Supplementary Materials: **Identification of two new phenanthrenes from Dendrobii Herba and their cytotoxicity towards human hypopharynx squamous carcinoma cell (FaDu)**

Bomi Nam, Seung Mok Ryu, Dongho Lee, Chan-Hun Jung, Chang Hyun Jin, Jin-Baek Kim, Ik-Soo Lee* and Ah-Reum Han*

Position	2		3	
	δн	δc	$\delta_{\rm H}$	$\delta_{\rm C}$
1		179.9		180.8
2		158.5		158.9
3	6.22 (1H, s)	110.8	6.29 (1H, s)	117.8
4		188.8		189.0
5	9.24 (1H, d, <i>J</i> = 9.8 Hz)	129.4	9.36 (1H, d, <i>J</i> = 9.5 Hz)	128.8
6	7.19 (1H, dd, <i>J</i> _{1,2} = 9.8, 1.8 Hz)	123.8	7.26 (1H, dd, $J_{1,2}$ = 9.5, 2.8 Hz)	123.1
7		157.0		158.3
8	7.02 (1H, brs)	109.9	7.25 (1H, d, <i>J</i> = 2.8 Hz)	110.3
9	7.87 (2H, d, <i>J</i> = 8.3 Hz)	131.2	8.08 (1H, d, <i>J</i> = 8.3 Hz)	132.9
10		128.5	7.97 (1H, d, <i>J</i> = 8.3 Hz)	130.2
4a		127.0		127.4
4b		122.4		123.9
8a		141.2		139.5
10a		121.6		122.4
2-OCH ₃			3.86 (3H, s)	57.0

Table S1. 1H-NMR (500 MHz) and 13C-NMR (125 MHz) spectral data of 2 and 3 in DMSO-d6 (8 in ppm)

Figure S1. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 1.

Figure S2. ¹³C -NMR (125 MHz, CD₃OD) spectrum of compound 1.

2.0

abundance 0 1.0

0 2

2.0

3.0

4.0 5.0

6.0 2.0

8.0

Y : parts per Million : 1H 11.0 10.0 9.0 8.

•

.

9.0 8.0 X : parts per Million : 1H

Figure S3. ¹H-¹H COSY NMR spectrum of compound **1**.

6.0

-

7.0

.

•

.

5.0

4.0

3.0

2.0

1.0

0 0 1.0 abundance

2.0 3.0

Figure S4. ¹H-¹³C HMQC NMR spectrum of compound 1.

Figure S5. ¹H-¹³C HMBC NMR spectrum of compound **1**.

Figure S6. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 2.

Figure S7. ¹³C -NMR (125 MHz, CD₃OD) spectrum of compound 2.

Figure S8. ¹H-¹H COSY NMR spectrum of compound 2.

Figure S9. ¹H-¹³C HMQC NMR spectrum of compound **2**.

Figure S10. ¹H-¹³C HMBC NMR spectrum of compound 2.

Figure S11. ¹H-NMR (500 MHz, DMSO-*d6*) spectrum of compound 3.

Figure S12. ¹³C-NMR (125 MHz, DMSO-*d6*) spectrum of compound 3.

Figure S13. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 4.

Figure S14. ¹³C-NMR (125 MHz, CD₃OD) spectrum of compound 4.

Figure S15. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 5.

Figure S16. ¹³C-NMR (125 MHz, CD₃OD) spectrum of compound 5.

Figure S17. ¹H-NMR (500 MHz, CDCl₃) spectrum of compound 6.

Figure S18. ¹³C-NMR (125 MHz, CDCl₃) spectrum of compound 6.

Figure S19. ¹H-NMR (500 MHz, CDCl₃) spectrum of compound 7.

Figure S20. ¹³C-NMR (125 MHz, CDCl₃) spectrum of compound 7.

Figure S21. ¹H-NMR (500 MHz, CDCl₃) spectrum of compound 8.

Figure S22. ¹³C-NMR (125 MHz, CDCl₃) spectrum of compound 8.

Figure S23. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 9.

Figure S24. ¹³C-NMR (125 MHz, CD₃OD) spectrum of compound 9.

Figure S25. 1H-NMR (500 MHz, CDCl3) spectrum of compound 10.

Figure S26. ¹³C-NMR (125 MHz, CDCl₃) spectrum of compound 10.

Figure S27. ¹H-NMR (500 MHz, acetone-*d6*) spectrum of compound 11.

Figure S28. ¹³C-NMR (125 MHz, acetone-*d6*) spectrum of compound 11.

Figure S29. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 12.

Figure S30. ¹³C-NMR (125 MHz, CD₃OD) spectrum of compound 12.

Figure S31. ¹H-NMR (500 MHz, CD₃OD) spectrum of compound 13.

Figure S32. ¹³C-NMR (125 MHz, CD₃OD) spectrum of compound 13.

Figure S33. Cytotoxic activities of extract and solvent fractions of Dendrobii Herba against FaDu cell line. Data are presented as means \pm SD (n = 6).

Figure S34. Cytotoxic activities of compounds **1–13** from Dendrobii Herba against FaDu cell line. Data are presented as means \pm SD (n = 6).

Figure S35. HPLC chromatograms of Dendrobii Herba (A) ethanol extract, (B) hexane soluble fraction, (C) Ethyl acetate soluble fraction and (D) *n*-butanol soluble fraction, detected at 230nm, 254nm and 280nm. Peak Identification by co-injection of each sample with standards: 1, moscatilin; 2, denthyrsinin; 3, gigantol; 4, ephemeranthol A.