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Abstract: The presence of several organic contaminants in the environment and aquatic compartments
has been a matter of great concern in the recent years. To tackle this problem, new sustainable
and cost-effective technologies are needed. Herein we describe magnetic biosorbents prepared
from trimethyl chitosan (TMC), which is a quaternary chitosan scarcely studied for environmental
applications. Core@shell particles comprising a core of magnetite (Fe3O4) coated with TMC/siloxane
hybrid shells (Fe3O4@SiO2/SiTMC) were successfully prepared using a simple one-step coating
procedure. Adsorption tests were conducted to investigate the potential of the coated particles for the
magnetically assisted removal of the antibiotic sulfamethoxazole (SMX) from aqueous solutions. It
was found that TMC-based particles provide higher SMX adsorption capacity than the counterparts
prepared using pristine chitosan. Therefore, the type of chemical modification introduced in the
chitosan type precursors used in the surface coatings has a dominant effect on the sorption efficiency
of the respective final magnetic nanosorbents.

Keywords: trimethyl chitosan; magnetic nanoparticles; core@shell; hybrid coating; water treatment;
adsorption; sulfamethoxazole

1. Introduction

Emerging pollutants encompass a vast number of organic compounds such as pharmaceuticals
that, in recent years, have accumulated in aquatic compartments due to continuous and uncontrolled
discharge of such substances into the environment [1,2]. The antibiotic sulfamethoxazole is among the
pollutants detected in water sources [1,3,4]. Sulfamethoxazole (SMX) is a broad-spectrum antibiotic
for human and veterinary use, that belongs to sulfonamide group and that has been identified as a
persistent pollutant [5]. Based on its consumption, discharge, persistence and toxic properties, SMX has
been considered by several scientists as an antibiotic of particular concern for aquatic environments [4].

Most wastewater treatment plants (WWTPs) are not efficient in the removal of emerging
pollutants [6–8]. The median SMX removal rate in WWTPs worldwide, considering 190 removal
rates reported, is about 49% [9]. Given the limitations of conventional treatments used in WWTPs,
novel, sustainable and effective technologies are in high demand. Several methods have been
proposed for the removal of SMX from water [10], including advanced oxidation processes [11],
biological treatment [12], membrane separation [13] and adsorption [14]. Among these methods,
adsorption is very attractive in view of its simplicity of implementation, cost-effectiveness, and less
production of toxic intermediates. However, so as to achieve highly effective adsorptive separation,
sorbent materials with high capacity, chemical selectivity and fast rate of adsorption must be used.
This is a challenge and it has boosted the development of new sorbents. Several materials have
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been proposed for the uptake of sulfamethoxazole from contaminated water through adsorptive
methods [15–19]. These sorbents present several drawbacks including low adsorption capacity [15,17],
the use of hazardous compounds for aquatic life [20,21], the need of expensive components [18,19]
and elaborated synthetic procedures with several steps [19]. Thus, novel sorbent materials are needed.
Magnetic nanosorbents with core-shell structure are amongst the most interesting alternatives given the
concomitant large surface area and magnetic features that allow for magnetically assisted separation
technologies. Magnetic separation can be done using low magnetic fields [22] providing an attractive
and cost-effective method for practical operation. Magnetic iron oxides such as magnetite (Fe3O4) are
suitable as core material owing to convenient magnetic properties, low toxicity and price, and facile
preparation [23–26]. Coating of Fe3O4 is desirable to prevent its oxidation and consequent iron ions
leaching and reduction of magnetization. Bare magnetite particles show modest adsorption towards
sulfonamide antibiotics [27]. Thus, coating of Fe3O4 is necessary to provide specific functionalities
that can be selective for pollutants uptake and enhance sorption performance. The composition of
the coating determines the sorbents surface chemistry characteristics, such as acidity/basicity and
charge, that could impose decisive influence on the sorption capacity and mechanism. The search for
eco-friendly and low-cost sorbents has prompted the interest for new biopolymer-based nanomaterials
and their use in water decontamination [28]. In this context, our group has explored the promising
ability of several magnetic biopolymer-siloxane hybrid nanomaterials in the uptake of a wide variety
of pollutants from water [29–32]. Chitosan is among the biopolymers of interest for water treatment
purposes owing to its low-cost, biodegradability, low toxicity and chemical functionality [33]. However
unmodified chitosan shows little adsorption of SMX and appropriate chitosan modification is required
to achieve high adsorption capacity. With this end in view, chitosan modified with immobilized metal
cations has been reported for the adsorption of SMX [34] or to enhance the interaction with other
sulfonamide antibiotics [35].

N,N,N-trimethylchitosan (TMC) is a quaternary derivative of the polysaccharide chitosan that
has received considerable attention in biomedical applications, namely as absorption enhancer in
drug delivery [36,37]. TMC, as most of chitosans and derivatives, present low toxicity [38]. In TMC a
positive charge is introduced by quaternization of amino group of chitosan. Owing to cationic groups,
TMC provides an opportunity for development of novel sorbent compositions with ability to interact
with negatively charged pollutants that are present at common pH values found in real waters. This
is a clear advantage when compared with unmodified chitosan that displays positive charge only in
acidic conditions. Furthermore, TMC shows enhanced antimicrobial activity than original chitosan [39].
Nevertheless, to the best of our knowledge, TMC was barely explored for the development of sorbents
for environmental applications and the number of studies reported in this field is scarce [40–42].

