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Abstract: Lymphoma defines a group of different diseases. This study examined pre-treatment 

plasma samples from 66 adult patients (aged 20–74) newly diagnosed with any lymphoma 

subtype, and 96 frequency matched population controls. We used gas chromatography-mass 

spectrometry (GC-MS) to compare the metabolic profile by case/control status and across the major 

lymphoma subtypes. We conducted univariate and multivariate analyses, and partial least square 

discriminant analysis (PLS-DA). When compared to the controls, statistically validated models 

were obtained for diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), 

multiple myeloma (MM), and Hodgkin lymphoma (HL), but not follicular lymphoma (FL). The 

metabolomic analysis highlighted interesting differences between lymphoma patients and 

population controls, allowing the discrimination between pathologic and healthy subjects: 

Important metabolites, such as hypoxanthine and elaidic acid, were more abundant in all 

lymphoma subtypes. The small sample size of the individual lymphoma subtypes prevented 

obtaining PLS-DA validated models, although specific peculiar features of each subtype were 

observed; for instance, fatty acids were most represented in MM and HL patients, while 

2-aminoadipic acid, 2-aminoheptanedioic acid, erythritol, and threitol characterized DLBCL and 

CLL. Metabolomic analysis was able to highlight interesting differences between lymphoma 

patients and population controls, allowing the discrimination between pathologic and healthy 

subjects. Further studies are warranted to understand whether the peculiar metabolic patterns 

observed might serve as early biomarkers of lymphoma. 
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1. Introduction 

Lymphomas represent a heterogeneous group of lymphoid malignancies with varied patterns 

of clinical behavior and responses to treatment. Lymphomas rank the fifth most common cancer in 

the developed world [1]. Prognosis depends on the histologic type, clinical factors, and molecular 

characteristics. Lymphomas are classified based upon their histological characteristics, and the stage 

of maturation of the lymphocytes from which they originate [2]. B-cell lymphomas are the most 

frequently represented, and they include diffuse large B-cell lymphoma (DLBCL), chronic 

lymphocytic leukemia (CLL), follicular lymphoma (FL), multiple myeloma (MM), and other less 

frequent subtypes. 
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Lymphoma classification keeps evolving thanks to new molecular tools, such as metabolomics. 

Metabolomics is one of the most recent innovative technologies aiming to understand the metabolic 

processes within cells, tissues, organs, and organisms. It focuses on the quantitative analysis of a 

large number of metabolites, representing the end-products of genes, transcripts, and protein 

functions. The strong interest in metabolomics relates to the fact that even subtle changes in genes, 

abundance of transcripts, or levels of protein can substantially change the quantity and dynamics of 

metabolites. Therefore, the analysis of metabolites represents a sensitive measure of the biological 

status in health or disease [3]. Altered metabolic fingerprints of lymphoma patients offer novel 

opportunities to detect or identify potential risks, and ultimately help achieve the goal of 

“personalized medicine” [4]. In this regard, a sizable number of findings have been tested for 

translational applications, focusing on lymphoma ranging from early detection to therapy prediction 

and prognosis [5,6]. 

Recently, a metabolomic approach has been proposed to identify possible biomarkers for 

characterization and early diagnosis of the different lymphoma subtypes [6]. The metabolomic 

reports published thus far employed different techniques, such as liquid chromatography-mass 

spectrometry (LC-MS) [7–10], both gas chromatography-mass spectrometry (GC-MS) and LC-MS 

[11,12], or nuclear magnetic resonance (NMR) [13–16], and different bio specimen [7–16]. In this 

study, a GC-MS technique was used to analyze plasma samples from patients affected by different 

lymphoma subtypes, and from age (10-year groups) and gender frequency matched population 

controls. The aim of the study was to identify possible metabolic biomarkers allowing early 

diagnosis, and possibly differential diagnosis between the subtypes. 

2. Results 

Table 1 shows the gender distribution and mean age of the study population by case-control 

status. Cases are subdivided by histotypes. 

Table 1. Main characteristics of the study population by case-control status and by major lymphoma 

subtypes. 

