molecules m\py

Article
Flow Hydrodediazoniation of Aromatic Heterocycles

Liesa Roder 1, Alexander J. Nicholls 2(2 and Ian R. Baxendale %*

1 Department of Biology, Chemistry, and Pharmacy, Freie Universitit Berlin, 14195 Berlin, Germany;

liesa.roder@durham.ac.uk

2 Department of Chemistry, University of Durham, South Road, Durham DHI1 3LE, UK;
alexanderj.nicholls@durham.ac.uk

*  Correspondence: i.rbaxendale@durham.ac.uk

Academic Editor: Maurizio Benaglia lclf'])edc:tt);
Received: 29 April 2019; Accepted: 22 May 2019; Published: 24 May 2019

Abstract: Continuous flow processing was applied for the rapid replacement of an aromatic amino
group with a hydride. The approach was applied to a range of aromatic heterocycles, confirming
the wide scope and substituent-tolerance of the processes. Flow equipment was utilized and the
process optimised to overcome the problematically-unstable intermediates that have restricted yields
in previous studies relying on batch procedures. Various common organic solvents were investigated
as potential hydride sources. The approach has allowed key structures, such as amino-pyrazoles and
aminopyridines, to be deaminated in good yield using a purely organic-soluble system.
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1. Introduction

The use of diazotisation as a regioselective functionalisation strategy for aromatic compounds is
inherent to the design of synthetic pathways for a variety of target products. A less utilised aspect is
the replacement of an aromatic amine (via a diazonium) for a proton; essentially a defunctionalisation
step, this can be a creative and useful sequence as the amine is a powerful directing group in more
complex, multi-stage syntheses [1,2]. Historically, simple anilines that form relatively-stable diazonium
salts are readily deaminated in good yields under batch conditions [3-5]. However, many aromatic
heterocycles, such as 2-amino-pyrazoles and pyridines, do not form stable diazonium salts and hence
batch procedures form the target deaminated product in generally poor yield. Recent studies have
attempted to improve the efficiency for more challenging systems using various catalysts, such as
salicylic acid or gallic acid, to both stabilize the diazonium compound (by trapping) and controlling
the rate that the diazonium compound radicalizes [6,7]. However, more sophisticated heterocyclic
structures, such as 2-aminopyrimidine and 2-aminobenzothiazole, could still be deaminated only in
modest yields. Flow chemistry has been shown to be especially useful for the generation and handling
of reactive/transient intermediates [8-14]. The primary benefits of performing such reactions in flow
mostly arise from the improved mixing and superior heat dissipation [15,16]. Although elevated
temperatures are often required for most of these heterocycles to undergo nitrosation, the overall
process is very exothermic, and consequently the reacting molecules can form small, localized areas of
very high temperatures, causing the sensitive diazonium intermediates to decompose. On a larger
scale, this can also lead to run-away exothermic reactions. Advantageously using flow, the large surface
area of the reaction vessel ensures that potential localized regions of undesired high temperatures
and prorogation of heat-generation does not lead to substantial deviations of temperature from that
of the reactor. Secondly, due to working with very unstable intermediates, it is imperative that there
is effective mixing between the intermediates and the hydride source in order to reach the target
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product as soon as possible, which working in flow provides. The kinetics of at least some stages of
this reaction are likely to be diffusion controlled, hence the enhanced mixing further improves the rate,
allowing for an effective process omitting catalysts and radical initiators. The third benefit is in the
application of temperatures substantially above the boiling point of the solvent, which has been found
to be advantageous in this process. The solvents of choice were cyclic ethers, with tetrahydrofuran
(THF) being the most effective.

2. Results and Discussion

Using the Vapourtech EasyMedChem system (Figure 1), we began investigating the principle
conditions. Methyl 2-aminothiazole-5-carboxylate and methyl 5-amino-thiophene-2-carboxylate were
selected as substrates, because thiazoles and thiophenes are structures that other investigations have
struggled to deaminate in high yield [6,7]. The results presented were not obtained at steady state.
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Figure 1. (a) The Vapourtech EasyMedChem system used to perform the experiments. (b) A diagram
to show the general procedure of heterocyclic amine hydrodediazoniation.

2.1. Solvent Selection

The criteria for the solvent (which is also the hydride source—see mechanism discussion) is
that it should offer sufficient solubility for the starting material/diazonium intermediate and that it
can undergo hydride abstraction (Table 1). Ethers were found to be the most effective, likely due to
the oxygen atoms ability to stabilize the intermediate formed when the x-hydrogens are abstracted.
Alcoholic solvents (MeOH, EtOH, iPrOH and BuOH) were found to be far less effective, it is suspected
they are not sufficiently active as hydride radical sources or more likely that they react with the unstable
intermediates in the mechanism, due to their nucleophilicity. Correlations between the ethers are not
readily explained with the current available data. It is unfortunate that cyclohexane, a good hydride
donor, could not be fully tested because the starting materials were not particularly soluble, however,
some success was achieved when refluxing in batch. Of general note was that in all experiments the
starting materials were completely consumed, therefore we turned our attention to measuring the
efficiency of the process in terms of isolated yield rather than the kinetics.
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Table 1. Conversion of methyl 2-aminothiophene-3-carboxylate (1r) to methyl thiophene-3-carboxylate
(2r) in a range of different solvents.

S Isopentyl nitrite, Solvent S
| )—NH, . | )—H
90 °C, 20 min
—~0 0 -0 O
Solvent Conversion to Product (%)
THF 47
1,4-dioxane 34
1,2-dimethoxyethane 16
diethyl ether 24
cyclohexane Not possible
polyethylene glycol <3
butanol <3
propan-2-ol 13
ethanol <3
methanol 8
ethyl acetate <3

All experiments were performed on: methyl 2-aminothiophene-3-carboxylate (1.0 mmol) in the stated solvent
(10 mL), iso-pentyl nitrite (1.2 mmol) in the stated solvent (10 mL), both flowing at 0.25 mL min~! through a 10.0 mL
coil reactor maintained at 90 °C (residence time: 20 min). The conversions were calculated by integration of product
'H-NMR peaks relative to a quantified internal standard of nitrobenzene. THF—tetrahydrofuran.

2.2. Temperature Screening

Even substantially deactivated anilines, such as nitro-substituted, and amino-heterocycles will react
with inorganic nitrite in aqueous conditions without external heating, even below room temperature,
because the active nitrosation agent (NO*) forms in situ. When using organic nitrites, some thermal
input is generally required to overcome the greater energy barrier of the first nucleophilic attack. This
is normally the rate-determining step as the subsequent intermediates are never detected and the
process is noticeably more efficient at higher temperatures (Tables 2 and 3). For this evaluation we also
tested 1,4-dioxane even though it had displayed reduced comparative reactivity as this solvent could
be used at a higher temperature but at reduced internal reactor pressure.

Table 2. Conversion of methyl 2-aminothiazole-5-carboxylate (1a) to methyl thiazole-5-carboxylate (2a)
at various temperatures in THE.

MeOL s Isopentyl nitrite, THF MeO L s
\[ P—NH, , \[ )—H
N 20 min N
Temperature / °C Conversion to Product (%)
25 0
40 21
50 49
60 50
70 53
80 55
90 61
100 65
110 71
120 88

All experiments were: methyl 2-aminothiazole-5-carboxylate (1.0 mmol) in THF (10 mL), iso-pentyl nitrite (1.2 mmol)
in THF (10 mL), both flowing at 0.25 mL min~! through a 10.0 mL coil reactor at the stated temperature, (residence
time: 20 min). The conversions were calculated by integration of product 'H-NMR peaks relative to a quantified
internal standard of nitrobenzene. The reported value is the average of at least three repeat runs.
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Table 3. Conversion of methyl 2-aminothiazole-5-carboxylate (1a) to methyl thiazole-5-carboxylate (2a)
at various temperatures in 1,4-dioxane.

