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Abstract: Medicinal plants containing complex mixtures of several compounds with various potential
beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease
like diabetes. In this study, compounds identified from African medicinal plants were evaluated for
their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal
plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against
17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as
potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants
Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea
angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium
sidoides, Typha capensis, Vinca minor, Voacanga africana, and Xysmalobium undulatum were identified
as new sources rich in compounds with a potential anti-diabetic activity. The major targets
identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase
1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than
30% of the compounds had five or more potential targets. A hierarchical clustering analysis
coupled with a maximum common substructure analysis revealed the importance of the flavonoid
backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta
dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism,
excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET
properties. The six compounds—crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine,
and voaphylline—were identified as novel potential multi-targeted anti-diabetic compounds, with
favorable ADMET properties for further drug development.

Keywords: diabetes; anti-diabetic; DIA-DB; medicinal plants; in silico; virtual screening

1. Introduction

According to the World Health Organization, in 2016, diabetes was the seventh leading cause of
death, with an estimated 1.6 million people having died from the disease [1]. Diabetes is a chronic
disease arising from impaired insulin secretion and insulin resistance, leading to its defining feature
of hyperglycemia [2]. It is a multi-organ disease affecting the pancreas, liver, muscles, kidney, and
central nervous system, and several complications such as hypertension, stroke, blindness, and kidney
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disease are associated with diabetes [2,3]. The main type of treatment for diabetes and controlling the
associated hyperglycemia is in the form of insulin that primarily focuses on lowering and maintaining
blood glucose levels [2]. However, in more recent years, as diabetes is a multifaceted disease, there
has been an increase in the development of specific enzyme-targeted drugs, and specific inhibitors
for targets like alpha-glucosidase, dipeptidyl peptidase-4 (DPP4), glucagon-like peptide-1 (GLP-1)
receptor, and sodium-glucose co-transporter-2 (SGLT2) have been approved [3]. Unfortunately, some
of these approved drugs have been met with some adverse effects [3]. As a better understanding of the
pathogenesis and complexity in treating the disease arises, so too does the need for the development of
more effective and safer drugs to treat the disease.

Throughout history, plants have played an important role in medicinal drug discovery as rich
sources of unique and novel compounds for drug development. In several cultures, there is widespread
traditional use of decoctions prepared from medicinal plants in the treatment of diabetes [4–8]. The use
of decoctions prepared from medicinal plants in the treatment of a complex multi-faceted disease like
diabetes is attractive, as they often contain more than one compound with various beneficial biological
effects, thus potentially creating an effective and affordable multi-targeted treatment strategy [9,10].
In some cases, extensive scientific evaluations have been conducted on some of these traditional
medicinal plants to validate their use in the treatment of diabetes, however, for the majority, there is
a lack of scientific knowledge.

In silico virtual screening methodologies are ideal for initial exploratory evaluations of the potential
anti-diabetic activity of traditional medicinal plants. As plants are complex mixtures of several different
compounds, with in silico virtual screening methods, hundreds of compounds can be screened against
multiple diabetes targets rapidly and cost effectively. This strategy has been employed to identify
anti-cancer, anti-stroke, and anti-Alzheimer’s compounds from traditional Chinese medicines, as well
as their potential mechanisms of action [11–13]. In this study, we have implemented similar in silico
methodologies to identify novel African medicinal plants as rich sources of compounds with potential
anti-diabetic activity.

2. Results and Discussion

2.1. Inverse Virtual Screening and Identification of Compounds with Potential Anti-Diabetic Activity

In this study, the anti-diabetic potential of natural compounds from African medicinal plants
was explored with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) [14]. A total of
867 compounds were screened in silico against 17 diabetes targets. The ligands found crystallized with
each protein target were also screened to decide a cutoff docking score, so as to distinguish between
potential active and inactive compounds. The docking scores of the crystallized ligands ranged from
−11.3 to −5.7 kcal/mol, and in some cases, the test compounds had better docking scores than the
docking scores for the crystallized ligands (Table 1). A docking cutoff score of −9 kcal/mol was set, as it
was deemed a reasonable average docking score that covered the top 10%–20% of the test compounds
for each protein target [11–13].

Of the 867 test compounds, a total of 430 were predicted as potentially active compounds, and the
majority of these compounds were not limited to a single protein target only, with 30% of the predicted
active compounds having five or more protein targets (Figure 1 and Table S2). Hydroxysteroid 11-beta
dehydrogenase 1 (HSD11B1), peroxisome proliferator-activated receptor delta (PPARD), and DPP4
had the most predicted active compounds, with 208, 190, and 149, respectively, while protein targets
peroxisome proliferator-activated receptor alpha (PPARA), insulin receptor (INSR), and intestinal
maltase-glucoamylase (MGAM) had the least, with 6, 18, and 18, respectively (Figure S1). The difference
in the number of predicted active compounds likely reflects the differences in the nature of the binding
pockets of the target proteins, with some having large binding cavities that can accommodate different
types and sizes of scaffolds.

http://bio-hpc.eu/software/dia-db/
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Table 1. The docking scores obtained for the ligands crystallised with protein targets versus the lowest energy obtained for a test compound.

Mode of Action Protein Target Function PDB Code
Crystallized

Ligand–Docking
Score (kcal/mol)

Test
Compounds–Lowest

Energy (kcal/mol)
Test Compound Name

Regulation of insulin
secretion and sensitivity

DPP4 Degrades and inactivates glucagon-like peptide-1 that
stimulates insulin secretion from the pancreas [15] 4A5S −10.5 −11.8 Cryptospirolepine

FFAR1 Binding of free fatty acids to the receptor results in
increased glucose-stimulated insulin secretion [16] 4PHU −9.8 −11.6 Procyanidin C1

HSD11B1
Coverts inactive glucocorticoid precursors to active
glucocorticoids; glucocorticoids counteract the effects
of insulin [17]

4K1L −8.3 −12.8 Cryptomisrine

INSR Regulates glucose uptake, as well as glycogen, lipid,
and protein synthesis [15] 3EKN −8.7 −10.9 Typharin

