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Abstract: A new luminescent Tb-DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric-4,7,10- triacetic
acid) complex (TbL) was synthesized and covalently immobilized on a silicon wafer. The grafting
process was monitored by means of IR and XPS spectroscopies and the optical properties of the
functionalized silicon wafer (TbL@Si) were investigated by fluorescence experiments. A homemade
setup was then implemented in order to follow TbL@Si optical properties in the presence of gaseous
nitric oxide (NO). The prima facie results indicated that in the presence of NO, the wafer fluorescence
was partially quenched. This quenching was reversible as soon as NO was pumped outside the
fluorescence cell, which could be interesting for the further development of lanthanide labelled silicon
wafers as gas phase sensors.

Keywords: lanthanide complexes; silicon wafers; DOTAGA ligand; optical properties; NO detection

1. Introduction

Search for effective strategies to develop chemical sensors has become a great concern for
scientists in the past few years. Among the issues needing to be addressed, elaborating sensors
for chemical species in the vapor phase for environmental emission control, clinical assaying,
and explosive detection are of the upmost importance [1]. Especially, selective detection of nitric
oxides (NOx) gases has become one of the most challenging areas concerning environmental effects
and biological applications. NO is not only an atmospheric pollutant but also a messenger in the
cardiovascular, nervous, and immune system [2,3]. For NO sensing, a wide variety of methods
have been reported involving electrochemical, electrical resistance, X-ray photoelectron spectroscopy,
electron paramagnetic resonance spectroscopy, colorimetric, fluorometric, and chemiluminescent
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detection [2–11]. Among these, fluorometric methods using luminescent probes are promising in terms
of sensitivity, selectivity, and experimental feasibility [12]. To act as the luminescent probe, lanthanide
(Ln3+) ions are well-adapted candidates because they have sharp emission peaks, very large Stokes
shifts, and long luminescence lifetimes which give a unique characteristic to effectively eliminate
short-lived fluorescence from the surroundings of the lanthanide ion [13]. The two main sensing
approaches that are described in the literature are Ln3+ ions which can either be encapsulated within
supramolecular structures (supramolecular-based sensing approach), and chelated within a molecular
framework (molecular-based sensing approach) [14]. To illustrate the first strategy, Ln3+ ions have been
recently incorporated within porous metal-organic frameworks (MOFs). These materials constitute
an excellent platform for host-guest chemistry in solution which allows detection by luminescence
iron ions [15], copper ions and small molecules [16] or nitroaromatic explosives [17]. For the second
strategy, lanthanide chelates, based on polyaminocarboxylate ligands, have been developed to detect
in solution by time-gated luminescence, hypochlorous acid [18] or NO [19]. In all those examples,
a fluorescence quenching of the probe is observed in solution when the analyte is present [20,21].

On the contrary, similar studies for the detection of species in the gas phase are very scarce. To our
knowledge, only two examples have been described (i.e., a Tb porous coordination polymer was
recently used to sense vapours of small molecules [22] whereas Tb-MOF films were able to detect
dioxygen versus dinitrogen [23]). In this paper, our purpose is to modify flat silicon wafers with
luminescent Tb coordination complexes in order to test if the luminescence of the hybrid material
is affected by the presence of chemical species in the gas phase. To achieve this goal, a luminescent
Tb-DOTAGA complex (TbL) was anchored on flat oxidized silicon wafers (TbL@Si) (Scheme 1).
The choice of silicon wafer was guided by the potential translation of the setup to standard micro- and
optoelectronics. This optical device was then implemented and tested in a gas chamber to evaluate
its sensitivity to NO. Herein, we describe the design and synthesis of the Tb-DOTAGA complex,
its immobilization on silicon wafers, and first evidence for detection of gaseous nitric oxide.

Scheme 1. Synthesis and grafting of Tb-DOTAGA complex (TbL) on Si wafer (TbL@Si),
(i) Tb2O3/H2O, (ii) (3-Aminopropyl)triethoxysilane (APTES), toluene, (iii) O-(Benzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), N,N-Diisopropyléthylamine (DIPEA),
N,N-Diméthylformamide (DMF).