MCOQC

S
T[}wm
N

Isopentyl nitrite

1,4-dioxane,

20 min

MCOZC

Ty

Temperature/°C Conversion to Product (%)
25 0
40 23
60 47
80 60
100 63
120 83
140 80
160 58

All experiments were: methyl 2-aminothiazole-5-carboxylate (1.0 mmol) in 1,4-dioxane (10 mL), iso-pentyl nitrite
(1.2 mmol) in 1,4-dioxane (10 mL), both flowing at 0.25 mL min~! through a 10.0 mL coil reactor at the stated
temperature, (residence time: 20 min). The conversions were calculated by integration of product 'H-NMR peaks
relative to a quantified internal standard of nitrobenzene. The reported value is the average of at least three

repeat runs.

2.3. Coil Size and Residence Time

It was initially anticipated that a shorter coil volume may improve the yield along with throughput,
as the product might begin to decompose after it has formed. Several thiazoles, oxazoles and related
heterocycles are known to undergo side reactions via ring opening process such as the Cornforth
rearrangement. However, the obtained results did not support this hypothesis, indeed a longer
residence time gave improved conversion at the elevated temperature. It is therefore unlikely that the
thiazole product degrades significantly under the conditions of this process (Table 4).

Table 4. Conversion of methyl 2-aminothiazole-5-carboxylate (1a) to methyl thiazole-5-carboxylate (2a)
at various temperatures and reactor coil sizes in THF.

MeO,C o MeO,C
2 S Isopentyl nitrite 2 S
| )—NH, - | )—H
N THF N
Coil Volume/mL Residence Time/min Temperature/°C Conversion (%)
60 41
5 10 90 55
120 73
60 50
10 20 90 61
120 88
60 59
20 40 90 76
120 87

All experiments were: methyl 2-aminothiazole-5-carboxylate (1.0 mmol) in THF (10 mL), iso-pentyl nitrite (1.2 mmol)
in THF (10 mL), both flowing at 0.25 mL min~! through the stated coil reactor (1 mm i.d.) at the stated temperature.

The conversions were calculated by integration of product TH-NMR peaks relative to a quantified internal standard

of nitrobenzene.

2.4. The Application of Radical Catalysts

Perretti et al. as well as Felipe-Blanco et al. have shown that using a nucleophilic compound that
can form stable radicals can increase the rates and yields of dediazoniation processes, by lowering
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the energy barrier to forming the target aryl radical species, hence reducing the chances of side
transformations [6,7]. We therefore selected a poorly reactive substrate to evaluate any potential
advantage of using such an approach in combination with flow processing (Table 5). There was
a notable enhancement in conversion obtained when employing the catalyst however, at elevated
temperatures this effect was not observed and hence we decided to concentrate on temperature rather
than catalyst application. It should be noted that this may still offer benefit as an approach for poorly
reactive substrates which give turnover at lower temperatures.

Table 5. Conversion of 4-(5-amino-4-cyano-1H-pyrazol-1-yl)-benzoic acid (1u) to 4-(4-cyano-1H-
pyrazol-1-yl)-benzoic acid (2u) with various quantities of gallic and salicylic acid.

CN ON  pommemmmmmomoen oo
By o ogon e
N. NH, Isopentyl nitrite N_ H : 1 Oy OH |
N . . N | i '
Addative acid : : : OH !
THE, 70 °C, 10 min ! | ! i
'HO OH '
| OH o |
CO2H CO,H . Gallic Acid | Salicylic Acid |
Catalyst Loading (mol%) Conversion (%) Gallic Acid Conversion (%) Salicylic Acid
0 0 0
1 0 0
5 33 1
10 26 26
102 18 22
20 22 30
100 0 21

All experiments were: 4-(5-amino-4-cyano-1H-pyrazol-1-yl)-benzoic acid (1.0 mmol) and the stated quantity of
gallic acid or salicylic acid in THF and iso-pentyl nitrite (1.2 mmol) in THF (50 mL), flow rate 1.0 mL min~!, through
a 10 mL coil reactor maintained at 70 °C, giving a residence time of 10 min. The conversions were calculated
by integration of product 'H-NMR peaks relative to a quantified internal standard of nitrobenzene. Reaction
performed at 120 °C.

2.5. Different Organic Nitrite Sources

Several organic nitrites were screened for their effectiveness in this process; tested were
tertiary-butyl nitrite, normal-butyl nitrite and iso-propyl nitrite. All were found to perform similarly,
with all giving near quantitative conversions for substrates, such as 2-aminobenzothiazole (Table 6, 2s).
Based upon a consideration of its lower cost, the iso-pentyl nitrite was selected as the reagent of choice
for all further studies (Table 6).

2.6. Substrate Scope for Optimised Process

The flow procedure was applied to a variety of substrates, from simple amino-pyridines
to sophisticated, multi-cyclic structures. Most substrates were deaminated efficiently, giving
good-to-excellent conversions and isolated yields, after column chromatography purification. Although
some substrates proceeded in lower yields, other studies have failed to deaminate these substrates
at all.
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Table 6. Flow hydrodediazoniation of aromatic amines.

Isopentyl nitrite, THF
R=NH; . > R-H
120 °C, 20 min
1 2
HO,C
ety O Ol OO0
2 D—H H
/
\&N N o cl s o
iPr
2a, 85 % yield 2b, 77 % yield 2¢, 53 % yield 2d, 88 % yield 2¢2, 96 % yield
N _H N NS OH OH
N N ‘
| ® - o X
& H ! H cl H

2f, 5 % detected

2

MeO

2k, 90 % detected

H

2p?, 59 % detected

CO,H

2u?, 70 % yield

2g, 62 % detected 2h, 17 % detected 2ib¢, 42 % detected

o

N
w
MeO HLN

MeO

H
21,72 % detected 2m, 68 % detected 2n, 55 %
S
HoN H W H N
Xy -

ON Co,Me s

2q? 36 % detected 2r, 54 % yield 2s, 96 % yield

CN CN

Z\
—
T
P4
PIES
=
T
Z\
=l
—
(@}
T P4

Cl

)=
Z
7N\
O
m
w

F

2v4, 77 % yield 2w9, 69 % yield 2x4, 76 % yield

2j,10 % detected

CO,Me

(@) /B\I

20, 88 % yield

H

Br S/\<
N /N
[ j N

212, 67 % yield

2y?°, 45 % yield

6 of 18



Molecules 2019, 24, 1996

Table 6. Cont.

7 of 18

CN

NH, CN Ni
il e
\N h N\
N\//\/\H\ N H N
/

Ph
222, 30 % yield 2aad, 65 % yield 2ab?, 71 % yield
S
0 H o H [ )—n
= MeO
Cl
2aed, 66 % yield 2afd, 69 % yield 2agd, 45 %

isolated mixture

CN
N
kst i
N H X
—
N7 YOS
N~
NO,
2acd, 81 % 2ad?, 70 % yield
yield

» s
e e
N
FaC
Br 8
2ah, 51 % 2ai4, 43 % yield

F H Y H
Clibe O 070, 0 0L
/\ | />7H N H
g Ny CN N Y al EtOzC/[ N X \N%

2aj4, 60 % yield 2ak¢, 19 % detected 2al, 62 % yield
®
Nz NH, AcO® NH,
AN
N Z P P
H N \)\ N \)\ N
2a0, no reaction 2ap, no reaction 2aq, no reaction

2am, 67% yield  2an, 65% detected

NH,

R
N‘\ R=| MeO
P

R™ N R

2ar, no reaction

Starting material (1.0 mmol) in THF (10 mL), iso-pentyl nitrite (1.2 mmol) in THF (10 mL), 10 mL coil volume, 20 min residence time. # 20 mL of THF was used for both reagent solutions.
P DMF (2 mL) was added to the starting material solution to improve solubility. ¢ Concentrations of 0.5 mmol of starting material and 0.6 mmol of isopentyl nitrite. ¢ Concentrations of
10.0 mmol of starting material and 12.0 mmol of isopentyl nitrite. Yield refers to pure, isolated and characterised yield. Detected refers to the conversion of starting material to product as
quantified by integration of product 'H-NMR peaks relative to a quantified internal standard of nitrobenzene. No reaction refers to compounds for which there was no evidence of

formation and only starting material was recovered.
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3. Discussion

The fast reaction kinetics of the hydrodediazoniation ensures that full consumption of the starting
material was observed for almost every derivative. The reason for imperfect yields was because
of working with very unstable intermediates; namely the hetero-diazonium and the heteroaryl
radical. For example, the methyl 2-diazoniumthiazole-5-carboxylate tetrafluoroborate salt was stable
at =5 °C (though highly dependent on the anion), but the aryl radical was never detected and
attempts to trap it with a stable radical, such as TEMPO were not successful, although more stable
nitrobenzene aryl radicals have been trapped by Perretti et al. [6]. The key to maximising yields for
the process is therefore dependant on optimizing the process to limit decomposition pathways from
both reactive intermediates.

