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Abstract: This work applied the FT-NIR spectroscopy technique with the aid of chemometrics
algorithms to determine the adulteration content of extra virgin olive oil (EVOO). Informative spectral
wavenumbers were obtained by the use of a novel variable selection algorithm of bootstrapping
soft shrinkage (BOSS) during partial least-squares (PLS) modeling. Then, a PLS model was finally
constructed using the best variable subset obtained by the BOSS algorithm to quantitative determine
doping concentrations in EVOO. The results showed that the optimal variable subset including
15 wavenumbers was selected by the BOSS algorithm in the full-spectrum region according to the first
local lowest value of the root-mean-square error of cross validation (RMSECV), which was 1.4487 % v/v.
Compared with the optimal models of full-spectrum PLS, competitive adaptive reweighted sampling
PLS (CARS–PLS), Monte Carlo uninformative variable elimination PLS (MCUVE–PLS), and iteratively
retaining informative variables PLS (IRIV–PLS), the BOSS–PLS model achieved better results, with
the coefficient of determination (R2) of prediction being 0.9922, and the root-mean-square error of
prediction (RMSEP) being 1.4889 % v/v in the prediction process. The results obtained indicated
that the FT-NIR spectroscopy technique has the potential to perform a rapid quantitative analysis of
the adulteration content of EVOO, and the BOSS algorithm showed its superiority in informative
wavenumbers selection.

Keywords: bootstrapping soft shrinkage; partial least squares; extra virgin olive oil; adulteration;
FT-NIR spectroscopy

1. Introduction

With the rising prices of cooking oil, greedy traders and suppliers may resort to unethical practices,
such as mixing low-value cooking oil with high-value cooking oil [1]. The consumers cannot detect
these low-value, inexpensive ingredients in cooking oils, so they pay more for them. Extra virgin
olive oil (EVOO) is native to the Mediterranean area, is known as “the gold of liquids”, “the queen
of plant oils”, and “the Mediterranean nectar”, and is an established Chinese consumer favorite [2].
The consumption of the EVOO has increased in recent years. However, the production of EVOO is not
enough to cope with the growing consumer demand in China because of the demanding production
conditions of EVOO. Therefore, EVOO adulteration has spread in the Chinese market. Adulteration not
only causes confusion in the edible oil market but also violates the rights of consumers. Therefore, a fast
and effective analytical method of EVOO adulteration is required to assist government’s regulations.

Fourier transform near-infrared (FT-NIR) molecular spectroscopy is a technique widely applied
in food quality analysis [3–6] that can provide abundant information about the chemical composition
and molecular structure of various food substances. In addition, this technology also has the
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advantages of being non-destructive, fast, low-cost, with good reproducibility and broad application
prospects. Recently, the FT-NIR spectroscopy technique has been extensively used in quality and safety
analysis of EVOO [7–9]. In addition, other molecular spectroscopy techniques, such as fluorescence
spectroscopy [10–12], infrared spectroscopy [13–15], Raman spectroscopy [16–18], and nuclear magnetic
resonance spectroscopy [19,20], have good applications in the analysis of EVOO adulteration. With the
technological developments, the amount of spectral data acquired is increasingly large because of the
improvement of instrument resolution. Therefore, the selection of spectral characteristic wavenumbers
plays an important role in spectral model development. Moreover, more and more researchers
have proved that the selection of characteristic wavenumbers in the multivariable model calibration
can not only improve the prediction performance of the chemometrics model but also enhance the
interpretability of the model [21–24].