PTPN9 Dephosphorylates the insulin receptor, thereby
reducing insulin sensitivity [18] 4GE6 −7.7 −10.2 Cryptospirolepine

RBP4 Secreted as an adipokine that reduces insulin signaling
and promotes gluconeogenesis [19] 2WR6 −7.9 −11 Benzo[c]phenanthridine

Regulation of glucose
metabolism

AKR1B1
Catalyses the reduction of glucose to sorbitol in the
polyol pathway, and plays a role in diabetic
complications [20]

3G5E −11.3 −11.9 Pterygospermin

AMY2A Hydrolyses alpha-1,4-glycosidic bonds to starch during
digestion of starch to glucose [21] 4GQR −7.9 −11.5 Clivimine

GCK Phosphorylates glucose to glucose-6-phosphate for
glycolysis or glycogen synthesis [18] 3IMX −10.6 −13 Cryptomisrine

MGAM Hydrolyzes 1,4-alpha bonds, the last step in the
digestion of starch to glucose [21] 3L4Y −5.7 −10 Cryptospirolepine

PDK2
Responsible for inactivating the pyruvate
dehydrogenase complex that is involved during
glucose oxidation [22]

4MPC −7.8 −11.5 Clivimine

PYGL Catalyses the first step of glycogenolysis by the
phosphorolysis of glycogen to glucose-1-phosphate [23] 3DDS −9.6 −10.8 Cryptomisrine
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Table 1. Cont.

Mode of Action Protein Target Function PDB Code
Crystallized

Ligand–Docking
Score (kcal/mol)

Test
Compounds–Lowest

Energy (kcal/mol)
Test Compound Name

Regulation of lipid
metabolism

NR5A2
Regulates the expression of the genes involved in bile
acid synthesis, cholesterol synthesis, and
steroidogenesis [24]

4DOR −6.5 −12.2 Clivimine

PPARA
Regulates the expression of the genes involved in lipid
metabolism, in particular, the oxidation of fatty acids,
as well as lipoprotein assembly and lipid transport [25]

3FEI −8.3 −11.4 Biscryptolepine

PPARD Regulates the expression of the genes involved in fatty
acid catabolism [25] 3PEQ −11.3 −14.3 Cryptomisrine

PPARG

Regulates the expression of the genes involved in
adipogenesis and lipid metabolism, particularly fatty
acid transport, lipid droplet formation, triacyglycerol
metabolism, and lipolysis of triglycerides [25]

2FVJ −10 −11.9 Cryptoquindoline

RXRA Heterodimerizes with PPARs, thereby initiating gene
transcription [25] 1FM9 −10.6 −10.9 Crinasiatine

Aldose reductase (AKR1B1); dipeptidyl peptidase-4 (DPP4); free fatty acid receptor 1 (FFAR1); glucokinase (GCK); hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1); insulin
receptor (INSR); intestinal maltase-glucoamylase (MGAM); liver glycogen phosphorylase (PYGL); liver receptor homolog-1 (NR5A2); pancreatic alpha-amylase (AMY2A); peroxisome
proliferator-activated receptor alpha (PPARA); peroxisome proliferator-activated receptor delta (PPARD); peroxisome proliferator-activated receptor gamma (PPARG); protein tyrosine
phosphatase non-receptor type 9 (PTPN9); pyruvate dehydrogenase kinase isoform 2 (PDK2); retinoid X receptor alpha (RXRA); retinol binding protein 4 (RBP4).
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Figure 1. The network of compounds identified by virtual screening with the DIA-DB web server
and their predicted targets. All of the predicted active compounds are represented by a number that
corresponds to those given to the compounds in Table S2. The size of the target node depicts the
number of predicted compounds, while the size of the compound node depicts the number of predicted
targets. For the individual compound–target networks, please refer to Figure S1.

The significance of the potential for multi-targeted compounds becomes apparent when one looks
at the complexity of the diabetes disease pathogenesis. Diabetes is not the result of the dysregulation
of a single target and/or pathway, but rather the dysregulation of multiple processes such as glucose
and lipid metabolism, as well as insulin signaling in several organ systems, such as the pancreas, liver,
muscles, and adipose tissue, leading to the hallmark of hyperglycemia [2,26] (Figure 2). Compounds
capable of regulating one or more of the protein targets associated with these dysregulated processes
across the different organ systems may be more effective in managing the disease than a “single target
single drug” approach [27–29]. Not surprising, several manuscripts can be found in the literature on
the potential use of combination drug therapy for the treatment of diabetes, including the combination
of drugs with medicinal plants or herbs [9,10,30].

A total of 184 plants were identified as sources for the predicted active compounds (Table 2 and
Table S3). Some plants were found to contain several predicted active compounds, while with others
only one compound was identified. A limitation to this study was that one could not look at plants
specifically enriched for anti-diabetic compounds, as not all of the compounds for all of the plants were
listed in the books, and in several cases, only one major compound was listed for a plant. Following
extensive literature searches for previous literature on the anti-diabetic potential of the plants and the
compounds, it was found that of the 430 predicted active compounds, 125 had previous literature on
their anti-diabetic potential, leaving a total of 305 newly identified potential anti-diabetic compounds.
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Figure 2. A simplified overview of some of the organ systems and their dysregulation involved in
diabetes pathogenesis (adapted from Moller, 2001 [26]; Defronzo et al., 2014 [2]). Potential targets
identified in each organ system relate to some of the virtual screening targets of the DIA-DB web server.
Dipeptidyl peptidase-4 (DPP4); free fatty acid receptor 1 (FFAR1); glucokinase (GCK); hydroxysteroid
11-beta dehydrogenase 1 (HSD11B1); insulin receptor (INSR); liver glycogen phosphorylase (PYGL); liver
receptor homolog-1 (NR5A2); pancreatic alpha-amylase (AMY2A); peroxisome proliferator-activated
receptor alpha (PPARA); peroxisome proliferator-activated receptor delta (PPARD); peroxisome
proliferator-activated receptor gamma (PPARG); protein tyrosine phosphatase (PTP); pyruvate
dehydrogenase kinase isoform 2 (PDK2); retinoid X receptor alpha (RXRA).

