Supplementary Information for:

Synthesis of a novel Zn-Salphen building block and its acrylic terpolymer counterparts as tunable supramolecular recognition systems

Gustavo A. Zelada-Guillén ^{1,*}, Ana B. Cuéllar-Sánchez ¹, Margarita Romero-Ávila ¹ and Martha V. Escárcega-Bobadilla ^{1,*}

¹ School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico

*Correspondence: g.zelada@unam.mx (G.A.Z.-G.); mesbo@unam.mx (M.V.E.-B.)

Table of contents:

Page S2: Figure S1. ¹H and ¹³C{¹H} NMR spectra of 1 Page S3: Figure S2. HSQC NMR spectrum of 1 Page S4: Figure S3. ¹H NMR spectrum of 2 Page S5: Figure S4. ¹H NMR spectrum of 3 Page S6: Figure S5. ¹H NMR spectrum of 4 Page S7: Figure S6. TGA curves of 2 – 4 Page S8: Figure S7. DSC curves of 2 – 4

 $\begin{array}{c} 8.8\\ 7,755\\ 7,75$

³⁰ 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 3 f1 (ppm) **Figure S1.** Top: ¹H NMR spectrum, and bottom: ¹³C{¹H} of **1** in DMSO- d_6 at 298 K.

Figure S2. HSQC NMR spectrum of **1** in DMSO- d_6 at 298 K.

Figure S3. ¹H NMR spectrum of 2 in CDCl₃ at 298 K.

S6

Figure S6. TGA curves for polymers $\mathbf{2}-\mathbf{4}$ in N_2 at 10 °C/min.

Figure S7. DSC curves for polymers 2-4 in N_2 at 10 °C/min; graphs correspond to the respective T_g regions recorded during the measurement cycle.