In this work we have investigated the coating of magnetite nanoparticles with TMC-siloxane
hybrid materials. Furthermore, we have explored the potential application of the resulting core@shell
type nanoparticles as magnetic nanosorbents for the removal of SMX from water through batch
adsorption tests.

2. Materials and Methods

2.1. Materials

Chitosan (from shrimp shells, deacetylation degree ≥75%), tetraethyl orthosilicate (Si(OC2H5)4,
TEOS, >99%), potassium nitrate (KNO3, >99%) and 3-(triethoxysilyl)propyl isocyanate
((C2H5O)3Si(CH2)3NCO, ICPTES, 95%) were purchased from Sigma–Aldrich (Steinheim, Germany).
Trimethyl chitosan was obtained from Henan Tianfu Chemical Co., Ltd (Zhengzhou, China). Potassium
hydroxide (KOH, >86%) was purchased from PronoLab (Lisbon, Portugal). Sulfamethoxazole
(C10H11N3O3S) was obtained from Fluka Chemie (Buchs, Switzerland). Ethanol (CH3CH2OH, >99%)
and ferrous sulfate heptahydrate (FeSO4.7H2O, >99%) were obtained from Panreac (Barcelona, Spain).
N,N–Dimethylformamide (HCON(CH3)2) was obtained from Carlo Erba Reagents (Peypin, France).
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Ammonia solution (25% NH3) was purchased from Riedel-de-Häen (Hanover, Germany) and methanol
(CH3OH, >99%) was purchased from VWR International (Radnor, PA, USA). Milli-Q water was
obtained from the Synergy equipment from Millipore with a 0.22 µm filter (Darmstadt, Germany). All
chemicals were used without any further treatment.

2.2. Synthesis of the Magnetic Core

The magnetic core (magnetite–Fe3O4) was prepared by oxidative hydrolysis of iron(II) sulphate
heptahydrate (FeSO4·7H2O) in alkaline medium, under a N2 stream, as reported in the literature [43].
First, milli-Q water was deoxygenated with N2 under vigorous stirring for two hours. Then, 25 mL
of deoxygenated water was added to 250 mL round flask and 1.90 g and 1.52 g of KOH and KNO3,
respectively, were added. The mixture was heated at 60 ◦C with bubbling N2 and mechanically stirred
at 500 rpm. After salt dissolution, 25 mL of an aqueous solution containing 4.75 g of FeSO4·7H2O
was added drop-by-drop and the stirring was increased to 700 rpm. The solution was left to react for
30 min. Then, the round flask was transferred to a hot oil bath (90 ◦C) and left with no stirring for four
hours, under N2. The resulting black powder was washed several times with deoxygenated water and
ethanol. Finally, the particles were dried at room temperature.

2.3. Coating of the Magnetic Nanoparticles

The coating of the magnetic cores was performed using two distinct chitosans: trimethyl chitosan
(TMC) and pristine chitosan (CHIT). The coating was performed using a sol-gel method, and consisted
in the hydrolytic co-condensation of a mixture of TEOS with a precursor (SiTMC or SiCHIT) comprising
the biopolymer chemically modified with alkoxysilyl groups, carried on in the presence of the magnetic
nanoparticles. Briefly, these precursors were generated by reaction between the polysaccharide (1 g)
TMC or CHIT, dry dimethylformamide (13 mL), and the silane coupling agent ICPTES (1.3 mL) [30,32,44].
The reaction was performed under an inert atmosphere of dry nitrogen (N2), at 100 ◦C (373 K), and left
under constant stirring for 24 h. After cooling at room temperature, the precursors were washed with
dry ethanol and dry methanol. Finally, the volatiles were removed under a dynamic vacuum to yield a
solid product. For the coatings, a suspension of Fe3O4 nanoparticles (40 mg) in 38 mL of ethanol was
prepared and kept immersed in an ice bath, under sonication (horn Sonics, Vibracell, Newtown, CT,
USA). After 15 min, the ammonia (2.4 mL) and a mixture of TEOS (0.406 mL) and precursor (0.4 g)
were slowly added to the solution, that was left for 2 h immersed in an ice bath, under sonication. The
resulting particles were collected magnetically using a NdFeB magnet, and washed thoroughly with
ethanol. Finally, the particles were left to dry by solvent evaporation and two distinct chitosan coated
magnetic particles were obtained (Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT).