In general, the diazonium intermediate can become a more stable structure by emitting Nj.
Nucleophilic substitution, with N, as the leaving group is sometimes possible for diazonium
compounds, but is not specifically observed in this reaction. Our experiments with deuterated
THF show that the new hydrogen in the product always comes from the THF, hence ruling out any
possibility of nucleophilic behaviour (Scheme 1).

Isopentyl nitrite,

MeO,C N MeO,C N
\[ S—NH, D,0, THF, NaDSO, \[ S—H 0% deuterium uptake
S S in product
Isopentyl nitrite,
MeO,C N I MeO,C N
\[ \>*N H, H,0, dg THF, NaHSO, \[ \%D 100 % deuterium uptake
S S in product

Scheme 1. The results from experiments using deuterated solvents, to show that the new hydrogen
always comes from the alkyl tetrahydrofuran (THF) hydrogens and not acidic protons from the solvent.

To enable radical hydride abstraction the diazonium compound 6 must undergo a one-electron
reduction to become the radical species 7, which can eliminate N, to form the aryl radical 8 (Figure 2).
There is much debate regarding how this may occur, it could be a thermal process, particularly at
the elevated reaction temperatures used, or even photochemically, from the ambient lighting within
the laboratory (Figure 2, pathway 1) [17]. However, photochemical activation as the primary route
has been ruled out by performing the process with the exclusion of light. Alternatively, it is known
that nucleophilic solvents, from alcohols to cyclic ethers, can interact with the diazo group, forming
a positively charged intermediate 9 that can fragment radically, leading again to the aryl radical 8
(Figure 2, pathway 2). The results obtained in this study cannot distinguish which pathways are under
operation, although it was shown that neither are possible at 0 °C, as there is no reaction between the
thiazole diazonium compound and THF at this temperature unless additional sodium nitrite is added
(which is known to convert some diazonium compounds to aryl radicals) [9].

The versatility of the deamination process comes from the fact that the conversion is rapid under
conditions where most other functionalities are stable and it can be run as a single step process
(diazotization and substitution). Advantageously, a mild pH is used and there is no need for additional
radical initiators or catalysts that could cause compatibility issues. The ether solvents of choice are
inert, relatively low cost and readily available. The process is very simple and easy to perform, adding
to its value as part of multi-stage syntheses, particularly as the aromatic nitrogen is often residual from
the heterocyclic formation. Consequently, the flow process described has been specifically designed to
target heteroaryl amines that are poorer nucleophiles and generally do not form stable diazonium salts,
hence limiting the yield of any segregated process that relies on first forming the diazonium salt then,
for example, conducting a hydrogenation in a subsequent step.
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M602C\[N /—\ MeO,C N>_ /N:O MeO,C N>_ //N_OH
| D—NH, + 4N~ — \[\ NH  — \[\N
S>_ QJ OR s S
1la 3 4 5
MeOZC N @ @
— \[\>—NEN OR
S
6
Pathway 1
Thermal
6 1 electron reductionMeOZC\[N\y__\N MeOZC\[N\>‘\j:> MeOzC\[N\>_H
> W — . —
S N & S
7 8 2a
Pathway 2
MeOC N .. MeO,C__N MeO,C.__N MeO,C.__N
|\ N=N — \[\>—N—> \[\V/N\\\ —_— \[\._>2a
\[s>_® ) S \{,}l &7 NN, sj

6 (Oy 9 g 10 :be) 11 H%D

Figure 2. The postulated mechanism for the formation of the aryl radical and termination to the target
hydrogenated product.

N-containing heteroaromatics often present a challenge in a range of nucleophilic processes
targeting the primary amine, including diazotisation, due to the inherent low nucleophilicity of the
heterocyclic N atom. To the best of our knowledge, this process is the first published procedure
for successful hydrodeazoniation of aminopyridines. The difficulty arises because the electrophile
(isopentyl nitrite in this case) can react, often preferentially, with the heterocyclic N atom. While
this addition is largely reversible, the nitroso group must migrate to the primary amine in order for
the diazotization to proceed (Figure 3). This is fairly trivial for cycles where the N atom (or atoms)
is in close proximity to the primary amine and if the primary amine is sufficiently nucleophilic
(e.g., 2-aminobenzimidazole 1b, Figure 3), allowing for swift intramolecular transfer to the target
primary amine. For substrates such as 4-aminopyridine 1h, this is not the case and these substrates
likely rely on intermolecular transfer to the primary amine (Figure 3). The intermediate nitrosoamine
14, formed in an attack from the heterocyclic N on the isopentenyl nitrite, may not be stable under
these conditions and hence this represents another pathway to decomposition and yield loss and
could explain why 3-aminopyridine 2g was deaminated in much higher yield than the 4-amino 1h
(Table 1). While the migration of the nitroso group from the pyridine N atom to the primary amine is
not hindered for 2-aminopyridine 2f, the weak nucleophilicity of the primary amine ensures that this
substrate could also only be deaminated in poor conversions (Table 6).

Although the process was successful for a range of heterocycles, unfortunately deamination was
not possible for certain compound types (Table 6) in which the starting materials were recovered
unchanged. The aminopyrimidines which were unreactive possess very low nucleophilicity at the
primary amine as well as having increased steric hindrance around the nitrogen [18]. We also prepared
the ammonium salt 2aq to test if increased acidity may help promote the process but without advantage.
However, we were able to show that compound 2z possessing both a primary pyrazole and pyrimidine
based N atom underwent deamination selectively only at the pyrazole centred nitrogen albeit in low
yield (Table 6). We hope to explore this reaction more and find ways to elaborate the less reactive
structures as well as explore the interesting natural selectivity in other species.



Molecules 2019, 24, 1996 10 of 18

NGS\ Fast N IN:O
S—NH, + — N—NH, —> S>—NH — Target
@E >_ >_ 2 O>_ (See figure 2) 8

1c 13
H
— Slow .0
Hzﬁ\' Nq - N N\N/ - Target
\/)/J ! (See figure 2) 8
H2N NH2 N~ )

1h 15

X

| .
N

Figure 3. A potential explanation as to why some substrates react more effectively under the presented
procedure than others.