2. Results and Discussion

2.1. Tb-DOTAGA Complex Synthesis and Spectroscopic Characterization

In order to ensure a high stability for Tb(III) in the macrocyclic cavity and then to avoid its leaching
during the grafting process, DOTAGA ligand was chosen as the chelator [24,25]. Indeed, DOTAGA
exhibited five carboxylic functions, four dedicated (with nitrogen atoms) to the Tb(III) coordination
and the stability of TbL complex, the fifth one remaining available for TbL covalent grafting onto
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the amine-modified silica surface. From a synthesis point of view, TbL complex was obtained by
the addition of Tb2O3 to an aqueous solution of the DOTAGA ligand. After purification, TbL was
recovered in 80% yield (Scheme 1). Tb(III) complexation was demonstrated using IR spectroscopy
(Figure S1), by the weakening of the carbonyl vibration from 1715 cm−1 for DOTAGA to 1594 cm−1

for TbL, as expected for a carboxylate coordination to the metal cation [26]. Moreover, the TbL
complex exhibited an additional vibration at 1724 cm−1 confirming the presence of the free COOH
group, uncoordinated to the metal. TbL characterization was completed using high resolution mass
spectrometry study (electrospray ionization) which proves the unambiguous isolation of the complex
(Figure S2).

Solid state luminescence spectrum of TbL recorded at room temperature (Figure 1) exhibited the
four characteristic Tb(III) emission bands in the range 450–650 nm (after excitation at 230 nm) [13].
The narrow emission bands resulted from the radiative transitions between the intra 4f energy levels of
the Tb(III) ions. The most intense peak at 545 nm corresponded to the 5D4–7F5 transition. The other
observed transitions were 5D4–7F6 (490 nm), 5D4–7F4 (585 nm), and 5D4–7F3 (622 nm). Solid state TbL
fluorescence lifetime measured from the 5D4 to 7F5 transition was equal to 2.20 ms as expected for
Tb(III) [27]. In solution, TbL fluorescence lifetimes were equal to 2.09 ms in H2O and 3.58 ms in D2O,
indicating the coordination of a single water molecule (q = 0.96, Figure S3) [28].

Figure 1. Excitation (dotted line, λem = 545 nm) and emission fluorescence spectra of TbL in the solid
state (298K, λexc = 230 nm, slit width 5 nm).

2.2. Functionalization and Characterization of the Silicon Wafers

In order to grow a reproducible SiO2 layer at the silicon surface with a well-mastered thickness,
silicon wafers were treated beforehand with HF in order to get an almost pure silicon surface. This was
controlled in the XPS Si2p spectrum by the presence of an intense band around 99.5 eV characteristic
of pure silicon (Figure 2a, spectrum 1) [29]. The corresponding substrate was then oxidized under
UV/O3 conditions. After oxidation, the high energy shift at 103.8 eV of the Si2p XPS spectrum was
characteristic of the SiO2 layer (Figure 2a, spectrum 2) [29]. The thickness of the SiO2 layer obtained
from XPS and ellipsometry measurements was about 6 nm. The oxidation was confirmed by the
IR spectrum of the oxidized silicon surface (Figure 2b, spectrum 1) which exhibited the expected
Si-O-Si vibrations at 1107 cm−1 [30]. In a second step, APTES surface modification was performed and
confirmed by the appearance in the IR spectrum of two new vibration bands at 2850 and 2916 cm−1

(Figure 2b, spectrum 2). These signals corresponded to APTES symmetric and antisymmetric C-H
stretching modes, respectively. An additional weak signal at 1450 cm−1 attributed to the scissoring NH
vibration testified the presence of the added amine group [30]. Finally, in a third step, the coupling
reaction between TbL and the APTES modified wafer was performed in DMF, in the presence of TBTU
as a coupling agent and DIPEA as a base [25]. The IR spectrum of the corresponding TbL@Si wafer
(Figure 2b, spectrum 3) exhibited additional vibrations in the range 1550–1650 cm−1 associated to the
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amide C = O vibration (1640 cm−1) and to the C = O vibrations of the immobilized TbL carboxylate
groups (1570 cm−1). The IR spectrum also showed an increase in the intensities of the CH stretching
bands as well as a newly formed absorption at 3400 cm−1 which can be attributed to the NH amide
stretching mode.