2.4. Characterization of the Materials

1H-NMR spectra of chitosans and derivatives were recorded on Bruker AMX 300 spectrometer
at 300.13 MHz (Bruker, Wissembourg, France). Deuterium oxide (D2O), deuterium chloride (DCl)
and deuterated chloroform (CDCl3) were used as solvents, the chemical shifts are expressed in
δ (ppm) and the coupling constants (J) in hertz [Hz]. The morphology and size of the particles
was analyzed by transmission electron microscopy (TEM), using a Hitachi H-9000 TEM microscope
(Chiyoda, Tokyo, Japan) operating at 300 kV. Samples for TEM analysis were prepared by evaporating
the diluted suspensions of the nanoparticles on a copper grid coated with an amorphous carbon
film (Agar Scientific, Stansted, Essex, UK). The particle diameter and the thickness of the siliceous
shell were measured by analysis of the electron micrographs using ImageJ software (version 1.8.0,
https://imagej.nih.gov, National Institutes of Health–NIH, Bethesda, Maryland, MD, USA). At least
50 nanoparticles were measured for each sample. Fourier transform infrared (FTIR) spectra of the
particles were measured in solid state and the spectra of the materials were collected using a Bruker
Optics Tensor 27 spectrometer (Billerica, MA, USA) coupled to a horizontal attenuated total reflectance
(ATR) cell, using 256 scans at a resolution of 4 cm−1. The specific surface area of the particles was

https://imagej.nih.gov
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assessed by nitrogen adsorption Brunauer–Emmett–Teller (BET) measurements performed with a
Gemini V2.0 surface analyzer (Micromeritics Instrument Corp. Norcross, GA, USA) at −196 ◦C. Prior
to BET measurements, the samples were degassed at 80 ◦C under nitrogen flow overnight. Elemental
analysis of carbon, nitrogen and hydrogen was obtained on a Leco Truspec-Micro CHNS 630-200-200
(Saint Joseph, MI, USA). Thermogravimetric analysis (TGA) was performed using a TGA 50 Shimadzu
equipment (Shimadzu, Columbia, MD, USA). Samples were heated from 25 ◦C to 900 ◦C at 10 ◦C/min,
in air. The surface charge of the nanoparticles was given by zeta potential that was determined through
electrophoretic light scattering performed in aqueous solutions of the particles, in a Zetasizer Nano
ZS equipment from Malvern Instruments (Malvern, UK). A Perkin Elmer Analyst 100 apparatus
(Analytical Instrument Resource, Golden, CO, USA) was employed for the iron quantification in
solution using Atomic Absorption spectrophotometry (AAS). Sulfamethoxazole concentrations were
determined spectrophotometrically by monitoring the absorbance at 265 nm using quartz cells in a
GBC Cintra-303 UV-Vis spectrophotometer (GBC Scientific Equipment, Hampshire, IL, USA) and
deionized water as reference.

2.5. Uptake of Sulfamethoxazole from Aqueous Solutions

Batch adsorption tests were performed to investigate the suitability of the coated magnetic
particles (Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT) for the uptake of sulfamethoxazole (SMX)
from water. SMX stock solutions were prepared by dissolving an appropriate amount of the compound
in ultra-pure water and stirring overnight in dark conditions. Solutions with initial SMX concentration
of 40 and 80 mg/L were prepared by diluting the stock SMX solution, and the experiments were
conducted at an initial pH of 5. For adsorption experiments performed at distinct pH values (4, 5, 6, 7,
8 and 9), solutions of NaOH (0.1 M) and HCl (0.1 M) were used for pH adjustment. The effect of these
pH values was tested at an initial SMX concentration of 40 mg/L. The aqueous solutions of SMX were
freshly prepared before each experiment.

Batch experiments were carried out by adding precisely weighted amounts of each coated magnetic
particles to a SMX aqueous solution of known concentrations in glass vials and shaken using a vertical
rotator at a constant rotation speed (30 rpm), under isothermal conditions (25 ± 1 ◦C), for 24 h. The
sorbent dosage tested was 0.5 mg/mL in all the experiments. Aliquots were collected for analysis at
different times, and the magnetic nanosorbents were separated magnetically using a NdFeB magnet.
The removal efficiency of SMX was assessed by measuring the amount of antibiotic that remained in
solution after being in contact with the coated magnetic particles. Sulfamethoxazole concentration
in the supernatant was determined spectrophotometrically by monitoring the absorbance at 265 nm,
respectively, in a UV-Vis spectrophotometer (GBC Scientific Equipment, Hampshire, IL, USA). Plotting
the absorbance against SMX concentration, the calibration curve was given by the best data fit by
a linear least square equation (Figure S1, Supporting Information), that was used to convert the
absorbance into SMX concentration, for all analyzed samples.

The amount of SMX adsorbed per mass unit of particles, at time t, (qt in mg/g) was estimated
from the mass balance between its initial concentration (C0 in mg/L) and the concentration at time t (Ct

in mg/L) in solution, as displayed by Equation (1), where V (L) is the total volume of SMX solution and
m, expressed in g, is the dry weight of the magnetic adsorbents:

qt = (C0 −Ct) ×
V
m

, (1)

The removal capacity (R, expressed in %) was calculated from Equation (2):

R =
C0 −Ct

C0
× 100, (2)

Control uptake experiments, i.e., in the absence of sorbent particles, were also carried out in
parallel under the same conditions to confirm if SMX losses were negligible. Equilibrium isotherms
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for the removal of SMX from aqueous solutions were obtained by using SMX solutions with different
concentrations (20, 40, 70, 90, 140, 160, 180 and 195 mg/L), at pH 5 and 25 ◦C for 24 h. The amount
of SMX adsorbed at equilibrium (qe, mg/g) was assessed by UV–Vis spectroscopy (GBC Scientific
Equipment, Hampshire, IL, USA) and calculated using Equation (1) for Ct = Ce, where Ce (mg/L)
is the concentration of the solute at equilibrium. To assess the stability of Fe3O4@SiO2/SiTMC and
Fe3O4@SiO2/SiCHIT nanoparticles in aqueous medium, 2.5 mg of particles were dispersed in 5 mL of
distilled water at pH = 5 and left stirring for 8 h. Afterwards the particles were separated magnetically
and the supernatant was analyzed using AAS for Fe content. A Perkin Elmer Analyst 100 apparatus
was employed for the iron quantification.