4. Materials and Methods

Reagents and solvents were purchased from Fischer Scientific, Sigma Aldrich™, Fluorochem™,
or Alfa Aesar™, were of analytical reagent grade and were used as received. 'H and 3C-NMR
spectra were recorded, in specified deuterated solvents, (purchased from Apollo Scientific™), at room
temperature on Bruker™ Avance-400 ('H, 13C) (operating at 400.13 MHz) spectrometers and are
reported as follows: chemical shift § (ppm) (number of protons, multiplicity, coupling constant J
(Hz) (if applicable), assignment). Multiplicities are reported using the following abbreviations: s
(singlet), d (doublet), t (triplet), q (quartet) and m (unresolved multiplet). All 13C-NMR spectra were
proton-decoupled and carbons are numbered according to the [UPAC systematic name. The 'H and '*C
chemical shifts are reported using the residual signal of deuterated solvent as the internal reference (for
CDCl3: &y = 7.26 ppm; 8¢ = 77.16 ppm and for deuterated d®-DMSO: 8y = 2.50 ppm; ¢ = 39.51 ppm).
All chemical shifts are quoted in parts per million, relative to tetramethylsilane (51, 8c = 0.00 ppm).
All coupling constants are ®Jyyp; unless otherwise stated. Electrospray lonisation (ESI) mass spectra,
for LC-MS results were obtained using a TQD mass spectrometer (Waters UK Ltd., Manchester, UK).
High-resolution mass spectra were obtained with an LCT Premier XE mass spectrometer (Waters UK
Ltd., Manchester, UK); all were obtained by the Durham University Mass Spectrometry service. ASAP
mass spectra were obtained using a Waters™ Synapt G2s apparatus. Thin-Layer Chromatography
was performed using Merck TLC Aluminium oxide 60 F254 with glass backing. Plates were stained
with potassium permanganate solution, where required and visualised using UV light. Column
chromatography refers to purification by applying the mixture, dissolved in a minimum amount of
dichloromethane, onto silica gel (40-63 um mesh size) with the stated solvent system.

4.1. General Procedure for Solvent Screening

A solution of methyl 2-aminothophene-5-carboxylate (152 mg, 1.00 mmol) in the selected solvent
(see Table 1, 10 mL) and a solution of isopentyl nitrite (141 mg, 1.20 mmol) in the selected solvent
(10 mL) were both pumped at a flow rate of 0.25 mL min~! with a Vapourtech ‘Easy MedChem V3’
system, meeting at a PTFE T-piece and the output flowing through a 6.5 mL coil reactor maintained
at 70 °C, giving a residence time of 13 min (see Table 2). The pressure of the system was maintained
at 7 bar with a variable compression back-pressure regulator. The output mixture was concentrated
under reduced pressure (100 mbar) to yield the product as an oil. Three repeat samples were analysed
by 'H-NMR spectroscopy with an internal standard (nitrobenzene) and the average used to quantify
the conversion to the target thiazole product.

4.2. General Procedure for Temperature Investigation

A solution of methyl 2-aminothiazole-5-carboxylate (152 mg, 1.00 mmol) in THF (10 mL) and a
solution of isopentyl nitrite (141 mg, 1.20 mmol) in THF (10 mL) were both pumped at a flow rate of



Molecules 2019, 24, 1996 11 of 18

0.25 mL min~! with a Vapourtech ‘Easy MedChem V3’ system, meeting at a T-piece and the output
flowing through a 10 mL coil reactor maintained at the selected temperature (see Tables 3 and 4), giving
a residence time of 20 min. The pressure of the system was maintained at 7 bar with a back-pressure
regulator. The output mixture was concentrated under reduced pressure (100 mbar) to yield the product
as an oil. Three repeat samples were analysed by "H-NMR spectroscopy with an internal standard
(nitrobenzene) and the average used to quantify the conversion to the target thiophene product.

4.3. General Procedure for Reactor Coil Size Investigation

A solution of methyl 2-aminothiazole-5-carboxylate (152 mg, 1.00 mmol) in THF (10 mL) and
a solution of isopentyl nitrite (141 mg, 1.20 mmol) in THF (10 mL) were both pumped at a flow
rate of 0.25 mL min~! with a Vapourtech ‘Easy MedChem V3’ system, meeting at a T-piece and the
output flowing through the stated coil reactor maintained at the selected temperature (see Table 4).
The pressure of the system was maintained at 7 bar with a back-pressure regulator. The output mixture
was concentrated under reduced pressure (100 mbar) to yield the product as an oil. Three repeat
samples were analysed by 'H-NMR spectroscopy with an internal standard (nitrobenzene) and the
average used to quantify the conversion to the target thiazole product.

4.4. General Procedure for Investigation of Catalysis using Gallic Acid and Salicylic Acid

A solution of 4-(5-amino-4-cyano-1H-pyrazol-1-yl)-benzoic acid (228 mg, 1.00 mmol) and isopentyl
nitrite (141 mg, 1.20 mmol) with the stated catalyst loading of salicylic acid or gallic acid (see Table 5)
in THF (50 mL) was pumped at a flow rate of 1.0 mL min~! with a Vapourtech ‘Easy MedChem V3’
system flowing through a 10 mL coil reactor maintained at 70 °C, giving a residence time of 20 min.
The pressure of the system was maintained at 7 bar with a back-pressure regulator. The output mixture
was concentrated under reduced pressure to give a powder. Three repeat samples were analysed by
'H-NMR spectroscopy with an internal standard (nitrobenzene) and the average used to quantify the
conversion of the target product.

4.5. General Procedure for Investigation of Alternative Organic Nitrites

A solution of methyl 2-aminothiazole-5-carboxylate (152 mg, 1.00 mmol) in THF (10 mL) and
the stated organic nitrite (1.20 mmol) (see Table 6) in THF (10 mL) were pumped at a flow rate of
0.25 mL min~! with a Vapourtech ‘Easy MedChem V3’ system, meeting at a T piece, then flowing
through a 10 mL coil reactor maintained at 120 °C, giving a residence time of 10 min. The pressure of the
system was maintained at 7 bar with a back-pressure regulator. The output mixture was concentrated
under reduced pressure (100 mbar) to yield the product as an oil. Three repeat samples were analysed
by 'H-NMR spectroscopy with an internal standard (nitrobenzene) and the average used to quantify
the conversion of the target product.

4.6. General Procedure for Hydrodeazoniation of Substrates

A solution of the selected heterocyclic starting material (1.00 mmol) in THF (10 mL) and a solution
of isopentyl nitrite (141 mg, 1.20 mmol) in THF (10 mL) were both pumped at a flow rate of 0.25 mL
min~! with a Vapourtech ‘Easy MedChem V3’ system, meeting at a PTFE T-piece and the output
flowing through a 10.0 mL coil reactor maintained at 120 °C, giving a residence time of 20 min.
The pressure of the system was maintained at 7 bar with a back-pressure regulator. For compounds
where an isolated yield was reported: the output mixture was concentrated under reduced pressure
to give an oil (or powder). The oil (or powder) was purified using column chromatography with
various mixtures of ethyl acetate and hexane as the eluent, or by recrystallisation using methanol, to
give isolated compounds that showed no impurities by NMR spectroscopy. For compounds where a
conversion was reported (due to volatility of products), the output mixture was carefully concentrated
under a reduced pressure of 100 mbar for 10 min and the conversion was calculated by integration of
product peaks to a quantified internal standard (nitrobenzene).
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Starting materials 1a—d, 1f—s, 1al-ar were obtained from Alfa Asear and were used as supplied
without additional purification. Other starting materials were synthesised, with spectra provided in
the supplementary information.

6-Chlorobenzo[1,3]thiazole (2d): Eluent: hexane/ethyl acetate (100:1)—(4:1) yellow crystals, 68% yield.
TH-NMR (400 MHz, CDCl3) 5 8.98 (s, 1H), 8.05 (d, ] = 8.7 Hz, 1H), 7.95 (d, ] = 2.1 Hz, 1H), 7.49 (dd,
] =8.7,2.1 Hz, 1H). I3C-NMR (101 MHz, CDCls) § 154.51 (CH), 151.72 (C), 135.06 (C), 131.95 (C), 127.34
(CH), 124.46 (CH), 121.66 (CH). ASAP-MS (MeCN) R; = 0.50 min [M + H]* = 170.0.

