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Abstract: Dioscin is a natural steroidal saponin that can be isolated from Chinese medicine, such as
Dioscoreae rhizoma. It has wild range of pharmacological activities such as hepatoprotection,
a lipid-lowering effect, and anti-inflammation. Recently, mounting studies reported the anticancer
effect of dioscin on a variety of tumor cells. However, the potential effect of dioscin on the
epithelial-mesenchymal transition (EMT) of HepG2 cells is unclear. In the present study, dioscin was
identified to inhibit transforming growth factor-β1 (TGF-β1) and induced invasive and migratory
behavior of HepG2 cells. Consistently, the expression of the epithelial marker E-cadherin and gap
junction proteins increased following dioscin treatment, while mesenchymal markers decreased,
including N-cadherin, Vimentin, Snail, and Slug. Furthermore, we discovered that TGF-β1 induces
phosphorylation of JNK, p38, and Erk, whereas the activation of these kinases was reversed by
dioscin treatment in a dose-dependent manner. With the addition of Asiatic acid, a p38 activator,
the inhibitory effect of dioscin on EMT was reversed. Taken together, these data indicated that dioscin
inhibits EMT in HepG2 cells, which is mediated in large part by inhibition of the p38-MAPK signaling.

Keywords: dioscin; epithelial-mesenchymal transition; hepatocellular carcinoma cells; TGF-β1;
MAPK

1. Introduction

Dioscin is a natural steroidal saponin, one class of saponins in which the aglycone moiety is
a steroid [1]. It is a derivative of diosgenin, whose position 3 was attached by a spirostanyl glycoside
that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc via a glycosidic
linkage [2]. Dioscin can be isolated from various Chinese medicines, such as Dioscoreae rhizoma,
and possesses a wide range of biological activities, such as hepatoprotection, a lipid-lowering effect,
and anti-inflammation [3]. Interestingly, an increasing number of studies recently reported that
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dioscin had an anticancer effect on a variety of cancer cells such as human leukemia K562, human
lung cancer A549, and hepatocellular carcinoma Huh7 [1]. However, the effect of dioscin on the
epithelial-mesenchymal transition (EMT) of HepG2 cells is still lacking.

Dioscin plays a tumor suppressive role through multiple mechanisms. For instance, dioscin
induces the apoptosis of prostate cancer cells by activating estrogen receptor-β [4], dioscin induces
apoptosis of gallbladder cancer by inhibiting PI3K/AKT pathway [5], and dioscin inhibits melanoma
progression by upregulating connexin 43 [6]. In the present study, we discovered that dioscin can inhibit
the TGF-β1-induced EMT in HepG2 cells, and the mechanisms of actions remain to be elucidated.

Hepatocellular carcinoma (HCC) often culminates in extensive metastasis and has a high recurrence
rate after resection or ablation [7]. EMT occurs when epithelial cells lose cell polarity and the expression
of epithelial markers, such as E-cadherin, and acquire a mesenchymal phenotype, characterized
by increased expression of mesenchymal markers such as N-cadherin, Vimentin, and Fibronectin.
Cells that have undergone EMT exhibit fibroblast-like properties and enhanced motility, and EMT is
an initiating step in the metastasis of epithelial cancers [8,9].

Transforming growth factor-β1 (TGF-β1) can induce EMT and promote the development of
a mesenchymal phenotype by inducing expression of EMT markers. TGF-β1-stimulated cells become
spindle-shaped and undergo morphological changes, including a decrease in cell-cell adhesion and
loss of polarity [10]. TGF-β1 activates many signaling pathways, including the mitogen activated
protein kinase (MAPK) pathways, which play key roles in promoting EMT and metastasis [11].

Here, we demonstrate that dioscin is a potent inhibitor of the TGF-β1-induced EMT in HepG2
cells, and we evaluate potential mechanisms by which dioscin inhibits TGF-β1-induced EMT.