Figure 2. (a) Si2p XPS spectrum of the silicon substrate treated with HF (1) and (b) after UV/O3

oxidation (2). IR absorption spectrum of (1) oxidized Si wafer, (2) wafer after treatment with APTES,
(3) TbL@Si wafer.

Functionalized samples were also characterized by XPS measurements. A wide scan XPS survey
of TbL@Si was performed to confirm the presence of Si, N, C, and O (Figure 3a) while the presence of
Tb was confirmed at high binding energies by the Tb 3d level, which was split into two peaks (Tb 3d5/2

and Tb 3d3/2 at 1242.2 eV and 1276.2 eV, respectively) due to spin orbit coupling (Figure 3b).

Figure 3. (a) Overall XPS spectrum of TbL@Si, (b) Tb 3d XPS spectrum of TbL@Si, (c) angle-resolved
Tb 4d spectrum of TbL@Si.
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In order to ensure that the XPS signal around 150 eV corresponded to the Tb 4d level and not to
the Si 2s level, angle-resolved XPS measurements were performed. In these conditions it was possible
to detect only the Tb 4d signal at 151 eV (Figure 3c), confirming the Tb oxidation state (Tb(III)) [31,32].
Finally, the thickness of the Tb grafted layer was determined by XPS and ellipsometry to be around
2.5 nm. This thickness was compatible with the formation of a single monolayer of TbL at the SiO2

surface. Indeed, if one first considered the crystal structure of a related Tb complex [33], the distance
between two oxygen atoms borne by two opposite carboxylate arms of the ligand is about 1.2 nm,
and second, the length of SiOSiCH2CH2CH2N linker is about 1 nm [34]. Therefore, this corresponded
to a 2.2 nm distance at the SiO2 surface, which is, regarding the uncertainty of the measurements, close
to the 2.5 nm determined for the thickness of the Tb grafted layer.

2.3. Luminescent Properties of the Functionalized Silicon Wafers

The optical properties of TbL@Si wafer were investigated by fluorescence experiments.
The luminescence spectrum of TbL@Si wafer (Figure S4) exhibited a set of four signals between
450 nm and 650 nm that corresponded to the characteristic emission lines of Tb(III).

It is interesting to note that for TbL@Si, the terbium peak positions as well as the ratio intensities
between these peaks were the same as those for the TbL complex in solution or in the solid state
(Figure S4). This point indicated that the optical properties of the Tb(III) complex were not modified
when the complex was grafted at the wafer surface. On the other hand, the fluorescence lifetime of
TbL was reduced from 2.20 ms in the solid state to 1.33 ms for TbL@Si wafer. The presence of extra
OH vibrators from the surface silanol groups which are coupling with terbium ions could lead to
a partial non-radiative deactivation of the Tb(III) 5D4 excited state, leading to such a fluorescence
lifetime decrease. Similar phenomenon was previously observed for Tb(III) in Tb exchanged MFI
zeolites [35], or in fluorescent silica nanoparticles modified chemically with Tb complexes [36].

Preliminary fluorescence sensing experiments were conducted after the exposure of TbL@Si wafer
to NO in the gas phase. For that, TbL@Si wafer was introduced into a homemade hermetic cell that
was filled with the gas and its fluorescent response was recorded according to three selected NO
concentrations (Figure 4).

Figure 4. (a) Emission spectra of TbL@Si wafer exposed to various concentrations of gaseous NO at
298 K, λexc = 230 nm, (b) Stern–Volmer plot for the data, measured at an emission energy of 545 nm.