From the plants, 82 plants were found with previous literature (namely traditional and experimental
evidence) (Table S3); 12 plants were identified with traditional use for diabetes (Table S3), but no
experimental evidence to date; and 90 plants were identified as new potential sources of anti-diabetic
compounds (Table 2). Of particular interest was that the majority of these 90 plants were sourced from
Poisonous Plants of South Africa [31], indicating the potential for toxicity of the compounds.

More than 60% of the plants with previous experimental literature on their anti-diabetic activity
were found to contain one or more compound/s that were also found to have previous literature
on their anti-diabetic potential. This suggests that these compounds are likely responsible for the
observed experimental activity of the medicinal plant. This is true in the case of several plants, such as
Aspalathus linearis and compounds aspalathin, isoorientin, orientin, and quercetin [32–34]; Cryptolepis
sanguinolenta and compound cryptolepine [35]; Garcinia kola and compounds garcinia biflavonoid
1 and 2 and kolaflavanone [36,37]; Glycyrrhiza glabra and compound glycyrrhizin [38]; Hoodia
gordonii and compound P57 [39]; Ligustrum lucidum and compound oleanolic acid [40]; Moringa
oleifera and compounds kaempferol and quercetin [41]; Olea europaea and compounds oleuropein and
oleanolic acid [42]; Punica granatum and compounds punicalin and punicalagin [43]; Ruta graveolens
and compound rutin [44]; Styphnolobium japonicum and compound sophoricoside [45]; Syzygium
cordatum and compound oleanolic acid [46]; Vernonia amygdalina and compounds 1,5-dicaffeoylquinic
acid, chlorogenic acid and luteolin-7-rutinoside [47]; and Withania somnifera and compound withaferin
A [48]. The identification of both plants and compounds with previous literature on their potential
anti-diabetic activity provides some validation for the methodology used in this study.
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Table 2. Plants with no previous anti-diabetic evidence, identified by virtual screening and their
predicted bioactive compounds.

Plant Name Family Compounds

Acokanthera oppositifolia Apocynaceae Acolongifloroside K31, acovenoside A32, ouabain304

Adenium multiflorum Apocynaceae Obebioside294

Agapanthus africanus Amaryllidaceae Agapanthagenin36

Amaryllis belladonna Amaryllidaceae Acetylcaranine30, caranine*97, lycorine277

Anagallis arvensis Primulaceae Arvenin I60, arvenin II61

Asclepias fruticosa Apocynaceae Afroside35, 19-deoxyuscharin20, gomphoside195

Aster bakeranus Asteraceae ent-16-Kauren-18-oic-acid162,
ent-16-Kauren-19-oic-acid163, friedelin*174

Balanites maughamii Zygophyllaceae Cryptogenin127, diosgenin*153

Bersama lucens Melianthaceae Melianthugenin282

Boophane disticha Amaryllidaceae 3-Acetylnerbowdine16, buphanisin93

Bowiea volubilis Asparagaceae Bovogenin A89, bovoside A90

Brabejum stellatifolium Proteaceae Amygdalin*51

Cestrum laevigatum Solanaceae Parquin310

Chrysanthemum cinerariifolium Asteraceae Pyrethrin I330

Clivia miniata Amaryllidaceae Cliviamartine112, cliviasine113, clividine114,
clivimine115, clivonine116, hippeastrine217, lycorine277

Cotyledon orbiculata Crassulaceae Orbicuside A302, tyledoside C397

Crinum bulbispermum Amaryllidaceae
Acetylcaranine30, bulbispermine92, crinamine122,
crinasiadine123, crinasiatine124, galanthamine180,
hippeastrine217, lycorine277, pratorimine319

Crinum macowanii Amaryllidaceae Crinamine122, lycorine277, pratorimine319

Crotalaria spartioides Fabaceae Retrorsine343

Croton gratissimus Euphorbiaceae Crotofolin A125, crotonin126

Cucumis africanus Cucurbitaceae Cucurbitacin B133

Cyclamen persicum Primulaceae Cyclamin137

Cynanchum africanum Apocynaceae Cynafoside B139

Danais fragans Rubiaceae
1-Hydroxydimethylanthraquinone8,
kaempferol-3-O-rhamnodiglucoside250, quercitrin*335,
rubiadin348, rubiadin xyloglucoside349

Datura stramonium Solanaceae Hyoscyamine220

Delphinium grandiflorum Ranunculaceae Nudicauline293

Digitalis purpurea Plantaginaceae Digitoxin150

Dioscorea dregeana Dioscoreaceae Deltonin145, deltoside146, dioscin*152, diosgenin*153,
hircinol*218

Dodonaea angustifolia Sapindaceae Beta-sitosterol*70, hautriwaic acid205, stigmasterol*375

Drimia robusta Hycinthaceae 12-Beta-hydroxyscillirosidin4, proscillardin A324

Eriocephalus africanus Asteraceae Ivangustine246

Erythrina caffra Fabaceae Erythraline169

Erythrina lysistemon Fabaceae Erythraline169

Erythrophleum lasianthum Fabaceae Erythrophleine170

Eschscholzia californica Papaveraceae Dihydrosanguinarine*151

Eucomis autumnalis Asparagaceae Autumnariniol65, autumnariol66,
3,9-dihydroeucomnalin19, eucosterol171

Euphorbia ingens Euphorbiaceae Ingenol231

Ficus salicifolia Moraceae Aviprin69

Geigeria ornativa Asteraceae Vermeerin407

Geranium incanum Geraniaceae Geraniin*189

Gnidia kraussiana Thymelaeaceae Gnidicin192, gnidilatin193, gniditrin194,
12-hydroxydaphnetoxin5

Griffonia simplicifolia Fabaceae Indole-3-acetyl aspartic acid230

Homeria pallida Iridaceae 1,2-Epoxyscillirosidin1

Hyaenanche globosa Picrodendraceae Urushiol III402

Hypericum aethiopicum Hypericaceae Hypericin222

Ipomoea purpurea Convolvulaceae Ergine167



Molecules 2019, 24, 2002 8 of 30

Table 2. Cont.