 

N 
Gender Age 

M F M/F Mean sd 

Controls 96 50 46 1.09 57.0 12.87 

Diffuse Large B-cell 

Lymphoma 
13 6 7 0.86 62.2 10.46 

Follicular Lymphoma 8 5 3 1.67 47.9 8.36 

Chronic Lymphocytic 

Leukaemia 
6 2 4 0.50 62.0 15.23 

Multiple Myeloma 9 5 4 1.25 61.7 7.00 

Other B-cell Lymphoma 14 10 4 2.50 59.7 7.92 

B-cell Lymphoma 

(total) 
50 28 22 1.27 59.1 10.52 

Hodgkin Lymphoma 10 4 6 0.67 38.2 12.22 

T-cell Lymphoma 2 2 0 - 59.5 - 

Unspecified 

Lymphoma subtype 
4 2 2 1.0 63.8 15.17 

All lymphomas 66 36 30 1.20 57.3 13.22 

 

We compared the metabolomic profile of patients affected by the five major B-cell lymphoma 

subtypes to that detected in healthy controls using univariate t-test analysis, multivariate analysis, 

and partial least square-discriminant analysis (PLS-DA). The following analyses were conducted: 

Diffuse large B-cell lymphoma (DLBCL) (13 samples vs 42 controls), follicular lymphoma (FL) (8 

samples vs 34 controls), chronic lymphocytic leukemia (CLL) (6 samples vs 29 controls), multiple 
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myeloma (MM) (9 samples vs 36 controls), and Hodgkin lymphoma (HL) (10 samples vs 36 

controls). Table 2 shows the results of the univariate analysis. 
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Table 2. Differences in plasma metabolites between the major lymphoma subtypes and the controls: Results of the univariate analysis with p after false discovery rate 

(FDR) < 0.05. 

Metabolite 

Diffuse Large B-Cell  

Lymphoma (DLBCL) 

Follicular Lymphoma  

(FL) 

Chronic Lymphocytic  

Leukemia (CLL) 

Multiple Myeloma  

(MM) 

Hodgkin Lymphoma  

(HL) 

p-Value FDR Trend p-Value FDR Trend p-Value FDR Trend p-Value FDR Trend p-Value FDR Trend 

2-Aminoadipic acid 0.0021 0.0279 ↓     0.00048 0.0079 ↓         

2-Aminoheptanedioic acid 4.3 × 10−6 0.0004 ↓                 

3-Hydroxybutyric acid 0.0017 0.0279 ↑                 

3-Phosphoglycerate                 0.00124 0.0401 ↑ 

A148003 
9.95 × 

10−5 
0.0042 ↓     

            

A203003         0.00024 0.0065 ↑         

Aspartic acid 
3.41 × 

10−4 
0.0096 ↓     

            

Carbonic acid         0.00692 0.0405 ↑         

Erythritol 0.0026 0.0279 ↑     0.00503 0.0327 ↑         

Ethanolamine 
            

8.02 × 

10−4 
0.0233 ↓ 

    

Fucose 0.0045 0.0421 ↑                 

Glucoheptonic acid 

1,4-lactone         
0.0004 0.0079 ↓ 
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Glucose 
    

1.97 × 

10−4 
0.0088 ↓ 

        
0.00374 0.0481 ↓ 

Glutamic acid         0.00363 0.0271 ↑         

Glycine 0.0011 0.0231 ↑                 

Hippuric acid 
    

    
    

7.28 × 

10−5 
0.0032 ↓ 

    

Hypoxanthine 
    

    
1.03 × 

10−5 
0.0004 ↑ 

    
0.00134 0.0401 ↑ 

Iminodiacetic acid         0.00338 0.0271 ↓         

Inositol         0.00811 0.0443 ↑         

Lactic acid 
    

3.26 × 

10−5 
0.0029 ↑ 

        
0.00257 0.0481 ↑ 

Linoleic acid                 0.00372 0.0481 ↑ 

Mannose 0.0027 0.0279 ↑     0.00104 0.0122 ↑         

Ornithine         0.0093 0.0476 ↑         

Palmitic acid                 0.00286 0.0481 ↑ 

Phosphate                 8.7 × 10−4 0.0401 ↑ 

Proline+CO2 0.006 0.0455 ↓                 

Quinic acid 
    

    
    

2.91 × 

10−5 
0.0025 ↓ 

    

Tryptophan         0.00074 0.0102 ↑         
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Unknown 1314 
    

    
8.30 × 

10−6 
0.0004 ↓ 

        

Unknown 1342         0.00519 0.0327 ↑         

Unknown 2028         0.00344 0.0271 ↓         

Uric acid             0.01032 0.0498 ↑             
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The PLS-DA identified four cross-validated models. Table 3 shows the results, and Figure 1 

reports the corresponding score plots. The variable importance in projection (VIP) score plots are 

reported as Supplementary Figure S1–S4. As shown in Table 3, the PLS-DA discriminating ability 

from the controls was maximum for CLL (Q2 = 0.734). The comparison between FL and control 

samples did not result in significant differences in respect to the controls (Q2 = 0.131), and therefore 

will not be discussed further. For each comparison, the PLS-DA analysis identified the most 

important metabolites in the class discrimination. Table 4 shows the relative abundance differences 

of the most important metabolites for the different comparisons. 

