Table S1. Band fit data on of the anisotropic spectrum of an aqueous 2.423 molL⁻¹ Yb(ClO₄)₃ solution in the terahertz region. Five YbO₈ skeleton modes of $[Yb(H_2O)_8]^{3+}(aq)$ were detected. In addition to isotropic band at 390 cm⁻¹ (fwhh = 59 cm⁻¹) was observed with an integrated band intensity = 3160.

[Yb(H2O)8] ³⁺		
peak position	Integrated	fwhh / cm ⁻¹
/ cm ⁻¹	band area	
88.5	941	119
158.7	782	97.6
229.4	752	75.7
260.0	278.6	68
333.2	677	85.3

Figure S1. Raman scattering profiles (Ivv (black), Iv_H (blue) and I_{iso} (red)) of a 3.800 molL⁻¹ NaClO₄(aq) solution. The depolarized modes, v₂(e) at 461 cm⁻¹ and v₂(f₂) at 629 cm⁻¹ are the deformation modes of perchlorate, ClO₄⁻(aq),.The strongly polarized mode, v₁(a₁) at 933 cm⁻¹ is the Cl-O symmetric stretching mode and the depolarized band, v₃(f₂) at 1110 cm⁻¹ is due to the antisymmetric stretching mode of ClO₄⁻(aq). The broad mode at 1634 cm⁻¹ is due to the deformation mode of H₂O.

<u>Bottom panel:</u> Raman spectrum of the 2.423 molL⁻¹ Yb(ClO₄)₃ solution in the wavenumber region from 1400 cm⁻¹ to 4160 cm⁻¹ (spectra in I-format: from top to bottom: polarized (black), depolarized (blue) and isotropic (red) scattering profiles). The deformation mode of water appears at 1623 cm⁻¹ and in the O-H stretching region the water band is modified by the typical ClO₄⁻ H₂O mode of weakly hydrogen bonded O-H oscillators. The band at 3538 ± 3 cm⁻¹ is due to the stretching bands of the weakly bonded O-H…OClO₃⁻ units of H₂O/ClO₄-.

Figure S3. Integrated band intensity, A₃₉₄, of the symmetric stretching mode v_1 YbO₈ in arbitrary units as a function of the Yb(ClO₄)₃ solution concentration.

Figure S4. Isotropic Raman scattering profile (R-format) of a 1.25 molL⁻¹ Yb(CF₃SO₃)₃ solution. In addition to the strong triflate band at 319.5 cm⁻¹ a very weak and relatively broad band appears at 394 cm⁻¹ which is assigned to the totally symmetric stretching mode of YbO₈.

Figure S5. Raman scattering profiles of a 1.276 molL⁻¹ Yb(ClO₄)₃ solution in heavy water in order to observe the isotope effect on the symmetric stretching mode of the hydrate respectively deuterated species by changing from [Yb(H₂O)₈]³⁺(H₂O) to [Yb(D₂O)₈]³⁺(D₂O). Shown are the isotropic scattering profile (red), the anisotropic one (blue) and the polarized scattering (black).

Figure S6. Tm(ClO₄)₃ solution at 0.315 molL⁻¹ ($R_w = 226.6$) in R-format (spectra from top to bottom: R_{VV} , R_{VH} and R_{iso}). The inset shows the R_{iso} spectrum in greater detail. Note the broad and weak v_1 TmO₈ stretching mode at 391 cm⁻¹ (fwhh = 53 cm⁻¹) of the [Tm(OH₂)₈]³⁺ species. The much larger, depolarized bands at 461 cm⁻¹ and 629 cm⁻¹ are the deformation modes of perchlorate, ClO₄⁻(aq). Shown are the isotropic scattering profile (red), the anisotropic one (blue) and the polarized scattering (black).

Figure S7. Polarized Raman scattering profile of an aqueous $Er(ClO_4)_3$ solution at 0.321 molL⁻¹. The weak and strongly polarized mode at 389 cm⁻¹ is assigned to the Er-O symmetric stretching mode of $[Er(OH_2)_8]^{3+}$. Note the strong deformation mode, $v_2(e) ClO_4^{-}(aq)$ at 461 cm⁻¹.

Figure S8. Polarized Raman scattering profile of an aqueous Ho(ClO₄)₃ solution at 0.240 molL⁻¹. The weak and strongly polarized mode at 387 cm⁻¹ is assigned to the Ho-O symmetric stretching mode of $[Ho(OH_2)_8]^{3+}$. Note the strong deformation mode, $v_2(e)$ ClO₄-(aq) at 461 cm⁻¹.

Figure S9. The heavy REE ions at the X-axis from left to right: Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺, and Lu³⁺. At the left Y-axis the peak positions of the corresponding breathing modes, v_1 Ln-O are given and at the right Y-axis the Ln-O bond distances of the octahydrates, [Ln(OH₂)₈]³⁺ [7].

Figure S10. Raman scattering profiles in R-format (Rvv (black), Rv_H (blue) and R_{iso} (red) scattering) of a 0.422 molL⁻¹ YbCl₃ solutions in heavy water. The YbO₈ symmetric stretch of $[Yb(D_2O)_8]^{3+}(D_2O)$ (D₂O taken as point mass) is shifted to 376 cm⁻¹ while the same mode in light water is observed at 394 cm⁻¹ demonstrating the vibrational isotope effect on the symmetric stretching mode by changing from $[Yb(H_2O)_8]^{3+}(aq)$ to $[Yb(D_2O)_8]^{3+}(D_2O)$. Note furthermore the restricted translation band of the O-D…D unit at 182 cm⁻¹, the librational band at 547 cm⁻¹ and the deformation mode v₂ D-O-D at 1205 cm⁻¹. The mode at 1445 cm⁻¹ stems from the small amount of HDO and the band at 1542 cm⁻¹ is a combination band of D₂O.

Figure S11. The linear dependence of the integrated band intensity, A_{394} as a function of the Yb(ClO₄)₃ concentration with A_{394} =1303.7*C_T (see Figure S4). The lower curve shows the integrated band intensity of the band at 394 cm⁻¹ in YbCl₃ solutions (black squares). The solute concentration is denoted as C_T.