Upon exposure to NO, the emission intensity from TbL@Si was reduced, the equilibrium value
being reached a few minutes after NO introduction in the cell. After a vacuum cycle and NO removal,
the initial emission spectrum was quickly recovered which highlighted the reversibility of the system
(Figure S5). When NO concentrations of 5, 10, and 25 ppm were introduced in the cell, the intensity of
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the Tb(III) 5D4 to 7F5 emission line (545 nm) decreased by 8%, 12% and 21%, respectively (Figure 4a),
and this evolution was linear according to NO concentration (Figure 4b). The linearity of the quenching
percentage as a function of the quencher concentration can attest to an intramolecular deactivation of the
TbL excited state in the presence of NO [37]. The Stern–Volmer (SV) quenching constant of the TBL@Si
is around 0.01 ppm−1 which is in the same order of magnitude of the SV constant (0.02 ppm−1) obtained
by the pioneered work of Sailor et al. [12] for solid-state sensors. Finally, the relative intensities of the
5D4 to 7FJ transitions for TbL@Si wafer could be indicative of the underlying quenching mechanism.
Indeed, as the relative intensities of the 5D4 to 7FJ transitions are sensitive to the Tb(III) environment [38],
a change in the Tb(III) coordination sphere is expected to induce a modification of the emission band
intensity ratios, viz I490/I545, I585/I545, and I622/I545 ratios. Here, when TbL@Si wafer was exposed
to various amounts of NO, these ratios remained unchanged (I490/I545 around 60%, I585/I545 around
19% and I622/I545 around 7%, respectively, Figure S6). Consequently, the luminescence quenching
did not seem to be driven by direct insertion of NO in Tb(III) coordination sphere but triggered by
the non-radiative energy transfer from the 5D4 excited state of the probe to the NO vibrator at the
proximity of TbL@Si surface.

3. Materials and Methods

3.1. Reagents

All chemicals and solvents were used as supplied from commercial sources. The lanthanide salts
and cyclen were purchased from Strem Chemicals, Newburyport, MA, USA. All other chemicals were
supplied by Sigma Aldrich, St. Louis, MO, USA or Alfa Aesar, Haverhill, MA, USA. Silicon wafer (110)
was supplied by Siltronix, Archamps, France.

3.2. Instrumentation

All 1H and 13C NMR experiments were carried out using a 500 MHz Bruker Avance II NMR
spectrometer or a 250 MHz Bruker Avance I NMR spectrometer (Bruker, Billerica, MA, USA). Infrared
(IR) absorption spectra for ligands and complexes were recorded using a PerkinElmer Spectrum Two IR
spectrometer (Perkin Elmer Waltham, MA, USA). IR absorption spectra for silicon wafers were recorded
with a Bruker Vertex 70 spectrometer (Bruker, Billerica, MA, USA). Mass spectrometry experiments
for ligands and complexes were performed on a Micromass Q-TOF electrospray mass spectrometer
(Micromass, Manchester, UK).

3.3. X-Ray Photoelectron Spectroscopy

XPS spectra were measured using the non-monochromatized AlKα radiation at 1486.6 eV.
The photoelectrons were collected by a Scienta SES 200 hemispherical analyser (Scienta, Taunusstein,
Germany). The overall resolution of the setup was about 0.8 eV. Spectra from the C 1s, O 1s, N 1s, Si 2p,
Tb 4d, and Tb 3d bands were systematically recorded as no other elements than the previous ones were
detected. For each sample, at least five different locations were investigated to ensure the homogeneity
of the surface. All XPS spectra were corrected for any charging effects by fixing the C 1s binding energy
at 284.8 eV and were treated with Shirley background subtraction. XPS measurements were also
performed following standard procedures to determine the thickness of the different layers [39,40].
These thicknesses measurements were also checked by ellipsometry using an UVISEL ellipsometer
from Horiba, Kyoto, Japan using published procedure [41].