Table 3. Partial least square-discriminant analysis (PLS-DA) parameters for the comparison of 

different lymphomas with controls (C). 

Comparison 
Number of 

Components 
Accuracy R2 Q2 

DLBCL/C 2 0.945 0.845 0.600 

FL/C 5 0.857 0.973 0.131 

CLL/C 2 1.00 0.911 0.734 

MM/C 4 0.933 0.949 0.613 

HL/C 4 0.935 0.950 0.679 

 

A 

 

B 

 
C 

 

D 

 

Figure 1. 2D PLS-DA scores of the models obtained from the comparison (A) DLBCL/Controls, (B) 

CLL/Controls, (C) MM/Controls, (D) HL/Controls. 
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Table 4. PLS-DA most important metabolites (VIP = variable importance in the projection; VIP score 

> 1) and the relative abundance differences: ↑ more abundant in lymphoma compared to controls; ↓ 

less abundant in lymphoma compared to controls. 

Metabolite 
Class e HMDB ID CAS DLBCL CLL MM HL 

2-Aminoadipic acid a AA HMDB0000510 7620-28-2 ↓ ↓   

2-Aminoheptanedioic 

acid a 

AA HMDB0034252 
3721-85-5 

↓ ↓  ↓ 

2-Hydroxybutyric acid c HA HMDB0000008 600-15-7  ↑ ↑  

3-Aminoisobutyric acid c AA HMDB0003911 144-90-1  ↓  ↑ 

3-Hydroxybutyric acid c HA HMDB0000357 300-85-6 ↑    

3-Phosphoglyceric acid b HA HMDB0000807 820-11-1    ↑ 

4-Hydroxyproline c AA HMDB0000725 51-35-4 ↑ ↑   

A148003 b - - - ↓   ↓ 

A203003 b - - -  ↑   

Aspartic acid c AA HMDB0000191 56-84-8 ↓    

Cis-Aconitic acid c A HMDB0000072 585-84-2   ↓ ↓ 

Cysteine c AA HMDB0000574 52-90-4   ↓ ↑ 

Elaidic acid c FA HMDB0000573 112-79-8 ↑ ↑ ↑ ↑ 

Erythritol c PO HMDB0002994 149-32-6 ↑ ↑   

Erythronic acid b HA HMDB0000613 13752-84-6  ↑   

Ethanolamine c Am HMDB0000149 141-43-5   ↓  

Fructose c S HMDB0000660 53188-23-1   ↓  

Fucose c S HMDB0000174 2438-80-4 ↑    

Glucoheptonic acid b HA - 87-74-1 ↓ ↓   

Gluconic acid c HA HMDB0000625 526-95-4  ↑ ↑ ↓ 

Glutamic acid c AA HMDB0000148 56-86-0 ↑  ↑ ↑ 

Glycerol-3-Phosphate c PO HMDB0000126 57-03-4 ↑   ↑ 

Glycine c AA HMDB0000123 56-40-6 ↑   ↑ 

Glycolic acid c HA HMDB0000115 79-14-1  ↑ ↑  

Hippuric acid c A HMDB0000714 495-69-2  ↑ ↓ ↓ 

Hypoxanthine c P HMDB0000157 68-94-0 ↑ ↑ ↑ ↑ 

Iminodiacetic acid c A HMDB0011753 142-73-4  ↓   

Inositol-like d PO - - ↑ ↑   

Inositol phosphate a PO HMDB0002985 15421-51-9   ↑  

Lactic acid c HA HMDB0000190 79-33-4    ↑ 

Linoleic acid c FA HMDB0000673 60-33-3    ↑ 

Mannitol c PO HMDB0000765 69-65-8 ↑  ↑  

Monosaccharide 1886 S - - ↓  ↑  

Myristic acid c FA HMDB0000806 544-63-8   ↑ ↑ 

Oleic acid c FA HMDB0000207 112-80-1 ↑  ↑ ↑ 

Ornithine c AA HMDB0000214 3184-13-2  ↑   
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Palmitic acid c FA HMDB0000220 57-10-3    ↑ 

