Supplementary Materials

Importance of the proximity and orientation of ligand-linkage to the design of cinnamate-GW9662 hybrid compounds as covalent PPARy agonists

Yuki Utsugi^{1,2}, Hirona Kobuchi³, Yukio Kawamura³, Ahmed Salahelden Aboelhamd Atito², Masaya Nagao⁴, Hiroko Isoda^{2,5,6}, and Yusaku Miyamae^{2,4,6}*

^aCollege of Agro-Biological Resources Sciences, University of Tsukuba, ^bMaster's/Doctoral Program in Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, ^cDepartment of Food and Nutrition, Faculty of Home Economics, Kyoto Women's University, ^dGraduate School of Biostudies, Kyoto University, ^eAlliance for Research on the Mediterranean and North Africa, University of Tsukuba, ^fFaculty of Life and Environmental Sciences, University of Tsukuba. E-mail: miyamae.yusaku.fw@u.tsukuba.ac.jp

Table of Contents

1.	Supplementary Figure 1	2
2.	¹ H and ¹³ C NMR spectra	3

(**A**)

Supplemntary Figure 1. Validation of docking protocol. (A) The indicated ligands were docked into the original protein crystal structures. The reported binding manners and predicted docking poses were displayed in green and yellow, respectively. (B) The ligands were docked in the crystal structures other than originally reported structural data. The reported binding manners and predicted docking poses were displayed in green and yellow, respectively.

400 MHz ¹H NMR spectrum of compound 6a in CDCl₃

8.5 8.0

7.5

1.00 1.01 1.03 1.03 1.03 2.07

7.0

6.5 6.0 5.5 5.0

4.5

4.0

3.5 3.0

2.5 2.0 1.5

0.93

1.0

0.5

11.5 11.0 10.5 10.0 9.5 9.0

1.00

0.0000

	7	0	8	4		00 (50	2	0 H 0
	9	3	2	F.	- AL	20	40	2	~ ~ ~
	9	Ч	7	m.		9.0	50	5	9 9 9
	L0	ŝ	4	-		5		5	~ O ~
	C	•	•			•	· .		1.111 1.11
	0	2	9	5		0 0	10	ŝ	0 8 4
	0	6	5	4		~ ~ ~	<u>, </u>	0	
	-	-	-	Ъ		Ч,		-1	
			11.1	1			J		
							/		
	_					N	1		

100 MHz ¹³C NMR spectrum of compound **6a** in CDCl₃

 						and the		mapris	er and er al	mappin		area have	and the second second			deres deres			H. C. C.		a second process	and particular
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

1721.5093 1714.3852 1707.2612 1700.0970

818.3103 652.6551 545.7937 538.6295 531.5055

400 MHz ¹H NMR spectrum of compound 7a in CDCl₃

	V	Ĩ	Ĩ	
9	2 2	4	4	P P P P P P P P P P P P P P P P P P P
0	FF	6	e	0004 0000
~	u	1.0		
m	10 m	m	O1	0000000000
ō.	-1 00	N	10	200 H 0004
ett l	- 0	10	ŝ	N J J Q D D D D D D D D D D D D D D D D D
_	0	0	01	

100 MHz ¹³C NMR spectrum of compound 7a in CDCl₃

S. A.L. BERLINS

شتد الد العادة. بين

ppm

-14.2964

77.3174 77.2025 76.9997 76.6818

5	0 1	5 0	911	00000	
2	00	m O	0 M - 10	10004	H O H
		• •			4 H O
-	0,1	00 4	000	0 M H 0 9	
6	50	4 4	MNN	HHHOO	FF W
-	-		\neg		<i></i>
	11			1/ 1//	\sim

125 MHz ¹³C NMR spectrum of compound 8a in CDCl₃

-60.53

ppm

1704.3395 1697.2154 1690.0913 1682.9672

536.5484 529.4243 522.2601

00000.0

400 MHz ¹H NMR spectrum of compound 4a in CDCl₃

0.2	46	75	62	- 25	76	32	18	19	45	67	91	50	44	57	60	38	24	60	10	26
5	5	8	ß		5	4	5	8	4	9	4	9	0	5	5	8	9	ച	2	x
Ξ.		ω,			83	1	4				4	5	۳.		Ξ.				1	2
5	2	8	9		9	3	ω	5	9	н	0	6	σ	ഗ	S	ωı	-	o u	0 .	н.
9	9	S	S		4	4	c	c	3	c	\sim	2	3	2	3	н,	н.		۰.	а.
E.	-	-	-		-	-		-	-	Ч	-	4	Ч	Ч	4		H .	75	1.	
		1					(1	1	1	1	k	1	1		1	1	1		