In order to investigate the reusability of the sorbent particles, 10 mg of magnetic particles were
loaded with SMX using 20 mL of an aqueous solution at a concentration of 80 mg/L. For desorption, the
SMX-loaded particles were collected, rinsed three times with 20 mL ethanol, magnetically separated
and dried. After SMX desorption, the particles were reused in adsorption experiments and the process
was repeated for four times.

3. Results and Discussion

3.1. Characterization of Chitosan Polymers

In this work, magnetic Fe3O4 nanoparticles have been coated with hybrid siliceous shells enriched
in trimethyl chitosan (TMC) which is a quaternary chitosan of interest for biomedical and environmental
applications. The coating process followed a one-step procedure, comprising the hydrolysis and
condensation of a mixture tetraethyl orthosilicate (TEOS) and an alkoxysilane derivative of TMC,
carried on in the presence of the magnetic particles (Scheme 1).

As previously reported, this synthetic approach allows the coating of Fe3O4 particles with siliceous
shells enriched with neutral and anionic polysaccharides [31,32]. More recently, we succeeded in
applying this methodology to the coating of magnetic nanoparticles with chitosan which is a cationic
polysaccharide [44]. Herein, besides TMC, pristine chitosan (CHIT) was also used for comparison
effects. These two polysaccharides have similar backbone structure but differ in chemical functionality
as evidenced by 1H-NMR spectroscopy results (Figure 1). The spectrum of chitosan (Figure 1a) shows
the proton resonances of the glycopyranose unit [45]: H1 at 4.8 ppm, H2 at 3.2 ppm and H3-H6 at
4.0–3.5 ppm. The protons from acetyl group appear at 2.4 ppm. Overall, these resonances were visible
in the spectrum of TMC. In the spectrum of TMC (Figure 1b) a new resonance appeared at 3.4 ppm
that is ascribed to the methyl group at the N,N,N-trimethylated site [46–49]. The resonance at 3.1 ppm
suggests also dimethylation of TMC [50] that was further confirmed by the appearance of a new
resonance at 46.8 ppm in the 13C-NMR spectrum (data not shown). The degree of quaternization
calculated from 1H-NMR data (Equation (S1), Supporting Information) was 15.3% for TMC.

The alkoxysilane derivative of TMC (SiTMC), was prepared by reacting an organosilane with
isocyanate functionality (ICPTES) with the polymer TMC (Scheme 1b). The isocyanate groups can
react with hydrogen labile groups, such as amine and hydroxyl groups, present in TMC. Note that
the degree of quaternization of TMC was 15.3%, indicating the presence of primary amines in the
structure of TMC that could react with isocyanate to form urea type covalent bonds. In the 1H-NMR
spectrum of SiTMC (Figure S2, Supporting Information) novel resonances could be ascribed to –NH–
in urethane (5.3 ppm in CDCl3) and –CH3 from etoxy groups (1.0 ppm in CDCl3) that confirm the
reaction between TMC and ICPTES [51].
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3.2. Characterization of Fe3O4 Coated Particles

Magnetite nanoparticles (Fe3O4) were synthesized by oxidative hydrolysis of Fe(II) in alkaline
conditions [43]. The synthesis yielded a black precipitate that could be isolated by magnetic separation.
The powder X-ray diffraction (XRD) patterns of the prepared particles (Figure S3, Supporting
Information) matched well the diffraction patterns reported for magnetite (JCPDS file No. 19-0629,
space group Fd3m) [52], and confirm that Fe3O4 is the main crystalline phase present in its composition.
The transmission electron microscopy (TEM) images indicate that Fe3O4 particles were spheroidal in
shape with an average size of 54 ± 9 nm (Figure 2a and Figure S4, Supporting Information). After
hydrolysis and condensation of a mixture of alkoxysilane derivative of the biopolymer with TEOS,
performed in the presence of Fe3O4 particles, the particles appear uniformly coated with amorphous
shells (Figure 2b,c). The thickness of the coatings, determined from TEM images, were 26 ± 3 nm
for TMC particles and 14 ± 2 nm for CHIT particles, respectively. It is clear that this approach yields
thicker coatings when quaternary chitosan is involved, in comparison with pristine chitosan. The
coated particles were magnetic and were quickly separated from the solution using a bench magnet
(Figure S5, Supporting Information). In our previous studies with identical Fe3O4 nanoparticles, we
have confirmed that these are ferrimagnetic with a saturation magnetization and coercivity values of
84 emu/g and 100 Oe, respectively [43]. In coated particles the magnetization saturation is expected to
decrease owing to the diamagnetic siliceous shell [43]. Nevertheless, the coated particles still exhibit
magnetic characteristics that make them suitable for magnetically assisted separation.
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Figure 2. TEM images of neat and surface modified nanoparticles: (a) Fe3O4; (b) Fe3O4@SiO2/SiTMC
and (c) Fe3O4@SiO2/SiCHIT.