3-(1-Methylethyl)benzoic acid (2e): Eluent: hexane/ethyl acetate (100:1)—(4:1). Yellow needles, 96% yield.
TH-NMR (400 MHz, CDCl3) § 8.00 (d, ] = 1.8 Hz, 1H), 7.95 (dt, ] = 7.6, 1.4 Hz, 1H), 7.48 (d, ] = 1.3 Hz,
1H), 7.40 (t, ] = 1.3 Hz, 1H), 2.99 (p, ] = 7.3 Hz, 1H), 1.29 (d, ] = 7.3 Hz, 6H). 3C-NMR (101 MHz,
CDCl3) 6 172.87 (C), 149.44 (C), 132.29 (CH), 129.46 (C), 128.63 (CH), 128.34 (CH), 127.93 (CH), 34.16
(CH), 24.01 (CH3z). LC-MS (MeCN) Rt = 2.25 min [M — H]™ = 163.2. HRMS C;yH110; calc. 163.0759,
found 163.0754, (A = =3.1 ppm).

Methyl thiophene-3-carboxylate (2r): Eluent: hexane/ethyl acetate (100:1)—(10:1). 'H-NMR (400 MHz,
CDCl3) 6 8.12 (dd, | = 3.0, 1.2 Hz, 1H), 7.54 (dd, ] = 5.1, 1.2 Hz, 1H), 7.41-7.28 (m, 1H), 3.95-3.85
(m, 3H). 13C-NMR (101 MHz, CDCl3) § 161.28, 133.50, 132.70, 127.88, 126.04, 51.84. LC-MS (MeOH)
Rt = 0.87 min [M + H]* = 143.1.

Benzo[1,3]thiazole (2s): Eluent: hexane/ethyl acetate (100:1)—(10:1). Brown, volatile oil, 99% yield.
'H-NMR (400 MHz, CDCl3) & = 9.00 (s, 1H), 8.35 (d, ] = 8.2 Hz, 1H), 7.95 (d, ] = 8.2 Hz, 1H), 7.51
(t,J=7.7Hz, 1H), 742 (t,] = 7.7 Hz, 1H). GC-MS M+ 135.1.

5-(2-Bromophenyl)-1,3,4-thiadiazol-2-amine (1t): Starting material 1t was prepared following the procedure
of Mullick et al. [19] and isolated as a white solid in 85% yield. 'H-NMR (400 MHz, CDCl5) 5 8.01 (dd,
] =78,1.7Hz,1H),7.70 (dd, ] = 7.9, 1.3 Hz, 1H), 7.43 (td, ] = 7.6, 1.3 Hz, 1H), 7.37-7.29 (m, 1H), 6.06 (br.
s, 2H). 'H-NMR (400 MHz, DMSO-dq) § 7.87 (dd, | = 7.8, 1.8 Hz, 1H), 7.75 (dd, ] = 7.8, 1.2 Hz, 1H),
7.53-7.41 (m, 3H), 7.37 (td, ] = 7.8, 1.8 Hz, 1H). '*C-NMR (101 MHz, DMSO-dy) § 170.47 (C), 153.62 (C),
134.17 (C), 132.07 (C), 131.65 (C), 128.53 (C), 121.38 (C). 13*C-NMR (101 MHz, DMSO-dg) & 134.17, 131.66,
131.64, 128.53. LC-MS (MeCN) R; = 1.69 min [M + H]* = 258.2. HRMS CgHgN3S”?Br calc. 255.9544,
found 255.9551, (A = 2.7 ppm).

2-(2-Bromophenyl)-1,3,4-thiadiazole (2t): Eluent: hexane/ethyl acetate (95:5)—(4:1). Brown oil, 67% yield.
'H-NMR (400 MHz, CDCl3) § 9.25 (s, 1H), 8.14 (d, ] = 7.8 Hz, 1H), 7.74 (d, ] = 8.0 Hz, 1H), 7.46
(t,] =7.6 Hz, 1H), 7.36 (t, ] = 7.5 Hz, 1H). 13C-NMR (101 MHz, CDCl3) 5 165.25 (C), 152.87 (CH), 134.12
(CH), 132.21 (CH), 132.01 (CH), 130.67 (C), 128.03 (CH), 122.71 (C).

4-(4-Cyano-1H-pyrazol-1-yl)-benzoic acid (2u): [20] Starting material 1u was prepared following the
procedure of Smith et al. [21]. The product was obtained via recrystallization from methanol. Purple
powder, 70% yield. "H-NMR (400 MHz, DMSO-dg) § 13.19 (s, 1H), 9.46 (s, 1H), 8.43 (s, 1H), 8.10 (d,
] = 8.8 Hz, 2H), 8.00 (d, ] = 8.8 Hz, 2H). 13C-NMR (101 MHz, DMSO-d,) & 143.56 (CH), 138.89 (C),
134.24 (CH), 130.34 (CH), 118.24 (CH), 113.65 (C), 93.07 (C), 51.03 (CH). LC-MS (MeCN) R; = 1.67 min
[M — HJ” = 212.2. HRMS C;1H¢N30O; cale. 212.0460, found 212.0456, (A = —=1.9 ppm).

1-(4-Fluorophenyl)-1H-pyrazole-4-carbonitrile (2v): [22,23] Starting material 1v was prepared following
the procedure of Smith et al. [21]. The product was obtained via recrystallization from ethanol and
water. Brown crystals, 77% yield. H-NMR (400 MHz, DMSO-d,) 5 9.28 (s, 1H), 8.33 (s, 1H), 8.00-7.73
(m, 2H), 7.52-7.16 (m, 2H). 13C-NMR (101 MHz, DMSO-d) §161.62 (C, d, ] = 245.8 Hz), 143.96 (CH),
135.47 (C, d, ] = 3.0 Hz), 134.75 (CH), 122.01 (CH, d, ] = 9.0 Hz), 116.93 (CH, d, ] = 23.8 Hz), 113.97 (C),
93.59 (C). F NMR (376 MHz, DMSO-dg) § —114.22. GC-MS (MeCN) R; = 0.30 min M* = 187.1. HRMS
C10H7N3F calc. 188.0624, found 188.0615, (A = —4.8 ppm).
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1-(3-Chloro-4-fluorophenyl)-1H-pyrazole-4-carbonitrile (2w): Starting material 1w was prepared following
the procedure of Smith et al. [21]. The product was obtained via recrystallization ethanol and water.
Brown solid, 69% yield. 'H-NMR (400 MHz, DMSO-dy) & 9.35 (s, 1H), 8.39 (s, 1H), 8.13 (dt, | = 6.3,
2.0 Hz, 1H), 7.98-7.76 (m, 1H), 7.64 (td, ] = 9.0, 1.2 Hz, 1H)). 3C-NMR (101 MHz, DMSO-dg) 5 158.84
(C, d, ] = 247.1 Hz), 144.32 (CH), 13593 (C, d, | = 3.2 Hz), 135.26 (CH), 122.05 (CH), 121.09 (C, d,
J =19.3 Hz), 120.58 (CH, d, ] = 8.0 Hz), 118.46 (CH, d, ] = 22.4 Hz), 113.83 (C), 93.92 (C). 1?F NMR (376
MHz, DMSO-dg) § —117.41. ASAP-MS (MeCN) R; = 0.30 min [M + H]* = 222.0. HRMS C;oH¢Cl,FN3
calc. 222.0234, found 222.0228, (A = =2.7 ppm).

5-Amino-1-(6-methyl-4-(trifluoromethyl)pyridin-2-yl)-1H-pyrazole-4-carbonitrile (1x): Starting material 1x
was prepared following the procedure of Smith et al. [21]. 'H-NMR (400 MHz, DMSO-dy) 5 8.09 (s, 2H),
8.01~7.87 (m, 1H), 7.87-7.75 (m, 1H), 7.59 (s, 1H), 2.64 (s, 3H). 3C-NMR (101 MHz, DMSO-dg) 6 159.72
(©), 153.73 (C), 153.58 (C), 143.73 (CH), 140.25 (C, q, ] = 33.9 Hz), 122.90 (C, q, ] = 273.5 Hz), 116.23
(CH, q, ] = 3.2 Hz), 114.65 (C), 106.40 (CH, q, ] = 3.2 Hz), 73.92 (C), 24.09 (CH3). °F NMR (376 MHz,
DMSO-dg) b 63.81. LC-MS (MeCN) R¢ = 2.22 min [M + H]" =269.2.