Plant Name Family Compounds

Kalanchoe lanceolata Crassulaceae Lanceotoxin A258, hellebrigenin210

Lippia rehmannii Verbenaceae Icterogenin229, lantadene A259

Lotononis laxa Fabaceae Integerrimine234, senecionine359

Melianthus comosus Francoaceae 3-Epioleanolic acid*17, hellebrigenin-3-acetate211,
melianthugenin282, oleanolic acid*299

Melilotus alba Fabaceae Dicoumarol148

Moraea polystachya Iridaceae 16-Beta-formyloxybovogenin A7

Mundulea sericea Fabaceae Deguelin142, rotenone347, tephrosin384

Ocotea bullata Lauraceae Ocubullenone295

Peddiea africana Thymelaeaceae Peddiea factor A1311

Pelargonium sidoides Geraniaceae Catechin*100, gallocatechin*181, quercetin*331,
sitosterol-3-glucoside*364

Phytolacca dodecandra Phytolaccaceae Lemmatoxin262, oleanoglycotoxin298

Plumbago auriculata Plumbaginaceae Plumbagin*318

Polygala fruticosa Polygalaceae Frutinone A175, presenegenin321

Ptaeroxylon obliquum Rutaceae Umtatin22

Quercus robur Fagaceae Catalagin*99, digallic acid149

Rapanea melanophloeos Primulaceae 3-Oxo-20,24-dammaradien-26-ol18, sakurasosaponin353

Rhododendron indicum Ericaceae Grayanotoxin I197

Rhus undulata Anacardiaceae Apigenin dimethylether56

Sanseviera hyacinthoides Asparagaceae Ruscogenin-(25S)-form350

Sarcostemma viminale Apocynaceae Sarcovimiside B356

Scabiosa columbaria Caprifoliaceae Chlorogenic acid*106

Scadoxus puniceus Amaryllidaceae Haemanthamine206, haemanthidine207

Schotia brachypetala Fabaceae 3,3,4,5,5-Pentahydroxystilbene*14

Scilla natalensis Asparagaceae Proscillardin A324

Senecio retrorsus Asteraceae Retrorsine343

Senecio serratuloides Asteraceae Platyphylline317, senecionine359

Smodingium argutum Anacardiaceae 3,8,11-Heptadecadienylcatechol15

Solanum pseudocapsicum Solanaceae Solanocapsine367

Spirostachys africana Euphorbiaceae Stachenol372, stachenone373

Strophanthus speciosus Apocynaceae Christyoside107

Synadenium grantii Euphorbiaceae 4-Deoxy-13-O-phenylacetyl-12-O-tigloylphorbol21

Synaptolepis kirkii Thymelaeaceae Synaptolepis factor K1381, synaptolepis factor K7382

Tetradenia riparia Lamiaceae Ibozol228, 8-(14)-15-isopimaradiene-7,18-diol26

Thesium minkwitzianum Santalaceae Thesinine389

Thesium hystrix Santalaceae Quercetin*331

Thevetia peruviana Apocynaceae Thevetin A390, thevetin B391

Tylecodon wallichii Crassulaceae Cotyledoside121

Typha capensis Typhaceae Catechin*100, typhaphtalide398, typharin399,
thyphasterol400

Urginea maritima Asparagaceae Scillaren A357, scillarenin358

Urginea sanguinea Asparagaceae Scillaren A357

Valeriana capensis Valerianaceae Valerenic acid405

Vinca minor Apocynaceae Eburnamonine*160, vincamine*417

Xerophyta retinervis Velloziaceae Amentoflavone*49

Zanthoxylum capense Rutaceae Sanguinarine*354

The numbers 1–430 serves as the identification of each compound in Figure 1. * All of the compounds identified
with some previous literature on their potential anti-diabetic activity.

Of interest were the plants found containing compounds with previous literature on the
compound’s potential anti-diabetic activity, but to date, the medicinal plant itself has not been
evaluated for its potential antidiabetic activity. These plants were Argemone ochroleuca with compounds
berberine [49], protopine [50] and sanguinarine [51]; Dioscorea dregeana with compounds dioscin [52,53],
diosgenin [18,54] and hiricinol [55]; Dodonaea angustifolia with compounds beta-sitosterol [56] and
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stigmasterol [57,58]; Melianthus comosus with compounds 3-epioleanolic acid [59] and oleanolic
acid [60]; Pelargonium sidoides with compounds catechin [61], gallocatechin [62,63], quercetin [64] and
sitosterol-3-glucoside [65,66]; and Vinca minor with compounds eburnamonine and vincamine [67].
These plants represent a good initial point for exploratory in vitro anti-diabetic studies. These plants
with their bioactive compounds and predicted targets are depicted in Figure 3.

Other plants of interest were those that had no previous literature, but contained several
compounds (also with no previous literature) that were identified in this study as having
a potential anti-diabetic activity. These plants were Mondia whitei and compounds 5-chloropropacin,
7-hydroxy-4,6-dimethoxypropacin and propacin; Voacanga Africana and its compounds ibogaine,
ibogamine, iboxygaine, vinburnine, voacamine, voacangine, voacorine, voaphylline and vobtusine; and
Xysmalobium undulatum and compounds allouzarin, alloxysmalorin, uzarigenin, uzarin (Figure 3).
Of note, these three plants have been used traditionally to treat diabetes, but lack the accompanying
scientific evidence [68–70]. The identification of the compounds found in these plants with a potential
anti-diabetic activity provide some rationale for the traditional use of these plants in the treatment
of diabetes. The plants Clivia miniata, Crinum bulbispermum, Danais fragans, Eucomis autumnalis,
Gnidia kraussiana, and Typha capensis were also of interest, as these plants were found to contain
four or more compounds that had been previously identified as having potential anti-diabetic activity
(Figure 3).