Palmitoleic acid c FA HMDB0003229 373-49-9 ↑  ↑ ↑ 

Phosphate c I HMDB0001429 14265-44-2 ↓   ↑ 

Proline+CO2 b AA - - ↓    

Pyroglutamic acid c AA HMDB0000267 98-79-3    ↑ 

Pyrophosphate a I HMDB0000250 14000-31-8  ↓   

Quinic acid b HA HMDB0003072 77-95-2   ↓ ↓ 

Serine c AA HMDB0000187 56-45-1    ↑ 

Serotonin a Am HMDB0000259 50-67-9  ↓   

Stearic acid c FA HMDB0000827 57-11-4   ↑ ↑ 

Succinic acid c A HMDB0000254 110-15-6  ↑ ↑  

Sucrose c S HMDB0000258 57-50-1   ↓  

Threitol c PO HMDB0004136 2418-52-2 ↑ ↑ ↓  

Tryptophan c AA HMDB0000929 73-22-3 ↓ ↑   

Unknown 1314 - - -  ↓   

Unknown 1910 - - - ↑ ↑ ↑  

Unknown 2028 - - -  ↓ ↓  

Uric acid c P HMDB0000289 69-93-2 ↓ ↑ ↑ ↓ 

a Identified by NIST (matching factor >70%). b Identified by GMD (matching factor >70%). c Identified 

by in-house library. d Inositol structural isomer other than myo-inositol, chiro-inositol, scyllo-inositol. 
e Chemical class: AA (Amino acid), HA (Hydroxy acid), A (Acid), FA (Fatty acid), PO (Polyol), Am 

(Amine), S (Sugar), P (Purine), I (Inorganic). 

Two metabolites were more abundant in all lymphoma subtypes compared to the controls: 

Hypoxanthine and elaidic acid. Another interesting feature was the number of metabolites showing 

a common behavior across the different lymphoma subtypes. In particular, eight metabolites 

showed a similar upward or downward change in DLBCL and CLL cases compared to the controls, 

namely 2-aminoadipic acid, 2-aminoheptanedioic acid, 4-hydroxyproline, erythritol, glucoheptonic 

acid, inositol-like (an inositol isomer other than myo-, scyllo- and chiro-inositol), threitol, and 

unknown 1910. Among these, 2-aminoadipic acid/2-aminoheptanedioic acid (common name 

2-aminopimelic acid), and erythritol/threitol are chemically closely related (Figure 2). 

 

Figure 2. Chemical structure of selected metabolites with similar trend in DLBCL and CLL compared 

with controls. 

In fact, 2-aminoadipic and 2-aminoheptanedioic acids are α-amino bicarboxylic acids differing 

by only one carbon (i.e., they are homologous), and both were less abundant in DLBCL and CLL 

patients compared to the controls. Threitol and erythritol are four-carbon polyols differing by the 

configuration of only one chiral carbon (i.e., they are diastereomers), and both were more abundant 

in DLBCL and CLL cases compared to the controls. 
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Eight other metabolites showed similar changes in MM and HL cases compared to the controls, 

namely cis-aconitic acid, glutamic acid, hippuric acid, myristic acid, oleic acid, palmitoleic acid, and 

stearic acid. All these metabolites are carboxylic acids; four are fatty acids, two saturated and two 

unsaturated. All the four fatty acids were more abundant in MM and HL patients compared to the 

controls. 

3. Discussion 

We analyzed the metabolome of plasma samples from patients of five lymphoma subtypes and 

healthy controls by untargeted GC-MS. We obtained a significant PLS-DA model for four out of the 

five major lymphoma subtypes. A common feature of the four significant models was the relative 

abundance of hypoxanthine and elaidic acid among the patients in respect to the controls. 

Hypoxanthine is a purine involved in adenine and guanine metabolism and, therefore, in the 

synthesis of the corresponding nucleosides. In this regard, Yoo found low amounts of hypoxanthine 

in the urine of non-Hodgkin lymphoma (NHL) patients [7], while plasma levels were elevated in 

children with acute lymphoblastic leukemia (ALL) or NHL: In these patients, treatment with 

high-dose methotrexate lowered hypoxanthine levels [17]. Serum hypoxanthine levels were also 

elevated in a heterogeneous group of hemolymphatic malignancies, including acute myeloid 

leukemia, NHL and CLL [14], and in rectal cancer patients who underwent chemoradiotherapy [18]. 