1-(6-Methyl-4-(trifluoromethylpyridin-2-yl)-1H-pyrazole-4-carbonitrile (2x): Recrystallised from ethanol
and water as rose coloured needles in 76% yield. IH-NMR (400 MHz, DMSO-dg) 5 9.43 (s, 1H), 8.47 (s,
1H), 7.95 (s, 1H), 7.78 (s, 1H), 2.65 (s, 3H). 13C-NMR (101 MHz, DMSO-dy) 5 160.98 (C), 150.29 (C), 145.27
(CH), 14048 (C, q, ] = 34.6 Hz), 134.47 (CH), 122.84 (C, q, ] = 273.5 Hz), 119.01 (CH, q, ] = 3.4 Hz), 113.62
(C), 106.15 (CH, q, ] = 4.0 Hz), 94.81 (C), 24.30 (CH3). F NMR (376 MHz, DMSO-dg) 5 —63.60. LC-MS
(MeCN) R¢ = 4.44 min M* = 252.1. HRMS C;;HgNyF; calc. 253.0701, found 253.0702, (A = 0.4 ppm).

4-(4-Fluorophenyl)-6-phenylpyrimidin-2-amine (ly): Starting material 1y was prepared following the
procedure of Baxendale et al. [24]. Recrystallised from ethanol and obtained as yellow crystals, 59%
yield. TH-NMR (400 MHz, DMSO-dg) & 8.29-8.26 (m, 2H), 8.17-8.15 (m, 2H), 7.67-7.58 (m, 4H), 7.47-7.42
(m, 2H). 3C-NMR (101 MHz, DMSO-dy) 6 165.81 (C), 164.50 (C, d, ] = 29.7 Hz), 163.32 (C), 157.53 (C),
133.17 (C), 132.22 (CH), 130.68 (CH, d, ] = 9.2 Hz), 130.24 (CH), 128.95 (CH), 127.98 (CH), 116.10 (CH, d,
] =21.9 Hz), 100.81 (CH), 30.69 (CH). 'F NMR (376 MHz, DMSO-d) § —107.72. ASAP-MS (MeCN)
Rt = 0.36 min [M + H]* = 267.1. Product 4-(4-fluorophenyl)-6-phenylpyrimidine (2y) was consistent
with the literature data [25]. LC-MS (MeCN) R; = 1.96 min [M + H]* = 251.3. HRMS C15H7,N,F calc.
251.0985, found 251.0982, (A = —1.2 ppm).

1-Phenyl-6-(1-phenyl-1H-pyrazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (2z): Starting material 1z was
prepared following the procedure of Smith et al. [21]. Eluent: hexane/ethyl acetate (4:1)—(1:4). Orange
solid, 30% yield. 'H-NMR (400 MHz, DMSO-dg) § 3C-NMR (101 MHz, DMSO-dg) § 158.24, 154.27,
148.34, 141.13, 139.40, 139.28, 134.19, 129.59, 129.32, 129.24, 128.41, 128.07, 126.76, 125.73, 125.35, 123.34,
120.28,118.81, 100.03. LC-MS (MeCN) R¢ = 2.76 min [M + H]* = 352.3. HRMS Cy,H;9Nj5 calc. 354.1470,
found 354.1476, (A = 1.7 ppm).

1-Phenyl-1H-1,2,3-triazole-4-carbonitrile (2aa): [26] Starting material 1aa was prepared following the
procedure of Smith et al. [27]. The product was obtained by recrystallization from ethanol and water.
Orange solid, 65% yield. 'H-NMR (400 MHz, DMSO-dy) 6 8.51 (s, 1H), 7.77-7.74 (m, 2H), 7.64-7.55 (m,
3H). 13C-NMR (101 MHz, DMSO-dq) 5 135.74 (C), 130.21 (CH), 127.59 (CH), 121.96 (C), 120.99 (CH),
111.21 (C).

1-(p-Tolyl)-1H-1,2,3-triazole-4-carbonitrile (2ab): [28] Starting material 1ab was prepared following the
procedure of Smith et al. [27]. The product was obtained by recrystallization from ethanol and water.
Brown solid, 71% yield. "H-NMR (400 MHz, DMSO-dq) 5 9.69 (s, 1H), 7.80 (app. d, ] = 8.5 Hz, 2H), 7.45
(app. d, ] = 8.5 Hz, 2H), 2.40 (s, 3H). '*C-NMR (101 MHz, DMSO-de) § 140.22 (C), 133.82 (C), 130.89 (C),
130.85 (CH), 121.22 (CH), 120.80 (C), 112.52 (C), 21.11 (CH3). ASAP-MS (MeCN) R; = 0.47 min [M +
HJ* =185.1. HRMS C;yHgNjy calc. 185.0827, found 185.0830, (A = 1.6 ppm).
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1-(4-Nitrophenyl)-1H-1,2,3-triazole-4-carbonitrile (2ac): Starting material 1ac was prepared following the
procedure of Smith et al. [27]. The product was obtained by recrystallization from ethanol and water
as a brown solid in 81% yield. 'H-NMR (400 MHz, DMSO-d) § 9.94 (s, 1H), 8.51 (d, ] = 8.7 Hz, 2H),
8.23 (d, ] = 8.7 Hz, 2H). 13C-NMR (101 MHz, DMSO-dy) 6 148.03 (C), 140.27 (C), 131.81 (CH), 126.08
(CH), 122.21 (CH), 121.35 (C), 112.19 (C). ASAP-MS (MeCN) R; = 0.75 min [M + H]* = 216.1. HRMS
CyHgN5O; cale. 216.0521, found 216.0521, (A = 0.0 ppm).

2-(2-Pyridinyl)-quinoline (2ad): [29] Starting material 1z was prepared following the procedure of Smith
et al. [30]. The product was obtained by elution with hexane/ethyl acetate (100:1)—(10:1) as a white
solid in 70% yield. '"H-NMR (400 MHz, CDCl3) § 8.75 (ddd, | = 4.8, 1.8, 1.0 Hz, 1H), 8.68 (dt, ] = 8.0,
1.1 Hz, 1H), 8.58 (d, ] = 8.6 Hz, 1H), 8.29 (dd, J = 8.6, 0.9 Hz, 1H), 8.21 (dq, ] = 8.5, 0.9 Hz, 1H), 7.95-7.81
(m, 2H),7.76 (ddd, ] = 8.4, 6.9, 1.5 Hz, 1H), 7.57 (ddd, | = 8.1, 6.9, 1.2 Hz, 1H), 7.37 (ddd, ] = 7.5, 4.8,
1.2 Hz, 1H). *C-NMR (101 MHz, CDCl3) § 156.17 (C, d, ] = 16.0 Hz), 149.24 (CH), 147.96 (C), 137.13
(CH, d, ] =12.2 Hz), 129.72 (CH, d, ] = 15.5 Hz), 128.37 (C), 127.74 (CH), 126.91 (CH), 124.18 (CH),
122.02 (CH), 119.09 (CH). ASAP-MS (MeCN) R; = 0.59 min [M + H]* = 207.1.

(2-Aminothiophen-3-yl)(phenyl)methanone (lae): Starting material lae was prepared following the
procedure of Mallia et al. [31] as tan needles in 99% yield by column chromatography using hexane/ethyl
acetate (1:1). 'H-NMR (400 MHz, DMSO-d) & 8.37 (s, 2H), 7.64-7.55 (m, 2H), 7.55-7.41 (m, 3H), 6.74
(d,] =5.9 Hz, 1H), 6.27 (d, ] = 5.9 Hz, 1H). 13C-NMR (101 MHz, DMSO-de) 5 189.62 (C), 167.83 (C),
141.38 (C), 130.92 (CH), 128.68 (CH), 128.14 (CH), 127.06 (CH), 113.37 (C), 106.66 (CH). LC-MS (MeCN)
Rt =2.20 min [M + H]* = 204.2. HRMS C1;H;(oNOS calc. 204.0483, found 204.0484, (A = 0.5 ppm).

