluorescence intensity. This method was capable
of detecting ATP in human serum and cell extracts. Other methods adopting similar principles have
also been reported for ATP detection by using other G4 selective fluorescent ligands, such as CV [117],
zinc(II)-protoporphyrin IX [168], and berberine [169]. An alternative approach to detecting ATP was
based on a molecular beacon as the signal output. Willner et al. [165] assembled ATP aptamers into
hairpin DNA, which was modified with a fluorescent dye (FAM) as a fluorophore at its 5′ terminus
and a black hole quencher (BHQ1) at its 3′ terminus. In the absence of ATP, FAM, and BHQ1 were in
close proximity, resulting in fluorescence quenching of FAM due to the FRET effect. However, in the
presence of ATP, the hairpin DNA switched to a G4 structure and was bound to ATP. The re-organized
G4 hairpin structure allowed Exo III to hydrolytically digest the 3′-end strand, and thus BHQ1 was
released into solution and the fluorescence of FAM was recovered.

Pei et al. [170] used G4 aptamer-based fluorometric biosensors for cation detection. They proposed
a sensing strategy for Pb2+ based on target-induced G4 formation and found a G-rich sequence
(AGRO100) that works as a Pb2+ aptamer and forms a G4 conformation induced by Pb2+. The G4-Pb2+

complex binds to NMM, giving a turn-on fluorescence response to Pb2+. Another interesting work
reported by the Wei group achieved the in vivo detection of K+ in living organisms (brains and
tumors) [171]. They selected a G-rich DNA probe that was selectively induced to form a parallel
G4 by K+. The G4-K+ complex can enhance the fluorescence of PPIX. Thus, the concentration of K+

could be detected by modulating the fluorescence of the system. A similar study was reported by
Tan et al. [172] for human blood K+ detection using a G4 aptamer of K+ and a G4-binding ligand
(EBMVC-B). This was the first attempt to exploit G4 aptamer-based fluorescent sensing for direct assay
of blood targets. This concept also holds great potential for other ions’ detection by selecting their
corresponding G4-containing aptamers.
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3.2. Bioimaging Applications of G-Quadruplex-Containing Aptamers

Monitoring the distribution and tracking of intracellular biomolecules contributes to the
understanding of their cellular location, dynamics, and functions, which is vital for gene regulation,
disease diagnosis, and drug discovery [173]. Fluorescence imaging is a major technique for identifying
the expression and spatial and temporal dynamics of biomolecules [174]. A few G4-containing
aptamer-based strategies have been reported for bioimaging applications.

A particular example of this application is RNA Spinach, which is a 98nt SELEX-identified
RNA aptamer that can fold into a G4 structure and switch on the fluorescence of 3,5-difluoro-4-
hydroxybenzylidene imidazolinone (DFHBI) [175]. RNA Spinach has been demonstrated to be a
powerful bioimaging tool because of its strong resistance to photo-bleaching [175]. Spinach was
successfully implemented for RNA imaging in living mammalian cells [175] and bacteria [176],
as well for cellular metabolite [159] and protein [177] imaging in bacteria. The common strategy
of Spinach-based bioimaging is to express ‘fusion RNAs’ that comprise Spinach and an additional
RNA tag that can recognize targets and give a fluorescence response. For example, Jaffrey and
coworkers [159] established a strategy to image cellular metabolites in E. coli based on Spinach
(Figure 3B). They fused the target-binding aptamer to RNA Spinach via a transducer stem and
destroyed the G4 motif of Spinach. Target binding to the aptamer promoted stabilization of the
transducer stem, enabling Spinach to fold and activating DFHBI fluorescence. They also adapted this
approach to monitor protein levels in E. coli [177]. In addition to the original Spinach, other versions
of Spinach, like Spinach-mini [175], Spinach1.2 [178], Spinach2 [178], Spinach2-mini [179] and Baby
Spinach [180], all adopt a G4 structure. A compelling alternative to RNA Spinach has been identified
by in vitro selection, termed as Mango. Mango has a more rigid G4 structure, which activates the
fluorescence of thiazole orange derivatives [109]. RNA Mango has also been used to bioimaging
systems. For example, Jepsen et al. [181] developed a FRET sensing system by using RNA origami
scaffolds consisting of Spinach and Mango. The fluorescent aptamers Spinach and Mango were placed
in close proximity to obtain FRET and a new fluorophore was synthesized to increase the spectral
overlap. The FRET-based constructs were finally expressed in E. coli. These bioimaging applications
reveal the fact that G4-containing aptamers can provide promising platform for efficient intracellular
monitoring of biomolecules in living cells and organisms.