The specific surface area (SBET) and the total porosity of the particles (Vp) was assessed by N2

sorption/desorption technique. The coated particles have a similar specific surface area of 7 m2/g
(Table 1) and low total porosity (<0.01 cm3/g), indicating that the coating has no relevant porosity.
The BET specific surface areas (SBET) of the bare magnetite and coated particles, were compared
with the theoretical specific surface areas (S) making use of the S = 6/(D × %) relationship, where % is
particle density. This parameter was taken as 5.20 g/cm3, for bare magnetite. For coated magnetites
it was assumed that the density of the coating was the density of amorphous SiO2 (2.2 g/cm3) and
the theoretical surface area was estimated from Equation (S2) (Table S1, Supporting Information).
Coated magnetite shows similar S values than bare magnetite. This is explained by a combined
influence of the increase of particle diameter and decrease of particle density, these parameters having
opposite effects on the resulting specific surface area. The BET specific surface areas were of the
same order of magnitude than the geometric specific surface area values but consistently lower. This
difference was more marked in coated particles and might suggest to some extent the formation of
coated particles containing several cores inside. Nevertheless, multicore particles were not detected in
TEM micrographs.
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Table 1. Compositional and morphological properties of uncoated and coated Fe3O4 nanoparticles.

Sample C (%) 1 H (%) 1 N (%) 1 D (nm) 2 SBET (m2/g) 3 VP (cm3/g)

Fe3O4 0.06 0.16 0.01 54 ± 9 13.6 0.027
Fe3O4@SiO2/SiTMC 28.6 5.3 5.1 98 ± 11 7.03 0.007
Fe3O4@SiO2/SiCHIT 28.5 5.8 5.3 68 ± 11 7.74 0.007
1 Carbon, hydrogen and nitrogen content measured by elemental microanalysis. 2 Particle diameter assessed by
TEM. 3 BET surface area (SBET) and porosity volume (VP) assessed by N2 sorption isotherms.

FTIR spectroscopy of the coated materials was performed to assess the composition of the particles’
coating. The spectrum of magnetite (Figure 3a) shows a strong band centered around 530 cm−1 that is
ascribed to the Fe–O stretching vibration in the Fe3O4 lattice [43]. A similar band is also visible in the
spectra of the subsequent coated particles, with a shift of around 27 cm−1 to higher wavenumbers. The
bands centered in the range 770–790 cm−1 and 443 cm−1 can be ascribed to symmetric Si–O–Si stretching
and O–Si–O deformation modes of amorphous SiO2, respectively [53,54] and indicates the formation
of a polysiloxane network in the coatings. The broad and intense band centered at 1057–1076 cm−1

results from overlapped vibrational contributions of the silica and the chitosan polymers [44]. Also, the
broad band at ca. 3350 cm−1 can be ascribed to O–H stretching, either from chitosans or silanol groups
from silica. In the spectra of the coated particles two new bands appear in the range of 1633–1639 cm−1