2. Results

2.1. Dioscin Inhibits Proliferation of HepG2 Cells

We assessed the cytotoxicity of dioscin to HepG2 cells using a CCK-8 assay. We found that
dioscin decreased the viability of HepG2 cells in a dose-dependent manner with a half maximal
inhibitory concentration (IC50) of 6.65 µM dioscin (Figure 1B). Following induction with TGF-β1,
the IC50 of dioscin for HepG2 cells increased to 8.1 µM (Figure 1B). Because we aimed to examine
the effects of dioscin on metastasis of HepG2 cells, we selected the less cytotoxic concentrations of
dioscin (0.5, 1, 2 µM) to treat HepG2 cells for subsequent experiments. Low concentration of dioscin
reversed the growth-promoting effect of TGF-β1 on HepG2 cells in a colony formation assay (Figure 1C).
Cell cycle analysis demonstrated that TGF-β1 induced an increase in S-phase HepG2 cells concomitant
with a decrease in G0/G1 phase cells, and this effect was rescued by treatment with dioscin (Figure 1D).

To further determine the effect of dioscin on cell division, HepG2 cells were stained with CFDA-SE.
When cells divide, the fluorescence intensity of CFDA-SE decreases because the labeling dye is
distributed equally to daughter cells. Dioscin treatment increased the CFDA-SE fluorescence intensity,
suggesting that dioscin inhibited HepG2 cell division (Figure 1E). The inhibitory effects of dioscin
on DNA synthesis were also confirmed by a 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay.
The number of EdU-positive HepG2 cells after dioscin treatment was significantly decreased compared
to the control group (Figure 1F). These results indicate that low concentrations of dioscin antagonize
the TGF-β1-induced proliferation of HepG2 cells.
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Figure 1. Dioscin inhibits the proliferation of HepG2 cells. (A) The molecular structure of dioscin. (B) 
Dioscin inhibits the viability of HepG2 cells, as determined by the CCK8 assay. The inhibitory 
concentration (IC50) was calculated using GraphPad Prism 6.0 software. (C) Dioscin inhibits the 
colony formation of HepG2 cells. (D) Cell cycle distribution of HepG2 cells treated with dioscin was 
analyzed by flow cytometry. (E) Dioscin inhibits the division of HepG2 cells. Drug-treated cells were 
stained by CFDA-SE and analyzed by flow cytometry. (F) Dioscin inhibits the DNA synthesis of 
HepG2 cells. Drug-treated cells were labeled with EdU. The EdU-positive cells are marked in green; 
Hoechst 33,342 (blue) was used for nuclear staining. Images were acquired using a confocal laser 

Figure 1. Dioscin inhibits the proliferation of HepG2 cells. (A) The molecular structure of dioscin.
(B) Dioscin inhibits the viability of HepG2 cells, as determined by the CCK8 assay. The inhibitory
concentration (IC50) was calculated using GraphPad Prism 6.0 software. (C) Dioscin inhibits the colony
formation of HepG2 cells. (D) Cell cycle distribution of HepG2 cells treated with dioscin was analyzed
by flow cytometry. (E) Dioscin inhibits the division of HepG2 cells. Drug-treated cells were stained
by CFDA-SE and analyzed by flow cytometry. (F) Dioscin inhibits the DNA synthesis of HepG2 cells.
Drug-treated cells were labeled with EdU. The EdU-positive cells are marked in green; Hoechst 33,342
(blue) was used for nuclear staining. Images were acquired using a confocal laser scanning microscope.
The scale bar represents 50 µM. Cells were treated with 5 ng/mL TGF-β1 for 24 h. ## p < 0.01 vs. control
group; ** p < 0.01 and *** p < 0.001 vs. TGF-β1-induced group.
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2.2. Dioscin Inhibits the Migration and Invasion of HepG2 Cells