3.3. Therapeutic Applications of G-Quadruplex-Containing Aptamers

For therapeutic functions, several G-quartet-containing oligonucleotides have been demonstrated
to have potential as drugs, such as HIV inhibitors [182,183]. DNA sequences (termed 93del and 112del)
adopting the G4 folding topology have been reported to exhibit anti-HIV1 integrase activity in a
nanomolar range [182,183]. Another DNA aptamer (T30695) with a sequence similar to that of 93del
and 112del but with a rather different G4 folding topology has also been identified as an HIV1 integrase
inhibitor [182]. Despite the existence of quite a few anti-HIV1 integrase aptamers, delivering them
to intracellular targets is still a challenge. Jing et al. [184] developed a system to deliver an HIV1
integrase inhibitor (T40214) into the target cell nuclei, which successfully decreased HIV1 replication,
thus demonstrating the possible use of G4-containing nucleic acid aptamers as anti-HIV drugs.

The AS1411 aptamer is a 26nt G-rich DNA sequence that can fold into a G4 structures and bind
to nucleolin with strong affinity and specificity [185]. AS1411 has been widely employed to target
higher nucleolin-expressing cancer cells. For example, Shieh et al. [160] developed an aptamer-based
photodynamic therapy strategy by using AS1411 as a drug carrier to target cancer cells (Figure 3C).
Willner and co-workers [186] also designed a drug delivery method based on AS1411-functionalized
metal–organic framework nanoparticles loaded with anti-cancer drugs. AS141 was used to target the
cancer cells, and VEGF in the target cells can trigger the release of the anti-cancer drug. This concept
could be adapted to other diseases that involve cellular biomarkers and their aptamers as gating units.
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3.4. Current Challenges and Future Perspectives of the Development and Applications of
G4-Containing Aptamers

Since the thrombin-binding aptamer (TBA, Table 2) was first identified as a G4-containing aptamer,
G4 structure has been reported in a number of DNA and RNA aptamers towards various targets
(Table 2). The potential applications of these G4-containing aptamers have been illustrated in different
areas as discussed earlier. Nonetheless, the development and applications are still in the early stages
and suffer from several challenges.

Firstly, high-resolution structures of targets with and without aptamer bound are necessary to
reveal the structural basis of these complexes, which will allow development and optimization of
aptamer’s sequence and structure, and provide insights to further enhance the aptamer’s properties for
desired applications. So far, only a few G4-containing aptamers have been structurally determined (TBA,
Spinach, Mango, etc.) [156,187,188], whereas the structures of other G4-containing aptamers are still
poorly understood, making it challenging to improve the design and properties of those G4-containing
aptamers. In addition, as the number of G4-containing aptamer is still limited, identifying novel
G4-containing aptamers against new targets will broaden the scope of this research area.

Secondly, the folding of G4-containing aptamers should be experimentally investigated to ensure
their specificity both in vitro and vivo, as the aptamer structure might re-fold in cellular environment.
The selected aptamers’ folding can be inhibited by cell machinery and physiochemical environment
when used in cells/in vivo, which decrease the aptamer’s ability to bind to targets. Therefore, more tests
in different conditions are required to ensure the aptamer specificity. In addition, new experimental
structure mapping techniques [32,48] and cell imaging have been developed to examine G4 folding,
allowing us to verify the formation of G4 structure in the G4-containing aptamer in both in vitro and
in vivo settings.