Uric acid, another purine metabolite, showed higher levels in CLL and MM, and lower in DLBCL 

and HL when compared to the controls. Uric acid is the end-product of the purine oxidative 

degradation, deriving from hypoxanthine through xanthine by a NAD-dependent oxidoreductase 

(https://www.genome.jp/dbget-bin/www_bget?rn:R01768; 

https://www.genome.jp/dbget-bin/www_bget?rn:R02103). 

Elaidic acid is the trans isomer of monounsaturated C18 oleic acid, naturally present in 

ruminant fat, meat, margarine, and baked products [19]; its plasma level has been associated with an 

increase in total mortality and in cardiovascular mortality [20], and a diet high in trans fatty acids 

has been associated with an increase in NHL risk [21]. Herein, for the first time, we report that 

elaidic acid plasma level is more elevated in lymphoma patients, likewise in the four subtypes we 

could investigate, compared to the controls. 

Other fatty acids, such as myristic, oleic, palmitoleic, and stearic acid were more represented in 

both MM and HL, and plasma samples from HL patients were also characterized by an increased 

amount of linoleic and palmitic acid. Dysregulation of fatty acid metabolism in cancer cells is well 

known [22,23] as it is the potential of fatty acid synthase (FAS) as a drug target; in fact, FAS was 

expressed above normal in MM [24] and CLL [25,26]. 

Glycine was more abundant in plasma samples of DLBCL and HL cases compared to the 

controls. How this observation matches the reported impairment in intracellular glycine transport in 

DLBCL patients [9] is still unclear. A connection has been suggested between defective intracellular 

glycine import and increase in tetrahydrofolate-bound one-carbon unit production resulting from 

conversion from serine to glycine by serine hydroxymethyltransferase (SHMT) [9]; the hypothesis is 

worth exploring, as previous studies have shown the relevance of one-carbon metabolism and 

changes in the methylation pattern in the etiology of lymphoma subtypes [27,28]. 

2-aminoadipic acid was reported at increased levels in patients with carcinoma of the prostate 

[29], and it was tentatively proposed as a biomarker of glioblastoma aggressiveness [30]. The finding 

of a higher level of its homologous 2-aminoheptanedioic acid in the cerebrospinal fluid of 

glioblastoma patients, compared to that of grade I–II and grade III glioma patients [31], and in fecal 

samples from colorectal cancer patients [32] would support the proposal. On the contrary, levels of 

the same fatty acids were lower in plasma samples of DLBCL and CLL patients than in controls, and 

2-aminoadipic acid was lower in colorectal cancer tissue in respect to the adjacent normal mucosa 

[33]. 

Recently, erythritol, a four-carbon bacterial metabolite [34], has been identified as an 

endogenous human metabolite derived from glucose-6-phosphate in the pentose phosphate 

pathway (PPP) [35], which would link its production to obesity in young adults. In the present 
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study, erythritol and threitol were more abundant in DLBCL and CLL cases: The links between these 

metabolites and the PPP would suggest a disorder of the glucose catabolic pathway in these 

lymphoma subtypes. 

Consistent with previous reports [14], CLL cases had an elevated level of 2-hydroxybutyric 

acid, a by-product in the synthesis of glutathione from cystathionine under oxidative stress 

condition. This four-carbon hydroxy acid was also increased in plasma from hepatocellular 

carcinoma cases [36], and it was suggested as a potential biomarker of insulin resistance and 

impaired glucose regulation [37,38]. 

Our study has several limitations. First, the small sample size did not allow discrimination 

between the individual major lymphoma subtypes based on their peculiar metabolic features, 

although we could identify specific metabolic imprints for each in respect to the healthy controls. All 

patients donated their blood before undergoing treatment, so that we could be reasonably confident 

that what we observed was in fact a disease effect. Only large-scale follow-up studies in the general 

population might help in understanding whether the metabolic changes observed could also be 

predictive of a developing lymphoma in its early stage. Secondly, we performed a large number of 

comparisons, which might have resulted in a proportionally elevated number of chance findings. 

However, we corrected p-values using the false discovery rate technique, and we interpreted our 

results consequently, based also on their consistency with previous literature reports. 

In spite of such limitations, we think our findings warrant replication in larger pooled analyses. 

4. Materials and Methods 

4.1. Study Population 

During 2012–16, we recruited incident adult patients (aged 20–74) with a first diagnosis of 

lymphoma at the hematology unit of the A. Businco Hospital in Cagliari—the main referral center 

for oncohematology in southern Sardinia, Italy—to participate in a case-control study on 

gene-environment interactions in the etiology of lymphoma. The pathologists collaborating to the 

study reviewed the clinical diagnosis of lymphoma using the 2008 World Health Organization 

(WHO) classification of lymphoma. All lymphoma subtypes, including B-cell and T-cell lymphomas, 

and Hodgkin lymphoma were included. Controls were a random sample of the resident population 

in southern Sardinia, the referral area of the hematology department of the oncology hospital. 