100 MHz ¹³C NMR spectrum of compound **4a** in CDCl₃

ullilled block dates	a Hald Block of all first week and	hadded by which had		deline in all the interest	antibelite the second state of the	have had a making a characteria.	as plat burd Multiprovide and pla	addina shaqananda	Mally and by description
One the Manual India	he hills a directed by heat where	apple philadelesister in	ⁿ spectation in the second s	Lality and health where it is a set of the	ur Higher Bouly, estat di Angola,	Alfert de fan de Mar parte	HINT THE PARTY OF	e transformet and a first	Hormon beauties

77.2038

60.5053

												and the							
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

400 MHz ¹H NMR spectrum of compound 4b in CDCl₃

5365	7867	0902	3297	0514	2405 1611 4619	7923 5727 2098 9748 7231 7231	1704 1704 1704 1961 1961 1961 1677 1967 99199 8204 8204
167.	163.	159.	148.	144.	139. 139. 136.	133. 130. 129. 129.	122. 119. 119. 116. 116. 116. 1116. 1111.
1.	1		1		VI	W	INVER

100 MHz ^{13}C NMR spectrum of compound 4b in CDCl3

A MARK AND A MARK AND AND AND

10 ppm

400 MHz ¹H NMR Spectrum of compound 9 in CDCl₃

														· · · · · ·						· · · · · · · · ·
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
					200	NU	5				6	101		4			6			
					1.0	1.9					2.2	1.00	2.0	2.0		28.8	3.2			

10	10 0	-		00	~	- 10 0							
6	0 4	m	5	4 0	5	804		0 th C	U U		m	8	4
5	N.O	6	D.	10 m	o,	000	1	0 0 0	0		0	0	2
0	0 0	-	LU .	40	m	0 00 4		N M	0		<u>ں</u> -	4	0
					0.00			n n n	6		N	105	str
m	01 00	00	LD.	00	0	0 00 10			it				
r-	ហា	4	m	10 m		100		P 10	0		- 40	0	4
	H H	-H	H.	ri rt	H .	H H H	÷		6		m .	17	·
1.2	1 1	2010	1	1.1	1	1 1 1		1.1			- 1	1	1
1.1			- A .	11	- X.		2.4 West 201 Laws				100		PI
				11		11-1-		VZ	T 1121		1.		

100 MHz ¹³C NMR spectrum of compound 9 in CDCl₃

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppn

400 MHz ¹H NMR Spectrum of compound 4e in CDCl₃

8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
0.92	0.48	0.47	0.35 0.99 0.95) <mark>.</mark>					1.14		1.00	1.01	0.22		001		

6291.6V1	162.6573	158.3345	155.0887	146.5283	138.5317 137.9282 136.7117 136.7117 136.7112 131.6261 131.6261 130.3485 139.7930 125.9727 125.9727	119.4735	115.3255 114.9302	110.6847	77.5461 77.4298 77.2282 76.9101	60.6677 60.6106		36.1008	30.3588	21.1802	14.3507	
L	1	1			- VIK VK V		V	-	YV.	- Y	0.4. K	1	1	- I		

100 MHz ¹³C NMR spectrum of compound **4e** in CDCl₃

470 400 400 400 400 400 400 00 00 70	00 00 00 00 00
1/0 160 150 140 130 120 110 100 90 80 70	b0 50 40 30 20 10 ppr

400 MHz ¹H NMR Spectrum of compound **6b** in CDCl₃

0		-		C3	LO.	000	100	00
N		0		4	4	D CO CO	UHE	5
0		C1	1.1	-	6	m to m	000	-
2		5		10	57	N & CO	OL LO OL	5
1.1								
0		-		00	N	TO N D	Man	~
5		9		4	4	mmm	NNN	- et
		-		r,	÷ .	rd rd rd		-
1		1				1 1 1	1 1 1	1
						11/	111	1.1
		1.2.1				1.1	VII	
1.1				2.4	10 A 11	1 1	11 1	

100 MHz ¹³C NMR spectrum of compound **6b** in CDCl₃

								2.5.A									the second se	1.4		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

1717.4270 1710.3429 1703.2588 1696.0547

817.2697 666.6231 535.5478 533.3477 533.3477 533.3477 533.3478 503.4528 503.4528 503.4941 503.0491

0.0000

400 MHz ¹H NMR Spectrum of compound 7b in CDCl₃

67.0857	58.0497	49.6929	43.5364	34.5312	30.7441	26.0528 24.4172 21.9332	18.8734
	Ī	Ī	11	Ī	$\overline{\mathbf{V}}$	111	17