Partial least-square (PLS) regression is a statistical method related to principal component
regression (PCR), which is to search a linear regression model by projecting predicted variables and
observed variables into a new state space [25]. Because of the advantages of variable selection,
many PLS-based feature variable selection algorithms have been developed [26], for example,
the variable importance in projection (VIP) score [27], the successive projections algorithm (SPA) [28],
the uninformative variable elimination (UVE) algorithm [29], and the selectivity ratio (SR) [30].
These methods were developed on the basis of the criteria of variable weights or regression coefficients.
Additionally, some other feature wavenumber selection methods based on model population analysis
(MPA) strategies have been developed [31], for instance, the iteratively retaining informative variables
(IRIV) [32], the variable iterative space shrinkage approach (VISSA) [33,34], the variable combination
population analysis (VCPA) [35], and the bootstrapping soft shrinkage (BOSS) [36]. Compared with
IRIV, VISSA, and VCPA, an important feature of the BOSS algorithm is the introduction of weighted
bootstrap sampling (WBS) criteria that the other three algorithms do not consider. Furthermore,
different from other bootstrap-based algorithms, the BOSS algorithm performs the bootstrap criteria
in the variable space, while other algorithms perform the criteria in the sample space. Thus, in this
study, the BOSS algorithm was applied for the wavenumber selection of spectral data of EVOO
doped samples.

The aim of this study was to verify the feasibility of establishing an improved and reliable reduced
spectral model which can directly and quantitatively determine the doping content of EVOOs by
their spectra. The feature wavenumbers were first selected by the BOSS algorithm, and a detection
model based on the PLS regression using the selected wavenumbers by the BOSS algorithm was built.
Finally, the performance of the reduced BOSS–PLS model was compared with the performances of
the other three commonly used reduced models (i.e., competitive adaptive reweighted sampling PLS
(CARS–PLS), Monte Carlo uninformative variable elimination PLS (MCUVE–PLS), and iteratively
retaining informative variables PLS (IRIV–PLS)).

2. Results

2.1. Variable Selection by the BOSS Algorithm

In this study, the informative wavenumbers were firstly selected by using the BOSS algorithm
during PLS modeling. A five-fold cross validation was used for the optimization of relevant parameters,
and the optimal variables were finally determined according to the first local lowest root-mean-square
error of cross validation (RMSECV) value. Before running the BOSS algorithm, the number of bootstrap
sampling was set to 1000, and the maximum number of principal components (PCs) was set to 15.
In this study, in order to verify the repeatability and stability of the algorithm, the approach was
conducted repeatedly 10 times, and the best results were recorded.

Figure 1 shows the evolution of the variables and the value of RMSECV in each iteration of
sub-models during the run of the BOSS algorithm. The number of wavenumbers selected decreased
smoothly with iteration of the BOSS algorithm. The initial number of wavenumbers obtained was
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1557 from the full spectrum. As can be seen in Figure 1a, the number of variables selected gradually
decreased and became 1 after 14 iterations. Meanwhile, as can be seen in Figure 1b, the values of
RMSECV in the sub-models decreased with the increase of the iteration number, reached the minimum
value at the eighth iteration, and then started to rise slowly. The best variable subset was finally
achieved in the eighth iteration, and the optimal number of wavenumbers selected was 15 at the eighth
iteration, according to the first local lowest RMSECV, which was 1.4487 % v/v.
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Figure 1. Evolution of the number of variables (a) and root-mean-square error of cross validation
(RMSECV) (b) in each iteration of the sub-models using the bootstrapping soft shrinkage
(BOSS) algorithm.

Figure 2 shows the weights and the wavenumbers distribution in the full spectrum of the
15 variables selected at the eighth iteration of the sub-models; it shows the 15 variables selected
with their respective weights and the variable with the largest weight and highest importance.
By investigating the results in Figure 2, the most informative wavenumbers were finally obtained at
around 5900 cm−1. Thus, the 15 variables selected by the BOSS algorithm constituted the best variable
subsets for building the final PLS model.
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Figure 2. The weights of the variables in the optimal sub-model at the eighth iteration using the
BOSS algorithm.

2.2. Results of the PLS Model

The optimal PLS model was built using the 15 wavenumbers selected by the BOSS algorithm when
three PLS factors were included. The value of RMSECV was 1.4487 % v/v, and the R2 was 0.9908 in the
calibration set. The predictive accuracy and generalization performance of the constructed model were
evaluated using the independent samples from the validation set. The result of the root-mean-square
error of prediction (RMSEP) was 1.4889 % v/v, and the R2 was 0.9922 in the validation set which,
as shown in Figure 3.
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(EVOO) in the validation set.