Due to the low metastatic propensity of HepG2 cells, we treated HepG2 cells with TGF-β1,
a well-established inducer of metastatic behavior. HepG2 cells treated with 5 ng/mL TGF-β1 showed
elevated migration and invasion (Figure 2). Dioscin treatment significantly inhibited TGF-β1-induced
migration of HepG2 cells (Figure 2). Consistently, the transwell invasion assay demonstrated that
dioscin treatment also inhibited the invasion of HepG2 cell.
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Treatment of HepG2 cells with dioscin resulted in a significant increase in protein expression of 
connexin 43, ZO-1, claudin-1, and E-cadherin, compared to TGF-β1 treatment alone (Figure 3A). 
Furthermore, dioscin treatment reduced expression of N-cadherin, Vimentin, Slug, and Snail in 
HepG2 cells in a dose-dependent manner (Figure 3A). The decreased protein expression of Vimentin 
in dioscin-treated HepG2 cells was confirmed by immunofluorescence (Figure 3B). 

Figure 2. Dioscin inhibits the migration and invasion of HepG2 cells. The migration of HepG2 cells
was examined using wound healing assays; the invasion of HepG2 cells was determined by transwell
assays. Cells were treated with 5 ng/mL TGF-β1 for 24 h. ## p < 0.01 vs. control group; ** p < 0.01 vs.
TGF-β1-induced group.

2.3. Effects of Dioscin on Expression of EMT Markers

Treatment of HepG2 cells with dioscin resulted in a significant increase in protein expression
of connexin 43, ZO-1, claudin-1, and E-cadherin, compared to TGF-β1 treatment alone (Figure 3A).
Furthermore, dioscin treatment reduced expression of N-cadherin, Vimentin, Slug, and Snail in HepG2
cells in a dose-dependent manner (Figure 3A). The decreased protein expression of Vimentin in
dioscin-treated HepG2 cells was confirmed by immunofluorescence (Figure 3B).
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Figure 3. Effects of dioscin on expression of EMT markers. (A) Immunoblotting results. (B) 
Immunofluorescence of HepG2 cells; Vimentin is shown in green and nuclei are marked by DAPI 
stain. Cells were treated with 5 ng/mL TGF-β1 for 24 h. 
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expression of MKK3, p-Erk, p-p38, and p-JNK in a dose-dependent manner (Figure 4). The 
down-regulation of the phosphorylated forms of these kinases suggested that dioscin inhibits the 
activation of MAPK pathway in HepG2 cells. Furthermore, although dioscin could up-regulate 
E-cadhenin, ZO-1, and Claudin-1, and down-regulate N-cadherin, Vimentin, and Snail in 
TGF-β1-induced HepG2 cells, the actions of dioscin were reversed by Asiatic acid treatment, a p38 
activator. These data suggested that the essential role of p38 and dioscin was to inhibit the EMT of 
HepG2 cells in large part by inhibiting p38-MAPK signaling. 
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Figure 3. Effects of dioscin on expression of EMT markers. (A) Immunoblotting results. (B) Immuno-
fluorescence of HepG2 cells; Vimentin is shown in green and nuclei are marked by DAPI stain.
Cells were treated with 5 ng/mL TGF-β1 for 24 h.

2.4. Dioscin Inhibits the MAPK Pathway.

The MAPK pathway plays a critical role in cancer cell growth and metastasis. To reveal the
mechanisms by which dioscin inhibits the migration and invasion of HepG2 cells, we examined key
kinases in the MAPK pathway. TGF-β1 induced the up-regulation of MKK3, p-Erk, p-p38, and p-JNK
in HepG2 cells (Figure 4). In contrast, dioscin treatment decreased TGF-β1-induced expression of
MKK3, p-Erk, p-p38, and p-JNK in a dose-dependent manner (Figure 4). The down-regulation of the
phosphorylated forms of these kinases suggested that dioscin inhibits the activation of MAPK pathway
in HepG2 cells. Furthermore, although dioscin could up-regulate E-cadhenin, ZO-1, and Claudin-1,
and down-regulate N-cadherin, Vimentin, and Snail in TGF-β1-induced HepG2 cells, the actions
of dioscin were reversed by Asiatic acid treatment, a p38 activator. These data suggested that the
essential role of p38 and dioscin was to inhibit the EMT of HepG2 cells in large part by inhibiting
p38-MAPK signaling.
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Figure 4. Dioscin treatment down-regulates activation of key kinases in the MAPK pathway.
(A) The expression of the key kinases of MAPK pathway in HepG2 cells. (B) The expression of
EMT markers in the TGF-β1-induced HepG2 cells. Cells were treated with 5 ng/mL TGF-β1 for 24 h and
then with the addition of dioscin and/or 5 µM of Asiatic acid continuously cultured for additional 24 h.