77.5478 77.4318 77.2298 76.9127 -60.6946

14.4992

100 MHz ¹³C NMR spectrum of compound **7b** in CDCl₃

			11. 20.			211			C		1 C					14 H		
	and from	and the second	- construction	and the second							a contractor	and the second				and the second		
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	nnm
100		100	100	140	100	120	110	100	50	00	10	00	50			20	10	ppm

0.0000

0.5

0.0 ppm

1.0

400 MHz ¹H NMR Spectrum of compound **8b** in CDCl₃

												· · · ·	
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0 007	3.5	3.0	2.5	2.0	1.5

3651	5502	0688 2584	1102	9699 1232 3772	1837 1218 1104 1138	197	178
167.3	159.6	144.0	139.1	129.9	119.1	77.25	50.61
	- É		1	VII.	IIV	Ŵ	Ī

14.5475

ppm

100 MHz ¹³C NMR spectrum of compound **8b** in CDCl₃

. Press			eres france	and the second second	and a second	and a second	and a second second			a contraction of the second	and a prove	and the second second	and the part of	a second second	and the second	a contract a contract	and a second second
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

400 MHz ¹H NMR Spectrum of compound 4c in CDCl₃

166.9014 161.7807 158.1661 158.1661 145.1930 145.1930 145.1930 145.1930 136.6315 131.623 131.623 131.623 131.623 133.6315 133.6315 133.6315 133.6315 134.6352 135.915

and the state of t

130

120

110

100

90

80

70

60

50

40

190

180

170

160

150

140

100 MHz ¹³C NMR spectrum of compound **4c** in CDCl₃

60.5146

14.2947

10

30

20

400 MHz ¹H NMR Spectrum of compound 6c in CDCl₃

4002.3001

11.5 11.0 10.5 10.0

9.5

1.02

9.0

8.5

2.10

8.0

2.13

7.5

7.0

2.12

6.5

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

0.75

1.0

0.5

0.0

ppm

6.0

-0.0400

100 MHz ¹³C NMR Spectrum of compound 6c in CDCl₃

400 MHz ¹H NMR Spectrum of compound 7c in CDCl₃

0 00 00 00

8.5	. 8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
	0.30	0.16	1.32	0.17		1		0.67						0.17			

.

23.0

100 MHz ^{13}C NMR Spectrum of compound 7c in CDCl_3

7657 2468 126.2362

4301

132.

6925 8798 6289 0110 8127

120.1 118.0 118.0 118.0

-143.3563

- 167.0403 - 162,6462 - 156.6954

								and the second sec									and the second sec		
400	470	400	450	440	400	400	440	400	00	00	70	00	=0	40	20	20	40	•	
100	170	100	150	140	130	120	110	100	90	80	10	60	50	40	30	20	10	U	ppm
																		100	

77.5480 77.2308 76.9132

-60.8266

-

0.000.0

400 MHz ¹H NMR Spectrum of compound 8c in CDCl₃

		1 1 1 1 1			1171	1 1 1 1 1										CONTRACTOR OF CONTRACTOR
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0 ppm
	00. 06. 62.	12	.93				(88)		E.			60	.83			

167.4395	161.1590	.47.7283 .44.2364 .43.5233	129.8268 128.4790 121.7511 117.2185 116.5388 116.4355	77.5456 77.4301 77.2276 76.9105
Ï	T.S.	ΪŴ	N IN	V

60.5702

14.5367

100 MHz ¹³C NMR Spectrum of compound 8c in CDCl₃

-1.6478 1.3453 1.3097 1.2096 1.2728 1.2549

400 MHz ¹H NMR Spectrum of compound 4d in CDCl₃

· · · · ·		· · · · ·																	
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
	1_1	V.I	1.125	115	1				1	1 5 15%	1. 1. 18				11 61	5			
	00.	01	.07	11	.03	1			1	1. 1.					2.08	7.			

74.2644 74.2466 74.2288 74.2109

167.3995	162.4973	159.5707	153.5564	146.7780	143.9817	L37.8332 L36.6879	133.3066	129.5800	126.1387	122.4116	118.4869
Ϊ	Î	Ï	Ĩ.	Ï		17	Ţ	17.	$\overline{\mathbb{N}}$	Ĥ	ĪĪ

100 MHz ¹³C NMR Spectrum of compound 4d in CDCl₃

77.4329

ppm

 $\overbrace{1149.9469}^{1156.9449}$ -966.9957

508.7324 501.5682 494.4442

400 MHz ¹H NMR Spectrum of compound **12** in CDCl₃

1				1011	en el tras					T	1.1.1.1		1.1.1.	and the se							
	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5 ppm
					11 1		11					11 .		11	11	Л	111	L			
	10-5		18 8.		9 10	100	0					10 -		2	2	3	2 (1	2			3
					N + 0	5 7 8	÷					5.6		5	3	0.0	0		1.1		

-	M WNOWC	E
-	b m d o u o	L
m	0 4 - 0000	
9	H OFFMF	
4	T NODAL	0
4	m m m m m	
r i	e dede	
3112	$ \langle V \rangle $	12.14

152.6790

-28.3122

-21.5834

34.6548

100 MHz 13 C NMR Spectrum of compound 12 in CDCl₃

CONTRACTOR OF A CONTRACTOR	and the second sec	a second produce the second	and the second se	a summer of the second s	
160	150	140	130	120	
				1.	