and 1556–1567 cm−1 that could suggest the presence of chitosan polymers. The former can be ascribed
to C=O stretching (amide I) in chitosans [55] or to C=O stretching mode in urethane groups [56,57].
The latter is ascribed to C=O stretching in urea groups [56,57]. Both urethane and urea bonds are
expected to be formed in the alkoxysilane derivative of the chitosans, used in this coating process,
as depicted in Scheme 1. These bands confirm that the chitosan and TMC are covalently linked to
siloxane network, which is important to avoid polymer leaching from the coatings. The presence of
the chitosans in the coated particles was confirmed by elemental microanalysis (Table 1). Uncoated
magnetite shows negligible carbon amount. In contrast, coated particles show important carbon
(28 wt%) and nitrogen content (ca. 5 wt%) that is coming from the organic (biopolymer) component
(Table S2, Supporting Information). These results confirm that the coatings prepared from TMC and
pristine chitosan are enriched in biopolymer, which is in line with previous observations [30]. The
biopolymer content estimated from the elemental analysis was 76 wt% and 72 wt%, respectively for
TMC and chitosan-based particles.
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Further insight into the nature of the coatings was provided by thermogravimetric analysis (TGA)
of non-magnetic biopolymer-siloxane hybrid materials of composition identical to the coatings and
the coated magnetic hybrid particles. The non-magnetic materials were prepared by employing the
chemical route applied in the coating procedure but in this case in the absence of Fe3O4 nanoparticles.
The TGA analysis (Figure 4) provided complementary information regarding the composition and
thermal properties of the coatings. The TGA curves of the non-magnetic biopolymer-siloxane hybrid
materials exhibit two main stages of weight loss. The first one occurs in the 50–140 ◦C range due to
loss of adsorbed water. Siliceous materials prepared from TMC showed more weight loss at this stage
(13–14%) than those prepared from pristine chitosan (6%). Similar trend was observed in the TGA of the
original polymers, CHIT and TMC, and of the coated particles, and it is due to enhanced hydrophilicity
of the chitosan subjected to quaternization [58]. The second stage of weight loss takes place from
230 to 400 ◦C and it is due to carbohydrate-backbone fragmentation, including the deacetylation of
chitosan and the decomposition of substituted site [59]. This stage begins at lower temperatures for
TMC, showing that this quaternary derivative are less thermal stable than the unmodified chitosan [50].
In the siloxane hybrid prepared from TMC this decomposition stage starts at higher temperatures
than in the polymer component, thus indicating better thermal stability due to the formation of the
polysiloxane network. This is further confirmed by the displacement of the peak temperature in
derivative thermogravimetric (DTG) curves to higher temperatures and the decrease of peak area
(Figure 4b). Conversely, the hybrid SiO2/SiCHIT started to decompose at lower temperature than
chitosan (210 ◦C vs 230 ◦C). Nevertheless, the maximum decomposition rate temperature is higher
in the hybrid material (312 ◦C vs 303 ◦C). At 900 ◦C, the hybrid materials show more residue mass,
ca. 15–17 wt.% more than in the corresponding polymer counterpart, which is in agreement with
the presence of a siliceous inorganic component in the hybrid material. Regarding magnetic hybrid
particles it can be observed that the incorporation of the magnetic core has opposite effect on the thermal
stability of TMC and chitosan-based hybrid materials. Thus, the second stage of weight loss starts at
lower temperature for Fe3O4@SiO2/SiTMC, and at higher temperature for Fe3O4@SiO2/SiCHIT, when
compared to the non-magnetic counterparts. This distinct effect is in agreement with the complexity
of the mechanism of polymer thermal decomposition in magnetic nanocomposites, as observed
in previous studies. For example, several works report the decrease in the initial decomposition
temperature of dextran coated magnetite or in chitosan/magnetite nanocomposites, in comparison with
the respective polymer component, an effect that was ascribed to the catalytic action of magnetite on
the thermal decomposition of the polymer [60,61]. However, an enhancement of the thermal stability
of chitosan and other polymers owing to the incorporation of magnetite nanoparticles has also been
described [62,63].
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The distinct surface composition of the coated particles was further confirmed by differences in
the surface charge of the nanoparticles (Figure 5). The surface charge was assessed by zeta potential (ζ)
measurements at variable pH. Bare magnetite (Fe3O4) present an isoelectric point (iep) at ca. 4.5 that is
relatively below the usual IEP values reported for magnetite [64] and can indicate oxidation of the
particles surface [65]. Nevertheless the IEP value here obtained is in agreement with values reported
for bare Fe3O4 nanoparticles prepared by oxidative hydrolysis [66] and co-precipitation methods [67].
At lower pH values the surface is positively charged while at higher pH values the overall charge of
the surface is negative. The isoelectric point shifts to high values in the nanoparticles coated with
siliceous shells of TMC (~6). This shift can be ascribed to cationic trimethylammonium groups present
on particles surface. In contrast, the particles coated with chitosan siliceous shells show much lower
iep (~2.5). This value is similar to IEP of amorphous silica coated particles as observed in our previous
studies [44] and is consistent with the reaction of primary amine groups of chitosan with ICPTES to
form urea groups.
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3.3. Uptake of Sulfamethoxazole

3.3.1. Effect of Initial pH

The influence of pH on the SMX adsorption was investigated in the range of 4–9 for 24 h contact
time, and the results are included in Figure 6. The pH affected the surface charge of the magnetic
particles and determined the species of SMX in the solution. Figure 6 shows that a pH 5 enhances the
SMX removal efficiency and capacity for TMC-based magnetic particles, and therefore the kinetics and
equilibrium studies were carried out at this pH value. Sulfamethoxazole is an amphoteric compound
and exists in the environment as cation, neutral molecule and anion, depending on the pH, due to the
protonation of the aromatic amine (–NH3

+–, pKa ≈ 1.7) and the deprotonation of sulfonamide group
(–SO2NH–,pKa ≈ 5.7) [68]. The speciation curves of SMX calculated with the pKa values are depicted
in Figure 6. At pH 5, SMX neutral species are dominant. Previous studies demonstrated the relevance
of H-bonding interactions between neutral sulfonamide groups and the amine and hydroxyl groups
from the sorbents surface in the SMX adsorption [69,70]. These chemical groups are present in chitosan
and quaternary derivatives. However, the highest SMX adsorption capacity was achieved using
Fe3O4@SiO2/SiTMC particles. This indicates that the sorption mechanism may involve other pathways.
Indeed, the NMR analysis of TMC revealed also dimethylated groups (–N–(CH3)2), that were absent
in pristine chitosan. These groups are hydrophobic and may complement SMX adsorption through
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hydrophobic interactions [71,72]. Nevertheless, because the SMX sorption capacity of chitosan-based
particles was much lower, we can assume that quaternary amine groups of TMC play a relevant role in
the sorption of SMX. We should note that at pH 5 near 20% of SMX molecules are in the anionic form
and thus could interact electrostatically with trimethylammonium groups of the sorbent particles [73].
In alkaline conditions, the SMX adsorption dramatically decreases, most likely owing to electrostatic
repulsion between anionic SMX molecules and the surface of the sorbents, that is negatively charged at
these pH values.
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3.3.2. Kinetic Studies and Effect of Initial SMX Concentration