Molecules 2019, 24, 2222 6 of 10

3. Discussion

Interest has been rising in dioscin, due to its anti-cancer activities, and it has been suggested that
dioscin may be a potential candidate for cancer chemotherapy [3,12]. In the present study, we report
that dioscin inhibits the EMT of HepG2 cells. Furthermore, we discovered that the MAPK pathway was
repressed in HepG2 cells following dioscin treatment. This finding supports the future development
of dioscin as a clinical agent in cancer therapy.

HepG2 cells are an HCC cell line commonly used to study the biology of hepatocellular carcinoma.
Due to its low metastatic potential, TGF-β1 is commonly applied to induce EMT in HepG2 cells. TGF-β1
expression is a risk factor for HCC, and its abnormal expression is closely correlated with HCC tumor
incidence and poor outcome [13,14]. By mimicking the paracrine inflammatory microenvironment
of HCC in HepG2 cells with TGF-β1, this model can be used to study HCC EMT in vitro. TGF-β1
not only acts an inducer of cancer cell EMT, but it is also an important growth-promoting factor.
HepG2 cells treated with TGF-β1 show increased growth and proliferation (Figure 1C–F). In contrast,
treatment with low doses of dioscin inhibited the growth-promoting effect of TGF-β1 on HepG2 cells
in a dose-dependent manner.

EMT is an indicator of malignant transformation and is characterized by the loss of epithelial
cell polarity and the acquisition of an elongated mesenchymal morphology, concomitant with the
disruption of cell adhesion, increased cell migration, invasion and metastasis, and chemotherapeutic
resistance [15–17]. Wound healing and transwell assays are commonly used to evaluate EMT,
and dioscin suppressed the TGF-β1-induced migration and invasion of HepG2 cells. During EMT,
epithelial cells lose their intracellular junctions, such as connexin 43, ZO-1, and claudin-1 and cohesions,
and they acquire more mesenchymal properties, including increased expression of the mesenchymal
markers N-cadherin and Vimentin, and EMT transcription factors Snail and Slug, that inhibit E-cadherin.
Consistent with the cellular mobility analysis, our primary data showed that dioscin up-regulated the
expression of E-cadherin and down-regulated the expression of Vimentin in HepG2 cells. Furthermore,
the E-cadherin inhibiting transcription factors Slug and Snail were down-regulated in dioscin-treated
HepG2 cells. Clinically, the loss of E-cadherin and increased expression of Vimentin are significantly
associated with poor prognosis in a variety of cancers [18,19]. Therefore, inhibition of EMT by dioscin
is a promising strategy that may prevent HCC tumor cells from additional malignant transformation.

TGF-β1-induced EMT involves signaling through the MAPK pathway [20]. The MAPK family
is divided into three major subfamilies: extracellular signal-regulated kinase (Erk), c-Jun N-terminal
kinase (JNK), and p38 MAPK. Inhibition of these three MAPK subfamily pathways can inhibit cancer
cell metastasis [21,22]. We evaluated the effect of dioscin on the MAPK pathway and found that
dioscin treatment down-regulated the expression of p-Erk, MKK-3, p-p38, and p-JNK. These data
suggest that dioscin inhibits the activation of MAPK pathway downstream of TGF-β1 stimulation
(Figure 4). The specific MAPK kinase that mediates the inhibitory effect of dioscin on EMT and the
proliferation of HepG2 cells warrants additional study. Of note, JNK and p38 are key kinases that
mediated apoptosis. Dioscin has been reported to induce apoptosis in colon cancer cells by activating
JNK and p38. However, the low concentration of dioscin used in our experiments did not induce
apoptosis of HepG2, but played rather inhibited the TGF-β1-triggered EMT malignant transformation,
as is explained by the down-regulation of phosphorylated kinases in the MAPK pathway.