3. Discussion

In order to show the advantages of the BOSS algorithm in terms of wavenumber selection,
it was compared with other three high-performance approaches for wavenumber selection, i.e., CARS,
MCUVE, and IRIV. The best results of PLS models based on variables selected from different variable
selection algorithms are shown in Table 1. The results in Table 1 show that the prediction accuracy of
the PLS model could be improved by the four wavenumber selection algorithms with respect to the
full-spectrum PLS model. Moreover, compared with the CARS–PLS model, the MCUVE–PLS model,
and the IRIV–PLS model, the BOSS–PLS model achieved better results not only in the calibration process
but also in the validation process. The main reason is that, quite likely, the BOSS algorithm combines the
strategies of soft shrinkage, MPA, and WBS and makes full use of the regression coefficient information.

Also, the BOSS algorithm adopts the soft shrinkage strategy to select informative variables.
Compared with the method of variable selection based on the hard shrinkage strategy, such as
CARS and MCUVE, which delete less informative wavenumbers directly, the soft shrink strategy
allocates smaller weights to wavenumbers with less information. However, these wavenumbers
can still participate in the sub-models’ construction for further evaluation considerations in the next
iteration. Thus, the advantage of the soft shrink strategy is that it is able to reduce the risk of removing
characteristic variables during the iteration and to choose the optimal variable subsets with better
prediction ability.

The best variable subset is finally obtained by the BOSS algorithm on the basis of the criteria
of the MPA combined with those of the WBS. Concretely, the sub-models are obtained in terms of
the weight of each variable by the BOSS algorithm. The weight of each wavenumber is determined
according to the value of the regression coefficients of multiple PLS sub-models by using the MPA
strategy, rather than by using a single full-spectrum model. Then, the WBS strategy is used to stepwise
update the weight of the wavenumbers selected so that the variable space can be compressed better.
Thus, the BOSS algorithm considers all possible combinations of the selected wavenumbers, which is
reasonable because the best number of variable subsets obtained is unknown before and during
wavenumbers selection.
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Table 1. Results of different partial least-square (PLS) models for the prediction of doping concentrations
in EVOO. CARS: competitive adaptive reweighted sampling; MCUVE: Monte Carlo uninformative
variable elimination; IRIV: iteratively retaining informative variables.

Models Selected Wavenumbers
(cm−1)

Number of
Variables

PLS
Factors

Calibration Set Validation Set

R2 RMSECV R2 RMSEP

PLS 9999.10-3999.64 1557 6 0.9421 3.4618 0.9599 3.2520

CARS-PLS

4192.49; 4242.63; 4261.92;
4578.18; 4593.61; 4655.32;
4659.18; 4666.89; 4670.75;
4674.60; 4682.32; 4690.03;
5746.83; 5754.55; 5758.40;
5766.12; 5858.68; 5862.54;
5870.25; 5874.11; 5877.97;
5881.82; 5885.68; 5889.54;
5897.25; 5901.11; 5912.68;
5920.39; 5935.82; 8234.55

30 4 0.9617 2.9647 0.9683 2.7664

MCUVE-PLS

4373.76; 4412.33; 4566.61;
4593.61 4612.89; 4632.18;
4647.61 4670.75; 4690.03;
4709.32; 5750.69; 5762.26;
5777.69; 5866.40; 5885.68;
5904.97; 5924.25; 5939.68;
6001.39; 6028.39; 8238.41;
8253.84; 8261.55; 8265.41

24 3 0.9694 2.6828 0.9778 2.3232

IRIV-PLS

4373.76; 4412.33; 5750.69;
5754.55; 5758.40; 5762.26;
5769.97; 5773.83; 5777.69;
5854.83; 5858.68; 5862.54;