2.2. Identification of Potentially Important Scaffolds for Enzyme Activity

A hierarchical clustering analysis of the compounds identified in each protein target group
was performed using Tanimoto similarities to identify whether any compounds showed some
similar molecular features [11–13] (Figure S2). From these clustering results, the maximum common
substructure (MCS) analysis was performed in an attempt to identify any potential scaffolds important
for predicting the potential activity within the largest cluster group identified (Table 3). No clustering
of compounds was found for six of the protein target-compound groups, namely INSR, liver receptor
homolog-1 (NR5A2), pyruvate dehydrogenase kinase isoform 2 (PDK2), PPARA, protein tyrosine
phosphatase non-receptor type 9 (PTPN9), liver glycogen phosphorylase (PYGL), and retinoid X
receptor alpha (RXRA). This is not surprising, as these protein target–compound groups were relatively
small groups, with the number of predicted active compounds below 50—the two exceptions being
the free fatty acid receptor 1 (FFAR1) and the MGAM protein-compound groups, which had only 37
and 18 predicted active compounds, respectively. Within the FFAR1 and MGAM groups, two clusters
of similar compounds were evident that encompassed the majority of the compounds within the
groups, namely 26 of 37 for FFAR1 and 12 of 18 for MGAM. Interestingly though, the MCS analysis
produced only relatively small scaffold structures for the similar compounds within these groups,
namely, a phenol group for FFAR1 and a methoxyphenol for MGAM. The importance of the benzene
ring with a substituent group was also evident in the protein–compound groups of glucokinase (GCK),
PPARD, peroxisome proliferator-activated receptor gamma (PPARG), and retinol binding protein 4
(RBP4).
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Figure 3. Fifteen plants identified as new sources rich in compounds with potential anti-diabetic activity for exploratory in vitro anti-diabetic studies. Compounds
represented by their assigned numerical identity (Table S2); compounds represented by pink ellipses are compounds with previous literature on their anti-diabetic
potential; compounds represented by yellow ellipses are novel compounds. Dashed edges represent the edges connecting the plant with its predicted bioactive
compounds; solid edges represent the edges connecting the compounds with their predicted protein targets.
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Table 3. Summary of hierarchical clustering and maximum common substructure found in the largest cluster for each protein target group.

Target Enzyme Total Number of Compounds Largest Cluster Cluster Centroid Maximum Common Substructure

11HSDB1 208 40

Kaempferol-3-glucoside

AKR1B1 135 71

Calycosin

AMY2A 129 38

Maslinic acid
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Table 3. Cont.

Target Enzyme Total Number of Compounds Largest Cluster Cluster Centroid Maximum Common Substructure

DPP4 149 23

Balanitin-6

FFAR1 37 26

Hesperitin

GCK 77 33

Clivonine
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Table 3. Cont.

Target Enzyme Total Number of Compounds Largest Cluster Cluster Centroid Maximum Common Substructure

MGAM 18 12

Kolaflavanone

PPARD 190 57

Hyperin

PPARG 124 89

Rutin

RBP4 85 48

Isorhamnetin
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The hierarchical clustering analysis of the HSD11B1 group revealed a total of 37 different clusters
(Figure S2), with the largest cluster containing 40 similar compounds, and based on an MCS analysis,
an important scaffold for HSD11B1 activity would be a flavonoid type of backbone. Interestingly, three
compounds found in this group, namely apigenin, quercetin, and genistein, were recently shown to
inhibit HSD11B1 [71]. Similarly, in the aldose reductase (AKR1B1) group, the centroid of the largest
cluster found was calycosin, an isoflavone, and the MCS was a benzopyranol scaffold that can be
found in the backbone of flavonoids. As with HSD11B1, there is literature on the inhibitory activity
of AKR1B1 by flavonoids and their glycosides [72,73]. For the DPP4 and pancreatic alpha-amylase
(AMY2A) groups, a more hydrophobic core scaffold with a hydrophilic head/tail was observed as the
MCS for these two protein targets. The compounds found in the largest cluster of these groups had
predominately triterpenoid or steroidal backbones with/without a glycosidic group attached, such as
shown in the two centroid compounds maslinic acid and balanitin-6. The compounds corosolic acid,
betulinic acid, glycyrrhizin, and sitosterol-3-glucoside with this type of backbone found in the AMY2A
group, have been shown in previous literature to inhibit the enzyme [52,66,74].

2.3. Molecular Similarity Evaluation of Predicted Active Compounds and Known/Experimental Anti-Diabetic
Drugs

A Tanimoto similarity analysis was performed to determine whether any similar molecular features
occurred between the natural compounds and known/experimental anti-diabetic drugs [11–13]. As seen
in Figure 4, only a small portion (approximately 10%) of the predicted active compounds showed some
similarity with the known anti-diabetic drugs. Thus, for the most part, natural compounds from African
medicinal plants present rather novel and unique scaffolds for anti-diabetic drug design. The majority
of these compounds showed similar molecular features to fasiglifam (TAK-875), an experimental
FFAR1 agonist [2].

Figure 4. Molecular similarity analysis of predicted active compounds and some known/experimental
anti-diabetic drugs. The similarity was performed on the extended connectivity fingerprint 4 (ECFP4)
molecular fingerprints of compounds with a Tanimoto similarity cut-off score of 0.7.

Three of these compounds, namely, biochanin A (86), fujikinetin (176), and hesperitin (213), were
also found by the DIA-DB web server as potential FFAR1 agonists; thus, these similarity studies with
known drugs may further support their potential activity. Of interest was that seven of the predicted
active compounds, namely, 8-hydroxypinoresinol (27), aspalathin (64), epicatehin (164), gallocatechin
(181), hypoxoside (224), leucocyanidin (263), and pinoresinol (315), showed some structural similarity
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with the gliflozins bexagliflozin, dapagliflozin, empagliflozin, and sotagliflozin. The gliflozins are
SGLT2 inhibitors [3]. Although SGLT2 was not included in the DIA-DB target screening panel, the
similarity of these compounds with the known drugs may present SGLT2 as a novel anti-diabetic
target for these seven compounds, and, of note, aspalathin has been found to be an inhibitor of
SGLT2 [75]. Similarly, compounds carapanaubine (98), gelsemicine (187), and rauvoxinin (338), as well
as hyoscyamine (220), showed some molecular similarity with repaglinide and nateglinide, respectively.
Repaglinide and nateglinide are ATP-dependent potassium (K+) channel binders that stimulate the
release of insulin from the pancreatic β-cells [76].