Phenyl(thiophen-3-yl)methanone (2ae): [32] Eluent: hexane/ethyl acetate (1:1) as a tan coloured oil in 66%
yield. 'H-NMR (400 MHz, DMSO-dg) § 8.21 (dd, ] = 2.8, 1.3 Hz, 1H), 7.83-7.77 (m, 2H), 7.71 (dd, ] = 5.0,
2.8 Hz, 1H), 7.69-7.62 (m, 1H), 7.59-7.50 (m, 3H). 3C-NMR (101 MHz, DMSO-d) & 189.57 (C), 140.87
(C), 138.56 (C), 135.73 (CH), 132.91 (CH), 129.50 (CH), 129.05 (CH), 128.50 (CH), 128.05 (CH). LC-MS
(MeCN) R¢ = 2.41 min [M + H]* = 189.2. HRMS C11HgOS calc. 189.0374, found 189.0377, (A = 1.6 ppm).

(2-Aminothiophen-3-yl)(4-methoxyphenyl)methanone (1af): Starting material 1xx was prepared following
the procedure of Mallia et al. [31] as tan needles in 99% yield by column chromatography using
hexane/ethyl acetate (1:1). "H-NMR (400 MHz, DMSO-dg) & 8.25 (s, 2H), 7.60 (d, ] = 8.25 Hz, 2H), 7.02
(d, ] = 8.25 Hz, 2H), 6.81 (d, ] = 5.9 Hz, 1H), 6.27 (d, ] = 5.9 Hz, 1H), 3.82 (s, 3H). 1*C-NMR (101 MHz,
DMSO-de) 6 188.72 (C), 167.35 (C), 161.61 (C), 133.73 (C), 130.38 (CH), 127.16 (CH), 113.93 (CH), 113.40
(C), 106.43 (CH), 55.78 (CH3). LC-MS (MeCN) R¢ = 2.20 min [M + H]* = 234.2. HRMS C;,H1,NO,S
calc. 234.0589, found 234.0594, (A = 2.1 ppm).

(4-Methoxyphenyl)(thiophen-3-yl)methanone (2af): [33] Eluent: hexane/ethyl acetate (4:1). Yellow crystals,
69% yield. '"H-NMR (400 MHz, DMSO-dy) & 8.18 (dd, | = 2.8, 1.3 Hz, 1H), 7.86-7.77 (m, 2H), 7.70 (dd,
J =5.1,2.8 Hz, 1H), 7.50 (dd, ] = 5.1, 1.3 Hz, 1H), 7.14-7.02 (m, 2H), 3.86 (s, 3H). 3C-NMR (101 MHz,
DMSO-dg) 6 188.26 (C), 163.27 (C), 141.15 (C), 134.32 (CH), 132.01 (CH), 130.92 (C), 128.63 (CH), 127.74
(CH), 114.35 (CH), 55.99 (CH3). LC-MS (MeCN) R = 2.41 min [M + H]* = 219.4 HRMS C1,H;00,S
calc. 219.0480, found 219.0486, (A = 2.7 ppm).

4-(3-chlorophenyl)thiazol-2-amine (lag): Prepared following the procedure of Potopnyk et al. [34].
Recrystallised from acetone to yield a white solid, 90% yield. 'H-NMR (400 MHz, DMSO-d) & 7.85
(t, ] =2.0Hz, 1H), 7.72 (dt, ] = 7.3, 1.7 Hz, 1H), 7.56-7.44 (m, 2H), 7.40 (s, 1H). 13C-NMR (101 MHz,
DMSO-dg) 6 170.49 (C), 139.07 (C), 134.19 (C), 131.74 (CH), 131.33 (C), 129.39 (CH), 125.98 (CH), 124.94
(C), 104.93 (CH). LC-MS (MeCN) R; = 1.25 min [M + HJ* = 211.0. HRMS CoH;CIN,S calc. 211.0097,
found 211.0111, (A = 6.6 ppm).

4-(3-chlorophenyl)thiazole (2ag): Isolated as an inseparable mixture of the product and a secondary
species in a ratio of 1:0.33 (2ag:by-product) equating to 45% of the desired product.
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4-(3-bromophenyl)thiazol-2-amine (lah): Prepared following the procedure of Potopnyk et al. [34].
Recrystallised from acetone to yield a white solid. White crystals, 88% yield. 'H-NMR (400 MHz,
DMSO-dg) 5 9.04 (s, 2H), 7.97 (t, ] = 1.8 Hz, 1H), 7.76 (dt, ] = 7.7, 1.2 Hz, 1H), 7.61 (dt, ] = 7.7, 1.8 Hz,
1H), 7.52-7.29 (m, 2H). 3C-NMR (101 MHz, DMSO-dy) & 170.53 (C), 138.41 (C), 132.38 (CH), 131.65 (C),
131.57 (CH), 128.75 (CH), 125.31 (CH), 122.74 (C), 105.01 (CH). LC-MS (MeCN) R¢ = 2.06 min [M + H]*
= 257.4. HRMS CoHg”’BrN,S calc. 254.9592, found 254.9603, (A = 4.3 ppm, mDa 1.1).

4-(3-Bromophenyl)thiazole (2ah): Isolated in 51% using Hexane/EtOAc 1:1. H-NMR (400 MHz, CDCl5)
5891(d,]=2.0Hz 1H),8.13 (t,] = 1.8 Hz, 1H), 7.88 (ddd, ] = 8.0, 1.7, 1.0 Hz, 1H), 7.59 (d, ] = 2.0 Hz,
1H), 7.50 (ddd, | = 8.0, 2.0, 1.1 Hz, 1H), 7.35-7.30 (m, 1H).LC-MS Rt 2.64 found 240.1; HRMS found
239.9501 for CoH;NS”’Br calc. 239.9483 (7.5 ppm, mDa 1.8).

4-(4-Trifluorophenyl)thiazol-2-amine (1ai): Prepared following the procedure of Potopnyk et al. [34]/
Recrystallised from acetone to yield a white solid, 78% yield 'H-NMR (400 MHz, DMSO-dg) & 7.99
(m, 2H), 7.82 (m, 2H), 7.46 (s, 1H). 3C-NMR (101 MHz, DMSO-dg) & 170.61 (C), 139.09 (C), 133.46 (C),
129.46 (C, q, ] = 32.3 Hz), 126.95 (CH), 126.33 (CH, q, ] = 3.8 Hz), 124.48 (C, q, ] = 272.4 Hz), 106.10
(CH). F NMR (376 MHz, DMSO) § —61.26.

4-(4-Trifluorophenyl)thiazole (2ai): Isolated in 43% using Hexane/EtOAc 1:1. 'H-NMR (400 MHz, CDCl3)
§8.94 (d, ] = 2.0 Hz, 1H), 8.07 (app. dp, ] = 7.7, 0.9 Hz, 2H), 7.77-7.62 (m, 3H). 3C-NMR (101 MHz,
CDCl3) 6 154.90 (C), 153.33 (CH), 137.38 (C), 130.08 (C, q, ] = 31.8 Hz), 128.80 (C), 126.65 (CH), 125.83
(CH, q,] =3.8Hz), 124.13 (C, q, ] = 273 Hz), 114.44 (CH). LC-MS Rt 2.71 found 230.1 [M + H] 271.1
[MH + MeCN], HRMS found 230.0253 for C19H7NSFj3 calc. 230.0251 (0.9 ppm).