5866.40; 5874.11

14 2 0.9901 1.4877 0.9887 1.8471

BOSS-PLS

4373.76; 4678.46; 4705.46;
5758.40; 5762.26; 5766.12;
5777.69; 5858.68; 5862.54;
5866.40; 5870.25; 5877.97;
5881.82; 5885.68; 5904.97

15 3 0.9908 1.4487 0.9922 1.4889

4. Materials and Methods

4.1. Sample Preparation and Division

In this study, extra virgin olive oil, peanut oil, sunflower seed oil, soybean oil, sesame oil, and maize
oil were purchased in local supermarkets. In the experiments, peanut oil, sunflower seed oil, soybean
oil, sesame oil, and corn oil were used as adulterating oils, which would be added separately to the
EVOO to prepare the samples to be tested. That is to say, the adulterated oil samples were prepared
including only two kinds of edible oil, namely, the EVOO and one of adulterating oils. The specific
preparation process is reported below.

The doped oil samples were prepared using the EVOO and one of the adulterating oils. The volume
fraction of each adulterated oil ranged from 2.5 to 50% v/v, increasing by 2.5% v/v volume fraction.
Thus, 100 samples could be obtained in the experiment process.

In this study, the 100 samples were divided into two subsets. One was the calibration set, which
was adopted to construct the prediction model, the other was the validation set, which was applied
to verify the accuracy and generalization performance of the model. In order to meet the statistical
requirements, three samples at the same doping concentration were randomly selected and put into the
calibration set during sample division. Thus, there were 60 samples in the calibration set and 40 samples
in the validation set. Because the adulterated samples obtained in this study only contained two kinds
of edible oils, the calibration model established in this study can only be used to quantitatively detect
one adulterated oil mixed with EVOO.
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4.2. FT-NIR Spectra Acquisition

In this study, the NIR spectra of the doped samples were collected in transmission mode by means
of an Antaris II NIR spectrophotometer (Thermo Scientific Co., Waltham, MA, USA). The number of
spectral scanning was set to 32, and the spectral resolution was set to 4 cm−1. The range of spectral
scanning was set from 10,000 cm−1 to 4000 cm−1. Thus, the original spectrum of each doped sample
contained 1557 wavenumbers (i.e., 1557 wavelength variables). The absorbance data were stored as
Log (1/T), T being the transmittance.

In spectral collection, each doped sample was first placed in a cuvette with a diameter of 6.0 mm,
and then in the sampling chamber of the spectrometer for original spectral collection. The spectra of
each doped sample were collected three times, and the mean values of the three measured spectra
were taken as the original NIR spectra of the sample. When the spectra were collected, the laboratory
temperature maintained at 25 ◦C.

4.3. Spectra Preprocessing

Figure 4a shows the raw FT-NIR spectra of all collected samples. As can be seen from Figure 4a,
the spectra obtained contained not only useful sample information but also certain noise information,
even overflow occurred in some wavenumbers. In order to eliminate the influence of these adverse
factors, it was necessary to adopt appropriate methods to preprocess the spectra obtained before
multivariable model calibration. Standard normal variate (SNV) transformation, which can be used to
eliminate not only the baseline drift of diffuse reflectance spectrum but also the overflow phenomenon
of diffuse reflectance spectrum, is mainly used to eliminate the influence of surface scattering and
optical path change on diffuse reflectance spectra. Therefore, in this study, the SNV method was
adopted to pretreat the spectra obtained, and the FT-NIR spectra after SNV preprocessing are presented
in Figure 4b.
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Figure 4. The original FT-NIR spectra (a) and the standard normal variate (SNV) preprocessing FT-NIR
spectra (b) of all adulterated EVOO samples.