2.4. Prediction of Oral Bioavailability and Favourable Abosrption, Distribution, Metabolism, Excretion and
Toxicity (ADMET) Properties of the Predicted Active Compounds

The oral bioavailability, as well as some ADMET parameters, were evaluated for each of the
compounds. These are not only important parameters to evaluate for further drug development [11–13],
but considering that in some areas where easy access to anti-diabetic medication is not always
a possibility, an important way for patients to receive some form of anti-diabetic treatment would
be through the use of a decoction from a medicinal plant having anti-diabetic properties. Therefore,
factors such as the aqueous solubility and oral bioavailability of the bioactive compounds would be of
great importance. Also, as several of the compounds investigated in this study were found in Poisonous
Plants of South Africa [31], it is important to study the potential toxicity of these compounds.

The ADMET parameters for the predicted active compounds were compared to a group of 48
approved and experimental anti-diabetic drugs [2,3]. Also, a comparison of the ADMET parameters for
the predicted active compounds with no previous literature (novel compounds) was compared to that
of the predicted active compounds that had some previous literature on their potential anti-diabetic
activity (known compounds). These known compounds would serve as another “positive control”.

A summary of the Lipinski’s rule of five is depicted in Figure 5. As can be seen from Figure 5,
a major violation of Lipinski’s rule of five was the molecular weight of the compounds, with 30% of
the predicted active compounds violating this rule, namely, that the molecular weight must not exceed
500 g/mol (Figure 5a) [77]. This was also the major violation for the anti-diabetic drug control group.
The number of hydrogen bond donors and acceptors for the majority of predicted active compounds
was within the limitations (Figure 5b,c). No compound was found to violate all four rules, and 16% had
three violations—only acarbose in the anti-diabetic drug control group had three violations. Nearly
50% of the predicted active compounds violated one or more of Lipinski’s rule of five, versus only 25%
of the anti-diabetic drug control group. This is not surprising, as often such target-specific anti-diabetic
drugs are designed taking these factors into consideration. It was also observed that the compounds
predicted as having poor oral absorption were also predicted to have poor Caco-2 cell permeability
and vice versa (Figure 5d).

A complete summary of all of the ADMET parameters evaluated for the compounds can be found
in Table 4. The two major toxicity failures and points of concern for the predicted active compounds were
immunotoxicity and blockage of the hERG K+ channels, with 75% of the compounds being predicted
as potential immunotoxins, and 45% predicted as potential inhibitors of the hERG K+ channels.
Interestingly, these two toxicity parameters were also the two major failures for the anti-diabetic drug
control group. The model for the prediction of immunotoxicity is built on a training set of T- and
B-cell growth inhibition data from the National Cancer Institute [78]. In some cases, it is likely that the
predicted immunotoxicity may rather be a function of the compound concentration than a specific
effect, and also, the model cannot distinguish immunosuppressive effects from immunomodulatory or
immunostimulant effects. The predictive model for the human ether-a-go-go-related gene potassium
(hERG K+) channel blockage is often used to predict the potential cardiac toxicity of the compounds [79].
It was expected that some of the compounds would be predicted as potential cardiac toxins, as some
of the predicted active compounds are known cardiac glycosides, such as digitoxin, tyledoside C,
bovoside, oleandrin, proscillaridin A, scillaren A, uzarin, and gomphoside [31,80].
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Figure 5. Prediction of druglikeness and bioavailability of hit compounds (novel and known) versus diabetic drugs (a) molecular weight versus AlogP, Lipinski’s rule
of five, namely: compounds need to have a molecular weight of 500 g/mol or less and AlopP must be below 5; (b) frequency of hydrogen bond acceptors, Lipinski’s
rule of five—not more than 10 hydrogen bond acceptors; (c) frequency of hydrogen bond donors, Lipinski’s rule of five—not more than 5 hydrogen bond donors;
(d) QikProp prediction of percent human oral absorption versus Caco-2 cell permeability, percentage oral bioavailability below 25% is poor and above 80% is high,
predicted cell permeability for non-active transport below 25 nm/s is poor, while above 500 nm/s is very good.
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Table 4. Summary of the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET)
parameters predicted in silico for predicted active compounds versus diabetes drugs.

ADMET Property Unknown Compounds Known Compounds Diabetes Drugs

Lipinski violations (1–4) 136/305 (45%) 75/125 (60%) 12/48 (25%)
Veber violations (1–2) 89/305 (29%) 42/125 (36%) 9/48 (19%)

Aqueous solubility QPlogS 34/305 (11%) 33/125 (26%) 6/48 (13%)
Caco-2 cell permeability (<25 nm/s) 66/305 (22%) 40/125 (32%) 3/48 (6%)
Binding to human serum albumin 37/305 (12%) 23/125 (18%) 6/48 (13%)

Human oral absorption (<25%) 55/305 (18%) 32/125 (26%) 3/48 (6%)
Rat oral LD50 (1–50 mg/kg) 53/305 (17%) 4/125 (3%) 1/48 (2%)

Hepatotoxicity 4/305 (1%) 4/125 (3%) 8/48 (17%)
Carcinogenicity 70/305 (23%) 31/125 (25%) 6/48 (13%)
Immunotoxicity 233/305 (76%) 89/125 (71%) 16/48 (33%)

Mutagenicity 49/305 (16%) 17/125 (14%) 1/48 (2%)
Cytotoxicity 58/305 (19%) 11/125 (9%) 1/48 (2%)

Blockage of hERG K+ channels 132/305 (43%) 58/125 (46%) 20/48 (42%)

* Recommended values: QPlogS: predicted aqueous solubility should be between −6.5 and 0.5 mol dm−3; Caco-2
cell permeability: <25 nm/s poor and >500 nm/s great; Binding to human serum albumin: QPlogKhsa should be
between −1.5 and 1.5; Human oral absorption: <25% poor and >80% great; Rat oral LD50: <50mg/kg is fatal if
swallowed; Blockage of hERG K+ channels: concern if predicted QPlogHERG is <−5.