The effects of contact time and initial SMX concentration on the adsorption of SMX by the
coated magnetic particles were studied to gain further insight into the adsorption process. Control
experiments carried out in parallel in the absence of sorbent particles under the same conditions of pH
and contact time have shown negligible losses of SMX (Figure S6, Supporting Information). Figure 7
shows the time profile of SMX uptake using Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT sorbents,
for variable initial SMX concentration of 40 and 80 mg/L, at pH=5. The adsorption capacity increased
with increasing initial SMX concentration, and for all the cases, a rapid adsorption took place at the
beginning (Figure S7, Supporting Information), i.e., for short contact times (ca. 15 min) between the
sorbent and the solution. As seen in Figure 7, increasing the initial SMX concentration from 40 to
80 mg/L, the adsorption at equilibrium increases from 11.1 to 27.1 mg/g for Fe3O4@SiO2/SiTMC and
3.6 to 13.6 mg/g for Fe3O4@SiO2/SiCHIT.

Aiming to understand the sorption mechanism between the sorbents and SMX, the time profile
data were analyzed using two kinetic models that are commonly used in the study of solid-liquid
adsorption processes: the pseudo-first-order equation [74] and the pseudo-second-order equation [75].
The kinetic parameters and the evaluation of the goodness of the fits, obtained by non-linear regression
analysis, are reported in Tables S3 and S4 (Supporting Information), and the kinetic fittings are shown
in Figure 7. Non-linear form of the kinetic equations was fit to data (Equations (S3) and (S4), Supporting
Information), using the curve fitting tool of GraphPad Prism version 7. The goodness of the fit was
determined based on the correlation coefficient (R2) and the Chi-square test value (χ2), (Equations (S5)
and (S6), Supporting Information). Both kinetic models described well the experimental data, with
R2 values ranging from 0.981 to 0.998. This suggests that the adsorption of SMX molecules is the
rate-limiting step and that the interaction is of chemical nature. Furthermore, both kinetic models
provided good prediction of qe values, (Tables S3 and S4, Supporting Information).
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3.3.3. Equilibrium Isotherm Experiments

The equilibrium concentration data were obtained from batch adsorption of SMX onto the
systems Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT for initial concentrations ranging from 20 to
195 mg/L (Figure 8). To further elucidate the interactions between the sorbents and the sorbate
SMX, the sorption data were correlated with Langmuir [76] and Freundlich [77] isotherms models,
which are two-parameter isotherms, and Sips [78] isotherm which is a three-parameter isotherm
(Equations (S8)–(S10), Supporting Information). The obtained isotherm model parameters are listed
in Table 2. Non-linear form of the isotherms equations was fit to data, using the curve fitting tool of
GraphPad Prism version 7. The goodness of the fit was determined based on the correlation coefficient
(R2) and the Chi-square test value (χ2), (Equations (S5) and (S6), Supporting Information). Based
on fitting indicators, the two-parameter isotherm model that best fits the experimental data for both
systems is the Langmuir isotherm. The monolayer adsorption capacity predicted by this model was
597.9 and 24.15 mg/g, for Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT particles, respectively. This
model assumes that the adsorption process is most likely to occur by a formation of a monolayer
on a homogeneous surface [76,79], instead of the possible multilayer formation in the Freundlich
model. Although the Langmuir model provides satisfactory data fitting, this model overestimated
the maximum adsorption capacity (qmax) of the system Fe3O4@SiO2/SiTMC and consequently it is
not suitable to predict the experimental data. Actually, the experimental qmax value of TMC coated
particles was 42 mg/g, while the Langmuir model predicted a value of 598 mg/g. Overall, the Sips
isotherm is the model that provides higher R2 and lower χ2 values, thus being the model that best
describes the experimental isotherm data for both systems. The Sips isotherm combines the Langmuir
and Freundlich isotherm models. Our results indicate that Fe3O4@SiO2/SiTMC particles adsorb around
42 mg/g of SMX in short contact times, being very effective adsorbents compared to other magnetic
sorbents reported in the past [15,17]. Taking into account the economic applicability of the nanosorbents
for the removal of SMX, the equilibrium time is one of the most important parameters affecting the
design of new adsorbents. The fast adsorption ability suggests that TMC-based magnetic nanosorbent
would be a potential adsorbent for the removal of SMX from water. Moreover, these materials are
eco-friendly alternatives to sorbents prepared with components considered toxic to aquatic life [21].
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Isotherm Model Parameters Goodness of Fit 
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3.1.4. Sorbent Stability, Regeneration and Reuse 

The TGA curves of the dried particles before and after SMX adsorption were similar, with small 
differences at the first weight loss stage owing to higher moisture content of the particles after 
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Table 2. Equilibrium model parameters obtained from model fitting to experimental sorption data of
Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT, together with the goodness of the fittings.