Thirdly, most of the G4-containing aptamer-based systems are still proof-of-concept studies, which
were performed in vitro or in cells. The application of them from bench to diagnosis and therapy are
still elusive and need to be fully investigated. One main obstacle for therapeutic applications is the
biological barrier existing during the drug delivery process [161], such as cell membrane internalization.
In addition, the nucleases present in biological system also pose another key issue. To solve these, more
efforts should be made to develop G4-containing aptamer-based systems that can penetrate across
the biological barrier, such as the use of other biocompatible species like nanomaterials to facilitate
intracellular delivery of the therapeutic G4-containing aptamers [189]. To resist nuclease digestion and
increase G4-containing aptamer’s lifetime in cells/in vivo, unnatural nucleotide base modifications
can be used, such as 2′O-methylation, lock nucleic acids, and phosphothioate. Further improvement
in this area will facilitate the better G4-containing aptamer stability and delivery in complex system.
Taken together, with these challenges to be addressed, G4-containing aptamers will likely achieve their
diagnostic and therapeutic potential, leading to a new chapter in the application of G4-containing
aptamer research.
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Table 2. Representative list of G-quadruplex-containing nucleic acid aptamers.

Aptamer Target Sequence (5′-3′) Length Ref.

DNA G-quadruplex-containing aptamers
TBA Thrombin d(GGTTGGTGTGGTTGG) 15 [156]

AS1411 Nucleolin d(GGTGGTGGTGGTTGTGGTGGTGGTGG) 26 [185]
T40214 Stat3 a d(GGGCGGGCGGGCGGGC) 16 [190]
T40231 Stat3 d(GGTGGGTGGGTGGG) 14 [190]
22AG Human TEBPs b d(AGGGTTAGGGTTAGGGTTAGGG) 22 [95]
N.A. Ciliate TEBPs d(TTTTGGGGTTTTGGGG) 16 [191]

ISIS5320 HIV-1 gp120 d(TTGGGGTT) 8 [192]
93del HIV-1 integrase d(GGGGTGGGAGGAGGGT) 16 [182]
112del HIV-1 integrase d(CGGGTGGGTGGGTGGT) 16 [183]
T30695 HIV-1 integrase d(GGGTGGGTGGGTGGGT) 16 [182]

RT5 HIV-1 reverse transcriptase d(CAGGCGCCGGGGGGGTGGGAATACAGTGATCAGCG) 35 [41]
RT6 HIV-1 reverse transcriptase d(CAGGCGTTAGGGAAGGGCGTCGAAAGCAGGGTGGG) 35 [41]
RT47 HIV-1 reverse transcriptase d(CAGGCCTTGGGCGGGCCGGGACAATGGAGAGATTT) 35 [41]

ODN93 HIV-1 reverse transcriptase d(GGGGGTGGGAGGAGGGTAGGCCTTAGGTTTCTGA) 34 [193]
r10/43. HCV RdRp c d(GGGCGTGGTGGGTGGGGTACTAATAATGTGCGTTTG) 36 [194]

G5 SARS Coronavirus Helicase d(AGCGGGCATATGGTGGTGGGTGGTATGGTC) 30 [195]
N.A. Insulin d(GGTGGTGGGGGGGGTTGGTAGGGTGTCTTC) 30 [196]
N.A. Hematoporphyrin IX d(ATGGGGTCGGGCGGGCCGGGTGTC) 24 [197]

PS2M Hemin d(GTGGGTAGGGCGGGTTGG) 18 [198]
ABA ATP d(ACCTGGGGGAGTATTGCGGAGGAAGGT) 27 [167]

RNA G-quadruplex-containing aptamers

Spinach DFHBI d r(GACGCAACUGAAUGAAAUGGUGAAGGACGGGUCCAGGUGUGGCUGCUUCGGCAGUGC
AGCUUGUUGAGUAGAGUGUGAGCUCCGUAACUAGUCGCGUC) 98 [175]