4.4. Data Analyses Methods

The BOSS algorithm applied here, which can be used to select the characteristic variables in the
presence of collinearity, was described by Deng et al. [36]. The BOSS algorithm is based on a favorable
criterion of shrinkage and utilizes the information of regression coefficients instead of the traditional
hard shrinkage strategy. The BOSS algorithm, which is based on the bootstrap sampling (BSS) [37] and
WBS [38] techniques, was used to determine the random combination wavenumbers and to establish
the sub-models. The MPA was applied to extract informative variable subsets from the sub-models
developed on the basis of PLS regression. The specific process of the BOSS algorithm was as follows:

In the process of spectral data analysis, suppose the spectral data matrix is X, of size N × P,
which includes N samples and P wavenumbers, and a vector Y, of size N × 1, which represents the
reference measurements.
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Step 1, K subsets were generated in a variable space by the BSS. In each subset, one of many
redundant variables remained by the BSS to extract characteristic variables. In the step, all wavenumbers
were treated equally so that they had the same probability of being selected into the variable subset.
That is to say, each variable had the same weights (w)

Step 2, the K sub-model of PLS were first developed by the data from the subsets selected.
Then, the cross-validation RMSECV of each sub-model was calculated, each sub-model was sorted
from smallest to largest, according to the RMSECV value, and the sub-model ranked in the top 10%
was extracted.

Step 3, the regression coefficients of each sub-model extracted was calculated. By normalizing
each regression vector, all elements in the regression vector were transformed into the absolute value
of unit length. The new weights of the variable selected were then obtained according to the following
summation formula:

wi =
∑K

i=1
bi,k (1)

where K represents the number of sub-models that are extracted, and bi,k is the absolute value of the
normalized regression coefficients for the ith wavenumber in the kth sub-model.

Step 4, the WBS was used to generate some new subsets based on the new weight of each variable
selected, and the number of substitution wavenumbers in the WBS was obtained according to the
average number of wavenumbers selected in the last step.

Step 5, steps 2 to 4 were repeatedly conducted until the number of wavenumbers selected in the
renewed variable subset equaled one, and the variable subset was finally selected according to the
lowest value of the RMSECV during the iterations as the best variable subset.

4.5. Model Evaluation

The prediction and generalization performances of the models were examined by a five-fold cross
validation and an independent validation set. The values of the RMSECV, RMSEP, and coefficient of
determination (R2) were used as measures for model performance evaluation. RMSECV, RMSEP, and
R2 are given by the expressions

RMSECV =

√∑n
i=1

(
ŷ\i − yi

)2

n
(2)

RMSEP =

√∑n
i=1(yi − ŷi)

2

n
(3)

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − yi)

2 (4)

For RMSECV, n is the number of samples in the calibration set, yi is the reference measurement
value from the ith sample, and ŷ\i is the estimated value of the ith sample, when the model is constructed
with the removed ith sample. For RMSEP, n is the number of samples in validation set, yi is the
reference measurement value of the ith sample in the validation set, and ŷi is the estimated value of the
ith sample in the validation set. For R2, n is the number of samples, yi is the reference measurement
value from the ith sample, ŷi is the estimated value of the ith sample, and yi is the mean of all samples.

4.6. Software

All algorithms were implemented in Matlab R2018a (Mathworks, Natick, MA, USA) under
Windows 10. The Matlab codes for implementing BOSS are freely available on the website:
http://www.mathworks.com/matlabcentral/fileexchange/52770-boss.

http://www.mathworks.com/matlabcentral/fileexchange/52770-boss
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5. Conclusions

The results obtained in this study show the potentials of FT-NIR spectroscopy in the detection of
adulterations in EVOO. The BOSS algorithm combines the strategies of soft shrinkage, MPA, and WBS
and could be used to extract the informative wavenumbers from the full-spectrum. The BOSS–PLS
model revealed its superiority with respect to the full-spectrum PLS, CARS–PLS, MCUVE–PLS,
and IVIR–PLS models. It can be concluded that the FT-NIR spectroscopy technique is an effective tool
for the determination of EVOO adulteration and has a good guiding significance for the evaluation of
EVOO quality. Moreover, the BOSS algorithm is a promising wavenumbers selection algorithm in
chemometrics analysis, which can improve the prediction performance of calibration models.
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