Louissin

 $\overbrace{1677.4040}^{1691.3720}$ V

5

1235.3500 1228.3860 1221.3819

605:7881

400 MHz ¹H NMR Spectrum of compound 13 in CDCl₃

-3950.7505

2

3

2.197

4

2.148

0 ppm

102	241	970		952 679 562 434	060	78 178 178	
0	F.	ŝ		0 4 0 U O	0 8	0 0 1 0 0	
-	n	w		0 H O H D	0 0		
0	8	5		02818	5 22	117 117	
6	9	5		nnnnn		HEFE 6	
-1	1. 4	-				00000	
	122	2.00	A.Letter		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
100	N 10 81 13.			N	10 10 10	1 Y	

3509.5260

01740

والماتية المربوط المريطة المان معتقد ما والمعامة المريطة المعام

100 MHz ¹³C NMR Spectrum of compound **13** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50	40 30 20 10	1

a in a side of the first of the second books of the second s

Liphe la Concel (Character

)	~	6	ŝ	H.	н	N	m	3		4 4	10	
į.	00	4	0	-	m	5	LO.	-		00 00	41	
ŧ	-1	5	1	LO	-	4	N	0		45	3	
£	0	8	5	LO	LD.	5	0	5		mm	3	
÷				1.14	1.8	1.04						
6	m	10	8	5	8	-	6	5		NID	00	
ï	0	5	00	9	5	5	-	m		NH	0	
÷	5	5	6	9	9	9	6	6		NN	CV.	
ŧ.	-	-	-	-	-	-	-	-		H H	H.	
4	4	L	1	1	1	1	1	1		11	1	
	-	2	11	212	11	1	-			1	1	
		-	20	h k	100	-				- W		
										1.00		

710

684.1 684.1 592.724 529.944 529.944 529.944 509.3721 495.2046 .8694

0.0000

400 MHz ¹H NMR Spectrum of compound 14 in CDCl₃

				· · · · · · · ·	· · · · ·	· · · · ·														
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
				2.00	2.02	0.94				ĺ	2.37		2.02			9.20				

167.3074	160.5310	152.7850	144.2216	136.8897	132.4999 129.6285 129.4253 129.4253	118.7554 115.6687 114.8257	80.4011 77.3157 77.2009 76.9987
		1			14/	\/ .	1VV

77.2009 76.9987 76.6804 68.7912 68.7912 60.3434

-34.9277

~ 14.3043 14.1464

100 MHz ¹³C NMR Spectrum of compound 14 in CDCl3

		1 A C C C C C C C C C C C C C C C C C C																				
	000	100	100	4	100	4 - 0	4 4 0	100	100	440	400	00	00	70	00	50	40	20	20	10	0	
210	200	100	180	1/0	160	150	140	130	120	110	300	90	80	70	bu.	20	40	-50	20	10		DDM
210	200	150	100	110	100	100	1-10	100	120		100	00	00		00							P P

-505.9307 -491.7226 766.3604

400 MHz ¹H NMR Spectrum of compound 15 in CDCl₃

4099.2758

11

10

2.125

9

5

2

1

3.049

3

1.988

0 ppm

					68.0279 		14.2264
00 MHz ¹³ C NMR in CDCl3	Spectrum of co	mpound 15					
· ·							
house and house device his body patho his a pho- news poper participants for house in page 1 pho-			Difail pointifi an his she de	na ha na ana kana ka kana hina ka sa kana sa kana sa Mana sa pana kana ka	ole enoughling a beneficient a source in a source of a		, kon dalla (b. y. kond bills, di dilaran Menanga produktion (bills)
190 180 170	0 160 150	0 140 130	120 110	100 90 80	70 60 50) 40 30 ;	20 10 0

400 MHz ¹H NMR spectrum of compound 16 in CDCl₃

 - 68.7657 - 60.5664 -

14.5105

ppm

35.2938

100 MHz ^{13}C NMR spectrum of compound 16 in CDCl_3

- 167.6164 - 162.5337 - 160.7101

210	200	100	100	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
210	200	150	100	110	100	100	1-40	100	14.4											1.1.1.1.1.1.1.1		