New insights into the cystine-sulfite reaction

Matteo Zecchini¹, Robert Lucas ² and Adam Le Gresley ^{1,*}

- ¹ Kingston University, Surrey, KT1 2EE, UK; m.zecchini@kingston.ac.uk
- ² GlaxoSmithKline, Consumer Healthcare, Weybridge, UK; Robert.a.lucas@gsk.com
- * Correspondence: a.legresley@kingston.ac.uk; Tel.: +44-(0)208-4177432

Supporting information

S1 NMR spectrum showing cysteine at pH 8-9

Proton NMR of Cysteine in D₂O at pH 8-9.

S2 Linearity of diffusion correlation with MW

Theoretical (\bullet) and experimental (\blacktriangle) correlation of LogMW vs LogD show good linearity, where in details \bullet : y=0.8477x + 7.6271, R²=0.9999 and \blacktriangle : y=0.8353x + 7.6582, R²=0.9981.

S3 NMR and FT-IR data of S-methyl-L-cysteine

¹H-NMR.

Proton NMR of S-methyl-L-cysteine in D₂O.

FT-IR of S-methyl-L-cysteine obtained as a white solid.

S4 NMR and FT-IR in support of the presence of sulfenic acid and further oxidation to a sulphone ¹H-NMR.

Proton NMR of the mixture of Sulfoxide and Sulfone given by the oxidation of the S-Me-L-Cysteine.

FT-IR.

FT-IR spectra of reactiom. The intense stretching around 1000 cm-1 (spectrum B) could be the S-O bond not present in the SM (spectrum A).

S5 Reaction of **8** with sulfite resulted in an intractable mixture, possibly resulting from cyclisation of the formed sulfenic acid (Supporting Information S5)

¹H-NMR of **8**.

Proton NMR for starting material 8 in DMSO-d6.

¹H-NMR for the crude reaction mixture.

Proton NMR for an aliquot of the reaction mixture dried under nitrogen (80° C-12h). Spectrum recorded in H₂O/D₂O. The desired compound was not identified in the crude mixture.

S6 Combined Temperature and UV effects with varying pH

Comparison between the effect of temperature (65°C) at A) pH4 and B) pH9 and effect of UV light (30s-254nm) and temperature (65°C) at C) pH4 and D) pH9.

pH9-85°C	Time (h)	2 (%)	4 (%)	1 (%)
	2	37	34	28
	2.5	42	31	23
+ 10s UV-254nm				
	3	42	31	23
	20	53	26	18
	48	55	19	18
+ 30s UV-254nm				
	3	39	31	25
	20	47	28	20
	48	57	20	19

Table 1. Variation in the reaction mixture percentage composition after UV exposure at high temperature.