High doses of dioscin can be a double-edged sword, regardless of its ability to induce apoptosis
in tumor cells, and the side effects caused by dioscin’s high cytotoxicity cannot be ignored. In addition,
Smad is a well-known downstream transcription factor of TGF-β1 and involved in regulation of EMT.
However, western blot analysis showed no difference in phosphoryl Smad between dioscin-treated and
-untreated cells (data not shown), suggesting the inhibition of EMT by dioscin did not involve Smad.
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4. Materials and Methods

4.1. Drugs and Reagents

Dioscin (4123, 98.0% pure, MedChem Express, Princeton, NJ, USA); TGF-β1 (AF-100-21C,
PeproTech, Rocky Hill, NJ, USA); and Asiatic acid (464-92-6, Selleck Chemicals, Houston, TX, USA).
Primary antibodies used in this study were purchased from Cell Signaling Technology (Beverly,
MA, USA): including Vimentin (5741), N-Cadherin (13116), Claudin-1 (13255), ZO-1 (13663), Snail (3879),
Slug (9585), E-Cadherin (3195), Connexin-43 (3512), MMP-3 (14351), MKK3 (8535), p38 (8690), p-p38
(4511), Erk (4695), p-Erk (4370), JNK (9252), p-JNK (4668), and β-actin (3700), as well as an anti-rabbit
IgG Alexa Fluor 488-conjugated secondary antibody (4412). Peroxidase-labeled antibody against
mouse IgG (AS003) and peroxidase-labeled antibody against rabbit IgG (AS014) were purchased from
ABclonal (Wuhan, China).

4.2. Cell Culture and Drug Treatments

The HepG2 cell line was obtained from the Shanghai Cell Bank (Shanghai, China). HepG2 cells
were cultured in DMEM containing 10% FBS and penicillin (100 U/mL)/streptomycin (100 U/mL) at
37 ◦C in a humidified atmosphere with 5% CO2. Cells were treated with 5 ng/mL TGF-β1 for 24 h.
Afterwards, the dioscin (0.5 µM, 1 µM, and 2 µM) and/or 5 µM Asiatic acid was added to the culture
medium. Cells were cultured for an additional 24 h. Dioscin was dissolved in DMSO. The vehicle
(DMSO solvent) was used as a control.

4.3. Cell Viability Assay

Five thousand cells were plated into each well in 96-well plates and were cultured for 24 h.
The cells were treated with drugs as indicated. After treatment, 100 µL CCK-8 reagent (diluted 10-fold
with DMEM) was added to the culture medium of each well. Plates were incubated for 2 h in a cell
culture incubator. After 2 h, the absorbance at 450 nm was measured for each well.

4.4. Colony Formation Assay

HepG2 cells were plated in 6-well plates (1000 cells per well) and incubated overnight. Following
drug treatment, the culture medium was replaced by fresh medium and cells were cultured for
an additional 14 days. Afterwards, the cells were fixed with 4% paraformaldehyde for 20 min, washed
with PBS, stained with crystal violet solution (Beyotime, Beijing, China), and photographed.

4.5. Cell Cycle Analysis

Cells (2 × 105 cells/well) were cultured in 6-well plates. Following drug treatment, cells were
collected and fixed with 70% ethanol at 4 ◦C overnight, then stained with a mixture containing
50 mg/mL propidium iodide and 10 mg/mL RNase A for 30 min at 37 ◦C. Afterwards, the cell cycle
distribution was analyzed using a BD AccuriTM C6 flow cytometer (Becton–Dickinson, San Josè,
CA, USA).