5-Amino-1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carbonitrile (1aj): Prepared following the procedure
of Brand et al. [35] in 77% yield following recrystallization from ethanol as a red solid. 'H-NMR
(400 MHz, DMSO-dg) § 7.51 (m, 1H), 7.26 (s, 2H), 7.21-7.10 (m, 2H), 5.40 (d, ] = 1.1 Hz, 2H). 1*C-NMR
(101 MHz, DMSO-d;) 6 161.17 (C, dd, | = 249.3, 8.2 Hz), 148.59 (C), 132.04 (CH, t, ] = 10.7 Hz), 114.02
(C), 112.31 (CH, app. dd, ] = 24.9, 5.8 Hz), 101.34 (C), 37.89 (CHy). ’F NMR (376 MHz, DMSO-dy) &
—114.54. ASAP-MS (MeCN) R¢ = 0.44 min [M + H]* = 236.1. HRMS C;yHgN5sF, calc. 236.0748, found
236.0755, (A = 3.0 ppm).

1-(2,6-Difluorobenzyl)-1H-1,2,3-triazole-4-carbonitrile (2aj): [36] Recrystallised from ethanol and water
as a red solid in 73% yield. 'H-NMR (400 MHz, DMSO-d;) 6 9.18 (s, 1H), 7.54 (tt, ] = 8.5, 6.7 Hz,
1H), 7.33-7.07 (m, 2H), 6.02 - 5.52 (m, 2H). 13C-NMR (101 MHz, DMSO-dg) § 162.1.2 (C, dd, ] = 249.5,
6.7 Hz), 132.94, (CH), 132.62 (CH, t, ] = 10.6 Hz), 120.12 (C), 112.51 (C), 112.46 (CH, m), 110.80 (C, t,
] =19.1 Hz), 42.33 (CHy). F NMR (376 MHz, DMSO-ds) § —114.42. LC-MS (MeCN) R; = 1.93 min [M
+ H]* = 221.1. HRMS C;yH;NyF; calc. 221.0639, found 221.0643, (A = 1.8 ppm).

Methyl 5-amino-1-(phenylmethyl)-1H-1,2,3-triazole-4-carboxylate (1ak): Eluent: hexane/ethyl acetate (25: 1).
Prepared from the following procedure: benzyl bromide (20 mmol) and sodium azide (30 mmol) in
acetone (5 mL) and water (2 mL) were stirred with sodium hydroxide (30 mmol) at ambient temperature
for 24 h. The resulting mixture was concentrated under reduced pressure and then ethyl acetate (10 mL)
and water (10 mL) were added. Following phase separation, the organic phase was concentrated under
reduce pressure to give benzyl azide. The benzyl azide and cyanoacetic acid (20 mmol) was dissolved
in dimethyl formamide (5 mL) and water (2 mL) and heated at 120 °C for 48 h. To the resultant mixture
was added ethyl acetate (10 mL) and water (10 mL). Following phase-separation, the organic phase
was concentrated under reduced pressure, to give a brown oil, which was twice purified by column
chromatography to give the desired product as a pale powder in 8% yield. 'H-NMR (400 MHz, CDCl5)
57.49 (m, 2H), 7.16 (m, 3H), 4.56 (s, 2H), 3.84 (s, 3H). LC-MS (MeOH) R = 0.56 min [M + H]* = 232.2.

Ethyl oxazole-4-carboxylate (2am): "H-NMR (400 MHz, CDCl3) § 8.27 (d, ] = 1.1 Hz, 1H), 7.94 (d,
J = 1.1Hz, 1H), 4.39 (q, ] = 7.1 Hz, 2H), 1.38 (t, ] = 7.1 Hz, 3H). '*C-NMR (101 MHz, CDCl3) § 160.95
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(C), 151.40 (CH), 144.01 (CH), 133.33 (C), 61.31 (CH>), 14.24 (CH3). EI GC polar compounds (MeCN)
R¢ = 3.20 min M* = 141.1. HRMS C4HgNOj calc. 142.050419, found 142.050416 (A = 1.7 ppm).

1-Chloro-4-phenoxybenzene (2al): '"H-NMR (400 MHz, CDCl3) & 7.46-7.35 (m, 1H), 7.27-7.17 (m, 1H),
7.10-6.98 (m, 1H). 3C-NMR (101 MHz, CDCl3) 5 155.04, 146.68, 130.32, 128.47, 126.89, 125.14, 119.40,
118.17. LC-MS (MeOH) Rt = 1.21 min [M + H]* = 205.0.

6-methyl-[1,2,4]triazolo[1,5-alpyridin-2-amine (1an) was prepared according to the general procedure of
Veréek et al. [37]. N-Ethoxycarbonyl-N’-(5-methyl-2-pyridinyl)thiourea: 'H-NMR (400 MHz, DMSO-d;)
512.11 (s, 1H), 11.43 (s, 1H), 8.57 (s, 1H), 8.32-8.02 (m, 1H), 7.69 (ddd, | = 8.5, 2.4, 0.8 Hz, 1H), 4.22
(q, ] = 7.1 Hz, 2H), 2.28 (s, 3H), 1.26 (t, ] = 7.1 Hz, 3H). 3C-NMR (101 MHz, DMSO-dg) § 177.57 (C),
153.97, 149.57, 148.54, 138.76, 130.85, 115.48, 62.63 (CH,), 17.81 (CHj3), 14.57 (CHj3). ESI-LC MeCN
(TQD) R¢ = 2.20 min, M* = 241.3 HRMS C;yH14N30,S calc. 240.0807, found 240.0807 (A = 2.9 ppm).
6-Methyl-[1,2,4]triazolo[1,5-a]pyridin-2-amine (1an): TH-NMR (400 MHz, DMSO-d;) & 8.37 (s, 1H),
7.25(d, ] = 1.3 Hz, 2H), 5.90 (s, 2H), 2.25 (d, ] = 1.1 Hz, 3H). *C-NMR (101 MHz, DMSO-de) & 166.32
(C), 149.46 (C), 131.57 (CH), 126.16 (CH), 121.08 (C), 112.25 (CH), 17.60 (CH3). ESI-LC MeCN (TQD)
R¢ = 0.70 min, M* = 149.6. HRMS C;HgNjy calc. 149.0827, found 149.0830 (A = 2.0 ppm).

2,6-Diethyl-5-methylpyrimidin-4-aminium acetate (laq): Starting material synthesized following the
procedure Baxendale et al. [38]. Salt formed by addition of 1 equivalent of acetic acid and the material
recrystallized from ethanol as white crystals in 60% yield. "H-NMR (400 MHz, DMSO-dq) § 13.37
(s, 1H), 8.79 (s, 1H), 8.19 (s, 1H), 2.72 (m, | = 7.6 Hz, 4H), 2.03 (s, 3H), 1.24 (t, ] = 7.6 Hz, 3H), 1.16 (t,
] = 7.6 Hz, 3H). 13C-NMR (101 MHz, DMSO-dg) § 165.06 (C), 163.58 (C), 155.76 (C), 108.63 (C), 27.83
(CH,), 23.79 (CHy), 13.00 (CH3), 11.69 (CH3), 10.85 (CH3). ASAP-MS (MeCN) R; = 0.34 min M* = 166.1.
HRMS CoH1¢N3 calc. 166.1344, found 166.1344, (A = 0.0 ppm).

5. Conclusions

In summary, we have developed a simple method for the replacement of heteroaromatic primary
amino groups with hydrogen. Heteroaryl amines that are often challenging, undergo deamination in
good yields in a single, simple reactor. A range of functional groups are tolerated under the optimised
conditions, making use of the improved mixing and heat dissipation that working in flow has to offer.
The method has allowed certain structures that are particularly challenging to be deaminated in a
homogeneous organic system for the first time. The yields for the deamination of simple anilines are
comparable to existing methods, but advantages in terms of reaction time and the ease of the process
should be noted. This protocol would inspire further application of continuous flow towards improved
yields, incorporating radical catalysts and in-line purifications.

Supplementary Materials: The following are available online: NMR spectra of products where an isolated yield
is reported and for starting materials that were not commercially available, hence we have synthesised ourselves.
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