Spinach mini DFHBI r(GACGCGACCGAAAUGGUGAAGGACGGGUCCAGUGCUUCGGCACUGUUGAGUAGAGUG
UGAGCUCCGUAACUGGUCGCGUC) 80 [175]

Spinach1.2 DFHBI r(GACGCGACCGAAUGAAAUGGUGAAGGACGGGUCCAGCCGGCUGCUUCGGCAGCCGGC
UUGUUGAGUAGAGUGUGAGCUCCGUAACUGGUCGCGUC) 95 [178]

Spinach2 DFHBI r(GAUGUAACUGAAUGAAAUGGUGAAGGACGGGUCCAGUAGGCUGCUUCGGCAGCCUAC
UUGUUGAGUAGAGUGUGAGCUCCGUAACUAGUUACAUC) 95 [178]

Spinach2 mini DFHBI r(GAUGUAACUGAAAUGGUGAAGGACGGGUCCAGUGCUUCGGCACUGUUGAGUAGAGUG
UGAGCUCCGUAACUAGUUACAUC) 80 [179]

Baby Spinach DFHBI r(GGUGAAGGACGGGUCCAGUAGUUCGCUACUGUUGAGUAGAGUGUGAGCUCC) 51 [180]
Broccoli DFHBI r(GAGACGGUCGGGUCCAGAUAUUCGUAUCUGUCGAGUAGAGUGUGGGCUC) 49 [199]
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Table 2. Cont.

Aptamer Target Sequence (5′-3′) Length Ref.

Corn DFHO e r(CGAGGAAGGAGGUCUGAGGAGGUCACUG) 28 [200]
Mango Thiazole orange-biotin r(GGCACGUACGAAGGGACGGUGCGGAGAGGAGAGUACGUG) 39 [109]

Mango-II Thiazole orange-biotin r(GCGUACGAAGGAGAGGAGAGGAAGAGGAGAGUACGC) 36 [201]
Mango-III Thiazole orange-biotin r(GCUACGAAGGAAGGAUUGGUAUGUGGUAUAUUCGUAGC) 38 [202]
ApT4-A Thyroxine hormone r(GGUGGAGGGGGACGUGCUGCAUCCGCAGUGCGUCUUGGGUUGUG) 44 [203]

N.A. Human receptor activator of
NF-kB r(ACGGAUUCGUAUGGGUGGGAUCGGGAAGGGCUACGAACACCGU) 43 [204]

N.A. HIV-1 integrase r(GGAGGGAGGGGAU) or r(GGAGUUAGGGGCU) 13 [205]

N.A. Prion protein rPrP23-231 r(CACUGCUACCUUAGAGUAGGAGCGGGACGAGGGGUUGUUGGGACGUGGGUAUGAUCC
AUACAUUAGGAAGCUGGUGAGCUGGCACC) 86 [206]

N2 Trypanosome r(AAGAAGCGCGCGAGGCAGGACGAGGCAGGUGAGCGCUGUCCGA) 43 [207]
a, Signal transducer and activator of transcription 3; b, Telomere end-binding proteins; c, RNA-dependent RNA polymerase; d, 3,5-difluoro-4-hydroxybenzylidene imidazolinone; e,
3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime.
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4. Conclusions

Over the years, impressive progress has been made in the G4 field with respect to G4 fluorescent
turn-on ligands and G4-containing aptamers. Remarkable discoveries and applications have been
reported in these two promising fields, including the interaction mechanism and applications of several
classes of G4 fluorescent turn-on ligands (Table 1), as well as the G4-containing aptamers (Table 2) and
their uses in biosensing, bioimaging, and therapy. With such developments achieved in the investigation
and applications of G4s, the study of G4 fluorescent turn-on ligands and G4-containing aptamers is
expected to open new perspectives towards wider biological understanding and applications of G4s
both in vitro and in cells.
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