After taking all of the ADMET parameters into account, only 28 of the predicted active compounds
were found to have favorable ADMET properties, and these are shown in Table 5. These compounds
present novel scaffolds with potential anti-diabetic activity and favorable ADMET properties for further
drug design and development. Of these 28 compounds, eight have shown anti-diabetic properties in
previous studies, and these were 2-hydroxygenistein [81], apigenin [82], catechin [61], cyanidin [83],
eburnamonine [67], epicatechin [84], eriodictyol [85], and lapachol [86].

Ten of the compounds, namely, apigenin, catechin, crotofoline A, cyanidin, eburnamonine,
erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline were predicted as potential
inhibitors of three or more anti-diabetic targets. AKR1B1, HSD11B1 PPARD, and RBP4 were the major
targets identified for the 28 compounds. Also, of particular note, was that the plant Voacanga africana
was found to contain three of these compounds with favorable ADMET properties, namely vinburnine,
voaphylline, and withasomnine, and two of these compounds, vinburnine and voaphylline, were
identified as potential multi-targeted compounds. These observations provide some evidence for the
traditional use of Voacanga africana in the treatment of diabetes and further in vitro and in vivo studies
are now needed to validate its use for diabetes.
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Table 5. Predicted active compounds with favorable ADMET properties.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

2-Hydroxygenistein AKR1B1 (−9.1) Regulation of glucose
metabolism Cajanus cajan

Apigenin AKR1B1 (−9.1), HSD11B1 (−9.0),
RBP4 (−9.9), and RXRA (−9.1)

Regulation of insulin secretion,
glucose metabolism, and lipid

metabolism
Cajanus cajan

Autumnarinol RBP4 (−9.0) Regulation of insulin secretion Eucomis autumnalis

Catechin AKR1B1 (−9.0), HSD11B1 (−9.5),
and RBP4 (−9.3)

Regulation of insulin secretion
and glucose metabolism

Adansonia digitate, Combretum
micranthum, Prunus africana,

Sclerocarya birrea, Pelargonium
sidoides, and Typha capensis

Crotofoline A AMY2A (−9.2), HSD11B1 (−9.9),
and PPARD (−9.3)

Regulation of insulin secretion,
glucose metabolism, and lipid

metabolism
Croton gratissimus

Cyanidin AKR1B1 (−9.1), HSD11B1 (−9.5),
and RBP4 (−9.2)

Regulation of insulin secretion
and glucose metabolism Rhoicissus tridentate
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Table 5. Cont.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

Desacetylformonoakuammiline HSD11B1 (−9.1), PPARD (−9.0) Regulation of insulin secretion
and lipid metabolism Rauvolfia vomitoria

Eburnamonine AKR1B1 (-9.4), HSD11B1 (−9.2),
PPARD (−9.3), and RBP4 (−9.4)

Regulation of insulin secretion,
glucose metabolism, and lipid

metabolism
Vinca minor

Ent-16-kauran-19-oic acid HSD11B1 (−9.4) and PPARD
(−9.4)

Regulation of insulin secretion
and lipid metabolism Aster bakeranus

Epicatechin AKR1B1 (−9.2) and RBP4 (−9.3) Regulation of insulin secretion
and glucose metabolism

Acacia karroo, Harungana
madagascariensis, and

Prunus Africana

Ergine HSD11B1 (−9.5) and RBP4
(−9.4) Regulation of insulin secretion Ipomoea purpurea
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Table 5. Cont.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

Eriodictyol HSD11B1 (−9.2) and RBP4
(−9.5) Regulation of insulin secretion Cyclopia intermedia

Erythraline AKR1B1 (−9.0), GCK (−9.8),
and RBP4 (−9.0)

Regulation of insulin secretion
and glucose metabolism

Erythrina caffra and
Erythrina lysistemon

Furanoeudesma-1,3-diene RBP4 (−9.0) Regulation of insulin secretion Commiphora myrrha

Hautriwaic acid AKR1B1 (−9.3) Regulation of glucose
metabolism Dodonaea angustifolia

Henningsiine
AMY2A (−9.1), HSD11B1 (−9.6),

PPARD (−10.0), and PPARG
(−9.0)

Regulation of insulin secretion,
glucose metabolism, and lipid

metabolism
Strychnos henningsii

Ibozol GCK (−9.7) Regulation of glucose
metabolism Tetradenia riparia
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Table 5. Cont.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

Integerrimine HSD11B1 (−9.1) and PPARD
(−9.3)

Regulation of insulin secretion
and lipid metabolism Lotononis laxa

Lapachol AKR1B1 (−9.2) Regulation of glucose
metabolism Kigelia africana

Nauclefidine AKR1B1 (−10.1), HSD11B1
(−9.0), and RBP4 (−10.0)

Regulation of insulin secretion
and glucose metabolism Nauclea latifolia

N-methylflindersine AKR1B1 (−9.2) and RBP4 (−9.5) Regulation of insulin secretion
and glucose metabolism Toddalia asiatica
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Table 5. Cont.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

Platyphylline HSD11B1 (−9.4) and PPARD
(−9.3)

Regulation of insulin secretion
and lipid metabolism Senecio serratuloides

Rhinocerotinoic acid HSD11B1 (−9.2) and RBP4
(−9.9) Regulation of insulin secretion Elytropappus rhinocerotis

Senecionine HSD11B1 (−10.3) and PPARD
(−9.4)

Regulation of insulin secretion
and lipid metabolism Senecio serratuloides

Valerenic acid AKR1B1 (−9.0) Regulation of glucose
metabolism Valeriana capensis

Vinburnine
AKR1B1 (−9.6), HSD11B1 (−9.1),

PPARD (−9.3), PPARG (−9.4),
RBP4 (−10.7), and RXRA (−9.3)

Regulation of insulin secretion,
glucose metabolism and lipid

metabolism
Voacanga africana
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Table 5. Cont.