Controls were frequency matched to the cases by gender, 10-year age group, and local health unit of 

residence. Patients affected by infectious diseases and suffering from immune system disorders 

were ineligible to serve as controls. 

Following the Helsinki protocol, all study subjects provided written consent to the use of their 

biological samples before participation, in which they acknowledged that their samples would have 

been fully anonymized, and their identity could not be identified via the papers or in the databases. 

The study protocol included an in-person interview, conducted by trained interviewers at the 

hospital or the residence home; at the end of the interview, subjects were requested to donate a 40 

mL blood sample to investigate genetic and epigenetic determinants of disease. Overall, samples 

were available for 196 cases and 151 controls; after storing plasma samples for the main analyses 

originally planned, aliquots for 66 cases and 96 controls remained available to study the metabolic 

profile of lymphoma subtypes, with reference to the controls. After collection, blood samples were 

centrifuged, and plasma samples were aliquoted and stored at -80 °C until metabolomic analysis. 

4.2. Samples Preparation and GC-MS Analysis 

The analytical method has been described elsewhere [39], but it was slightly modified for the 

purposes of the present study. In brief, 400 μL plasma aliquots were treated with 1200 μL of cold 

methanol in 2 mL Eppendorf tubes, vortex mixed, and centrifuged 10 min at 14,000 rpm (16.9 G). 400 

μL of the upper phase were transferred in glass vials (1.5 mL) and evaporated to dryness overnight 

in an Eppendorf vacuum centrifuge. 50 μL of a 0.24 M (20 mg/mL) solution of methoxylamine 

hydrochloride in pyridine was added to each vial, samples were vortex mixed, and left to react for 17 
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h at room temperature in the dark. Then 50 μL of MSTFA 

(N-Methyl-N-trimethyl-silyltrifluoroacetamide) were added and left to react for 1 h at room 

temperature. Samples were subsequently diluted with hexane (100 μL), with tetracosane (0.01 

mg/mL) as the internal standard, just before GC-MS analysis. Analyses were performed on an 

Agilent 5977B GC/MS interfaced to the GC 7890B (Agilent Technologies, Palo Alto, CA, USA), 

equipped with a DB-5ms column (Agilent J&W Scientific, Folsom, CA, USA). Injector temperature 

was 230 °C, detector temperature 280 °C, helium carrier gas flow rate of 1 mL/min. GC oven 

temperature program was the following: 90 °C initial temperature, 1 min hold time, increasing 10 

°C/min to a final temperature of 270 °C, 7 min hold time. Samples (1 μL) were injected in split (1:4) 

mode. After a solvent delay of 3 min, mass spectra were acquired in full scan mode using 2.28 

scans/s with a mass range of 50–700 Amu. Each acquired chromatogram was analyzed by means of 

the free software AMDIS (Automated Mass spectral Deconvolution and Identification System) 

(http://chemdata.nist.gov/mass-spc/amdis), that identifies each chromatographic peak by 

comparison of the relative mass spectra and the retention times with those stored in an in-house 

library comprising 255 metabolites. Other metabolites were identified using NIST08 (National 

Institute of Standards and Technology’s mass spectral database) and the Golm Metabolome 

Database (GMD) (http://gmd. mpimp-golm.mpg.de/). Through this approach, 108 compounds were 

detected and quantified: 97 were accurately identified and 11 compounds were not identified and 

were defined as unknown. 

4.3. Statistical Analysis 

For the metabolomic analysis, the AMDIS data matrix including 108 metabolites was processed 

with the integrated web-based platform MetaboAnalyst 4.0 [http://www.metaboanalyst.ca/] [40]. 

Missing values were replaced with half of the minimum positive values in the original data, and 

after normalization by sum, data were log transformed and categorized using Pareto scaling for the 

purposes of analysis, including univariate analysis, partial least square discriminant analysis 

(PLS-DA), and its associated variable importance in projection (VIP) score. PLS-DA models were 

tested with the leave-one-out cross validation (LOOCV) method for the evaluation of statistical 

parameters (correlation coefficient R2, cross validation coefficient Q2) [41], which allowed us to 

determine the optimal number of components for the model description. 
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