4.6. CFDA SE Cell Proliferation Assay

HepG2 cells labeled with CFDA-SE were inoculated in 6-well plates and cultured overnight.
After drug treatment, cells were lifted with 0.25% (w/v) trypsin solution and collected by centrifugation
(1000 rpm for 5 min). The cells were resuspended in PBS and subjected to flow cytometric analysis;
fluorescence intensity was measured on a BD AccuriTM C6 flow cytometer (Becton–Dickinson).

4.7. 5-Ethynyl-20-deoxyuridine (EdU) Incorporation Assay

HepG2 cells were plated on a confocal dish and incubated overnight. After drug treatment, 50 µM
EdU labeling agent was added to the culture medium, the cells were incubated for an additional 2 h,
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and then fixed with 4% paraformaldehyde for 15 min. The cells were washed with PBS, blocked
with 0.5% Triton X-100 in PBS for 15 min, and then stained with anti-EdU working solution at room
temperature for 30 min. Afterwards, the cells were incubated in PBS containing 5 µg/mL Hoechst
33342 at room temperature for 10 min. The cells were washed with PBS twice and then imaged under
a confocal microscope LSM800 (Cal Zeiss, Göettingen, Germany).

4.8. Western Blot Analysis

Cells were lysed in 1× loading buffer. The samples were separated by 10% or 15% SDS-PAGE
and transferred to PVDF membranes. Membranes were blocked in in a TBST buffer containing 5%
skim milk for 2 h. Membranes were probed with primary antibodies and incubated overnight at 4 ◦C.
Membranes were then washed twice with TBST and incubated in the appropriate secondary antibodies
for 1 h. The resulting protein bands were visualized with enhanced chemiluminescence.

4.9. Wound Healing and Transwell Assays

For the wound healing assay, cells (5 × 105 cells/well) were cultured in 6-well plates and pretreated
with 5 ng/mL TGF-β1 for 24 h. A wound was scratched in the cell monolayer by scraping a straight
line along the cell monolayer with a 200 µL pipette tip. Afterwards, culture medium was replaced with
fresh medium containing dioscin (0.5 µM, 1 µM, and 2 µM) and TGF-β1 (5 ng/mL). Cells were cultured
for 24 h. Cell migration was imaged at 0 h and 24 h using an inverted microscope (Olympus, Hamburg,
Germany). For transwell assays, cells were treated with 5 ng/mL TGF-β1 for 24 h, transferred into the
upper chamber of a matrigel-coated transwell insert (2 × 104 cells/well), and supplied with 200 µL
serum-free DMEM containing TGF-β1 (5 ng/mL) and dioscin (0.5 µM, 1 µM, and 2 µM), while 800 µL
DMEM (15% FBS) was added to the lower chambers. After 24 h incubation, the cells that had invaded
the matrigel-coated transwell insert were fixed with 4% paraformaldehyde for 15 min, stained with
0.1% crystal violet for 20 min, and imaged. The number of invaded cells was counted by Image-Pro
Plus 6.0 software (Media Cybernetics, Silver Spring, MD, USA).

4.10. Immunofluorescence Assay

Cells (1 × 105 cells/well) were seeded on glass slides in 12-well plates. After drug treatment,
the cells were fixed with 4% paraformaldehyde for 20 min at room temperature and permeabilized
with blocking solution (9 mL PBS, 1 mL FBS, and 30 µL Triton X-100) in a humidified and dark
atmosphere for 3 h. Afterwards, cells were incubated with primary antibodies in blocking solution
overnight at 4 ◦C, and then incubated at room temperature for 2 h with an anti-rabbit IgG Alexa
Fluor 488-conjugated secondary antibody and stained with 1 µg/mL Hoechst 33342 for 10 min at room
temperature. Between each step, cells were washed with PBS. The slides were sealed and immediately
observed using a confocal microscope LSM800 (Carl Zeiss, Göettingen, Germany).

4.11. Statistical Analysis

All experiments were repeated at least three times. Data are expressed as mean ± S.D. One-way
analysis of variance (ANOVA) and multiple comparisons were used to evaluate the statistical
significance of the differences between groups. Differences were considered statistically significant at
p < 0.05.
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