Compound Structure Predicted Targets (Docking
Score in kcal/mol) Potential Anti-Diabetic Effect Plant

Voaphylline

AMY2A (−9.0), DPP4 (−9.6),
GCK (−9.1), HSD11B1 (−9.3),
PPARD (−9.1), PPARG (−9.8),

and RBP4 (−9.2)

Regulation of insulin secretion,
glucose metabolism, and lipid

metabolism
Voacanga africana

Withasomnine FFAR1 (−9.1) Regulation of insulin secretion Voacanga africana
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3. Materials and Methods

3.1. Preparation of Compound Structures and Inverse Virtual Screening of Potential Anti-Diabetic Activity

The natural compounds were sourced from three books that catalogue the different medicinal
plants found in Africa, as well as their medicinal uses and chemical constituents. These three books
were African Herbal Pharmacopoeia [87], Medicinal Plants of South Africa [80], and Poisonous Plants of
South Africa [31]. Where a graphical representation of the compound was given in the books, the
two-dimensional structure of the compounds was created with Advanced Chemistry Development
(ACD)/ChemSketch freeware version 12.02, 2010 [88], and then converted to its representative simplified
molecular-input line-entry system (SMILES) notation. Where only the name of the compound was
given, the two-dimensional structure and SMILES notation was obtained from PubChem [89]. The
SMILES notations for the compounds analyzed in this study can be found in Table S1.

The SMILES notation of each compound was subsequently submitted to the DIA-DB web server
that employs inverse virtual screening of compounds with Autodock Vina against a given set of
17 protein targets associated with diabetes [14]. These targets were AKR1B1, DPP4, FFAR1, GCK,
HSD11B1, INSR, MGAM, PYGL, NR5A2, AMY2A, PPARA, PPARD, PPARG, PTPN9, PDK2, RXRA,
and RBP4.

A cutoff docking score of −9 kcal/mol was set to distinguish between potential active and
inactive compounds. The predicted compound–target network was generated by Cytoscape version
3.4.0 [90], and the NetworkAnalyzer Application version 2.7 [91] was used to evaluate some of the
basic network features.

3.2. Clustering and Maximum Common Substructure Analysis of Predicted Active Compounds

A hierarchical clustering analysis was performed for each compound–target group using
Schrödinger Canvas Suite version 3.2.013 [92]. The molecular fingerprint was calculated from
the two-dimensional structure of the compounds in the form of extended connectivity fingerprint 4
(ECFP4). From these fingerprints, a hierarchical clustering analysis was performed using the metric
of the Tanimoto similarity and the average cluster linkage method, which clusters according to the
average distance between all of the inter-cluster pairs. An MCS analysis was then performed on the
largest cluster identified within each compound–target group using the criteria of atomic number,
aromaticity, and bond order.

3.3. Similarity Studies with Known/Experimental Anti-Diabetic Drugs

The known/experimental anti-diabetic drugs were sourced from Defronzo et al., 2014 [2], and
Gougari et al., 2017 [3], and their SMILES representations were obtained from PubChem. The molecular
similarity network was generated with Cytoscape and the ChemViz2 Application version 1.1.0 [93].
The molecular similarity was performed using the metric of the Tanimoto similarity on the calculated
ECFP4 molecular fingerprints of the compounds. A Tanimoto score of 0.7 or greater indicated
molecular similarity.

3.4. Studies on Oral Bioavailability and ADMET Properties of the Predicted Active Compounds

The physiochemical descriptors of molecular weight, AlogP, hydrogen bond acceptors, hydrogen
bond donors, number of rotatable bonds, and polar surface area were calculated from the
two-dimensional structures of the compounds using the Schrödinger Canvas Suite [92]. For the
calculation of the QikProp descriptors, three-dimensional structures of the compounds were generated
and optimized with LigPrep from Schrödinger Maestro version 11.2.013 [94]. The QikProp descriptors
of aqueous solubility (QPlogS), Caco-2 cell permeability, binding to human serum albumin, percent
human oral absorption, and blockage of the hERG K+ channels, were subsequently calculated from the
three-dimensional structures with the Schrödinger Canvas Suite. The ProTox-II web server was used
to predict the potential toxicity of the compounds from their SMILES notation representations [95].
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The rat oral lethal dose 50 (LD50), hepatotoxicity, carcinogenicity, cytotoxicity, mutagenicity, and
immunotoxicity were evaluated with the ProTox-II web server.

4. Conclusions

African medicinal plants were identified as rich sources of compounds with potential anti-diabetic
activity through the use of inverse virtual screening with the DIA-DB web server (Figure 6). The
observation that some of the compounds identified with the DIA-DB web server had some previous
literature on their potential anti-diabetic activity provided validation for the use of the DIA-DB web
server for the identification of compounds with potential anti-diabetic activity. Also, the identification
of compounds with previous literature on their potential anti-diabetic activity provided some clues
as to the bioactive constituents of medicinal plants with known anti-diabetic activity, as well as the
rationale for the traditional use of some medicinal plants.

Figure 6. A brief summary of the methodology and results obtained for the in silico exploration of
African medical plants for potential anti-diabetic compounds.

Several plants were identified as new sources rich in compounds with potential anti-diabetic
activity, and included Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans,
Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus
comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga Africana,
and Xysmalobium undulatum. These plants represent a good initial point for exploratory in vitro
anti-diabetic studies. As for the compounds, a total of 28 compounds were identified as having
favorable ADMET properties, and importantly, several of these were identified as novel potential
multi-targeted anti-diabetic compounds, such as crotofoline A, erythraline, henningsiine, nauclefidine,
vinburnine, and voaphylline. These compounds present as novel scaffolds for further drug design and
development. There is now the need for further in vitro and in vivo studies to confirm the potential
bioactivity of these compounds identified by the DIA-DB web server.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/10/2002/
s1: Table S1—SMILES notations of all compounds evaluated in the study. Table S2—Assigned numerical
identity of predicted active compounds, their plant sources and predicted targets. Figure S1—Individual
predicted active compound–protein target networks. Table S3—Plants having scientific anti-diabetic evidence
and evidence of traditional use only identified by virtual screening and their predicted bioactive compounds.
Figure S2—Dendrograms of hierarchical clustering analysis.
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