Activity and Thermal Stability of Cobalt(II)-Based Olefin Polymerization Catalysts Adorned with Sterically Hindered Dibenzocycloheptyl Groups

Muhammad Zada, ${ }^{1,2}$ Liwei Guo, ${ }^{1,3}$ Yanping Ma, ${ }^{1}$ Wenjuan Zhang, ${ }^{3,{ }^{*}}$ Zygmunt Flisak, ${ }^{1,4, *}$ Yang Sun, ${ }^{1}$ Wen-Hua Sun ${ }^{1,2, *}$
1 Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. mzada17@iccas.ac.cn (M.Z.); mrliwei_guo@163.com (L.G.); myanping@ iccas.ac.cn (Y.M.); sy0471103 iccas.ac.cn (Y.S.)
${ }^{2}$ CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
3 Beijing Key Laboratory of Clothing Materials R\&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing institute of Fashion Technology, Beijing 100029, China. zhangwj@bift.edu.cn (W.Z.)
4 Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. zgf@uni.opole.pl (Z.F.)

* Correspondence: zhangwj@bift.edu.cn (W.Z.); zgf@uni.opole.pl (Z.F.); whsun@iccas.ac.cn (W.-H.S.); Tel.: +86-10-6255-7955 (W.-H.S.)
Table of Contents Page

1. The ${ }^{1} \mathrm{H}$ NMR spectra of precatalysts (Co1 - Co5) S2
2. GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of reaction $\quad \mathrm{S} 4$ temperature, $\mathrm{Al} / \mathrm{Co}$ ratio and run time (b) for the Co1/MMAO system
3. GPC curves of the obtained polyethylene (a); activity and M_{w} for different precatalysts (b) S6
at the optimized reaction conditions with MMAO as cocatalyst
4. GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of ethylene S6
pressure (b) at the optimized reaction conditions for the Co1/MMAO system
5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the polyethylene obtained with Co1/MMAO S7
6. The selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the B molecules of $\mathbf{C o 3}$ and $\mathbf{C o 4} \quad \mathrm{S} 8$

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure $\mathbf{S 2}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o 3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C o 5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S6 GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of reaction temperature (b) for the Co1/MMAO system (Table 5, entries 1 - 7).

Figure $\mathbf{S 7}$ GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of Al/Co ratio (b) for the Co1/MMAO system (Table 5, entries 3 and 8 -13).

Figure S8 GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of run time (b) for the Co1/MMAO system (Table 5, entries 10 and 14 -17).

Figure S9 GPC curves of the obtained polyethylene (a); activity and M_{w} for different precatalysts (b) at the optimized reaction conditions with MMAO as cocatalyst (Table 6, entries $1-5$).

Figure S10 GPC curves of the obtained polyethylene (a); activity and M_{w} as a function of ethylene pressure (b) at the optimized reaction conditions for the Co1/MMAO system (Table 5, entries 10, 18 and 19).

$$
\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}_{3}
$$

Figure S11 The ${ }^{1} \mathrm{H}$ NMR spectrum of the polyethylene obtained with Co1/MMAO (Table 5, entry 10).

Figure S12 The ${ }^{13}$ C NMR spectrum of the polyethylene obtained with Co1/MMAO (Table 5, entry 10).

Table S1 The selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for the B molecules of Co3 and Co4

	Co3	Co4
Lengths (\AA)	Molecule B	Molecule B
$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.062(4)$	$2.059(7)$
$\mathrm{Co}(1)-\mathrm{N}(2)$	$2.216(4)$	$2.177(7)$
$\mathrm{Co}(1)-\mathrm{N}(3)$	$2.230(5)$	$2.212(7)$
$\mathrm{Co}(1)-\mathrm{Cl}(1)$	$2.2572(16)$	$2.265(2)$
$\mathrm{Co}(1)-\mathrm{Cl}(2)$	$2.2957(16)$	$2.298(2)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.441(7)$	$1.437(10)$
$\mathrm{N}(3)-\mathrm{C}(47)$	$1.448(8)$	$1.435(12)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.349(7)$	$1.335(13)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.320(7)$	$1.317(12)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.288(7)$	$1.272(10)$
$\mathrm{N}(3)-\mathrm{C}(2)$	$1.295(8)$	$1.289(12)$
$\mathrm{Bond} \mathrm{Angles}\left({ }^{\circ}\right)$		
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(2)$	$73.47(17)$	$74.40(3)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	$74.46(18)$	$74.40(3)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3)$	$141.15(17)$	$142.70(3)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$154.04(13)$	$150.70(2)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$99.00(12)$	$98.34(17)$
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$100.26(15)$	$98.90(2)$
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	$102.35(12)$	$100.44(18)$
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	$101.25(15)$	$102.23(19)$
$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	$111.86(6)$	$114.16(9)$
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	$94.08(13)$	$95.10(2)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Co}(1)$	$124.20(3)$	$125.40(5)$
$\mathrm{C}(47)-\mathrm{N}(3)-\mathrm{Co}(1)$	$125.20(4)$	$123.70(6)$