Isotherm Model Parameters Goodness of Fit

Langmuir qL (mg/g) KL (L/mg) R2 χ2

Fe3O4@SiO2/SiTMC 598.0 0.0004 0.9796 7.123
Fe3O4@SiO2/SiCHIT 24.1 0.0080 0.8799 4.221

Freundlich KF (mg(1−1/n)
·L(1/n)

·g−1) n R2 χ2

Fe3O4@SiO2/SiTMC 0.3582 1.3241 0.9788 7.417
Fe3O4@SiO2/SiCHIT 0.1105 1.247 0.7225 9.759

Sips qS (mg/g) Ks (mg/L)−1/βS βS R2 χ2

Fe3O4@SiO2/SiTMC 63.1 0.0001 0.5306 0.9911 3.614
Fe3O4@SiO2/SiCHIT 14.32 0.00001 0.3500 0.9259 3.057

3.3.4. Sorbent Stability, Regeneration and Reuse

The TGA curves of the dried particles before and after SMX adsorption were similar, with
small differences at the first weight loss stage owing to higher moisture content of the particles after
adsorption experiments (Figure S8, Supporting Information). In addition, the residue mass at 900 ◦C
was identical, before and after SMX adsorption. These results indicate that there is no relevant polymer
leaching from the particles during the adsorption tests. Elemental microanalysis results (Table S5,
Supporting Information) are in agreement with these observations, since after adsorption there was no
decrease of the carbon content of the particles. Conversely, a slight increase in the carbon and nitrogen
content was observed, that can be ascribed to the adsorbed SMX molecules. To get further insight into
the chemical stability of the nanoparticles in aqueous medium, the amount of iron leached from these
particles at pH = 5 was quantified using AAS. The amount of Fe leached was below the detection limit,
which was 19 µg/L, which indicates that the leaching of Fe ions from the magnetic core is negligible.
Hence, the nanoparticles display good chemical stability under the conditions chosen for the SMX
uptake experiments, that is provided by the hybrid shell containing biopolymer covalently linked to
the siliceous network.

The ability of Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT to be regenerated and reused in
SMX adsorption was assessed by running four consecutive adsorption/desorption cycles. The results
presented in Figure 9 show that these sorbents can be reused in the removal of sulfamethoxazole.
Nevertheless, overall there is a gradual decrease in SMX adsorption in consecutive cycles that is more
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marked in chitosan derived particles. For both particles, the adsorption capacity decreased about 20%
after the first desorption step. At the 4th cycle the adsorption capacity in TMC particles decreased to
half while in CHIT particles a more noticeable decrease to about 15% of the initial adsorption capacity
is visible. The results show that TMC based particles can be recycled for SMX adsorption using ethanol,
but further efforts must be done to enhance the adsorption capacity in consecutive cycles.
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4. Conclusions

Magnetite nanoparticles uniformly coated with biopolymer-siloxane hybrid shells of chitosan
and its quaternary derivative (TMC) were successfully prepared through a simple single-step coating
procedure. The structural and morphological characterization indicated core@shell type morphology,
with shells enriched in the biopolymer component.

Among the coated particles prepared, the Fe3O4@SiO2/SiTMC particles showed the greatest
performance for the removal of sulfamethoxazole (SMX) from water. The observed adsorptive
properties of TMC-based particles can be ascribed to a combined adsorption mechanism that involves
electrostatic interactions and hydrophobic interactions between SMX and the trimethylated and
dimethylated sites of TMC at sorbents surface. The Fe3O4@SiO2/SiTMC particles have shown a greater
adsorption capacity towards SMX when compared to other magnetic sorbents previously reported.
These findings demonstrate the potential of Fe3O4@SiO2/SiTMC particles for the uptake of the antibiotic
SMX from water, taking advantage of adsorptive and magnetic properties in a single material. Further
studies are in progress to assess the full adsorptive performance of these sorbents in real water samples
using different operational conditions, and to better understand the sorption mechanism.

Supplementary Materials: The following are available online: Figure S1: Calibration curve for sulfamethoxazole
determination using UV-Vis spectroscopy, Figure S2: 1H-NMR spectra of TMC and SiTMC (in CDCl3), Figure S3:
Powder XRD pattern of magnetite, Figure S4: Histogram of particle diameter of Fe3O4 nanoparticles, Figure S5:
Magnetic separation of the sorbents particles from the medium using a NdFeB magnet: a) particles in aqueous
solution, b) after 30 seconds of magnetic separation and c) after 60 s of magnetic separation, Figure S6: Variation
of SMX concentration on control experiments performed in absence of sorbent particles to assess the loss of SMX
caused by other phenomena than adsorption on sorbents, Figure S7: Time profile of removal percentage of SMX
at variable SMX initial concentration (40 and 80 mg/L) using Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT, for
24h (1440 min), Figure S8: TGA curves of Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT dried particles before
and after SMX adsorption tests (C0 = 80 mg/L, contact time 8h), Table S1: BET surface area (SBET) and theoretical
surface area estimated (S), Table S2: Elemental microanalysis of pristine chitosan and TMC, Table S3: Kinetic
parameters estimated from pseudo 1st order and pseudo 2nd order models and evaluation of its fittings for an
initial SMX concentration (C0) of 40 and 80 mg/L, for Fe3O4@SiO2/SiTMC particles, Table S4: Kinetic parameters
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estimated from pseudo 1st order and pseudo 2nd order models and evaluation of its fittings for an initial SMX
concentration (C0) of 40 and 80 mg/L, for Fe3O4@SiO2/SiCHIT particles, Table S5: Elemental microanalysis of
Fe3O4@SiO2/SiTMC and Fe3O4@SiO2/SiCHIT dried particles before and after SMX adsorption tests (C0 = 80 mg/L,
contact time 8h).
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