3.4. Fluorescence Spectroscopy and Gas Dilution

Fluorescence measurements were carried out using a Varian Cary Eclipse fluorescence
spectrophotometer (Agilent, Santa Clara, CA, USA). For the gas sensing experiments, a homemade
setup for performing ppm NO concentrations inside the spectrofluorometer was developed. For that,
a customized fluorescence cell that allowed gas filling at known concentrations was designed. Various
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concentrations were obtained by diluted gas from etalon bottle with pure nitrogen, as it was checked
that pure nitrogen does not have any effect on the fluorescence intensity. The dilution was carried out
by mass flowmeter in a special mixing chamber to perform homogenous mixture. To produce the ppm
concentrations, two consecutive dilutions were needed. The first one, to produce a 100 ppm mixture at
high pressure (up to 5 bars), and the second one, from the former 100 ppm one, to produce a lower
concentration mixture. To ensure the reproducibility of the experiments, all pipes and intermediate
tank were drained to a secondary vacuum. The gas at the desired concentration was used to fill
a chamber connected to the fluorescence cell containing TbL@Si wafer, up to atmospheric pressure.
The cell was finally sealed and used for fluorescence quenching experiments.

3.5. Synthesis of TbL

All the organic compounds were prepared according to reported procedures [24,25].
2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl) pentanedioic acid DOTAGA.HCl.4H2O,
293 mg, 0.501 mmol) was dissolved in deionized water (10 mL). Terbium oxide (100 mg, 0.273 mmol)
was then added to the solution. The reaction mixture was heated to 95 ◦C for 24 h. The solution
was cooled to room temperature and the pH was increased to 10 to remove the excess Tb(III) by
precipitating it as Tb(OH)3. The precipitate was removed and the solution was evaporated to dryness
to get the product as an off-white powder.

TbL: Yield = 80%. IR ν(CO) = 1724 cm−1 (free COOH), 1594 cm−1 (coordinated COO−). Elemental
Analysis, calculated for C19H27Na2N4O10Tb(H2O)5(NaCl): C, 27.67; H, 4.52; N, 6.79. Found C, 27.46;
H, 4.39; N, 6.74. HRESI-TOF: calculated for (C19H28N4O10Tb)− = 631.1059 − found 631.1058, calculated
for (C19H27N4NaO10Tb)− = 653.0878 − found 653.0877.

3.6. Preparation of Silicon Wafers

Silicon wafers were cut into 1 cm2 squares, treated with HF buffer for 5 minutes to remove the
native oxide layer, then washed with water, dried and finally subjected to UV/O3 oxidation.

3.7. Silicon Wafer Functionalization

The silicon wafer was immersed into a toluene solution (16 mL) containing APTES
((3-aminopropyl)triethoxysilane, 4 mL) and the solution was stirred for 24 h with occasional sonication.
It was then washed with acetone, sonicated, and dried. The APTES modified wafer was then introduced
into a DMF solution (10 mL) containing 13 mg of TbL (0.016 mmol, 1eq), 27 µL of DIPEA (0.155 mmol,
10 eq) and 25 mg of TBTU (0.078 mmol, 5 eq). The solution was stirred for 24 h with occasional
sonication and afterwards the TbL functionalized wafer, TbL@Si was washed with ethanol and acetone,
dried and used for characterization and studies.

4. Conclusions

To sum up, a Tb-DOTAGA (TbL) complex was synthesized and grafted onto an amine-modified
silicon wafer (TbL@Si). The strategy implied control of the functionalized Si wafer which was followed
by means of IR absorption spectroscopy, ellipsometry, and XPS experiments. The optical properties of
TbL@Si were examined by photoluminescence experiments. The fluorescence of TbL at the surface of
the wafer was similar to fluorescence of TbL in the solid state, except from the point of view of the
fluorescence lifetime. Indeed, for the grafted complex, the fluorescence lifetime decrease could be
interpreted by the influence of surface silanol groups coupling with Tb(III) ions, leading to a partial
non-radiative deactivation of the Tb(III) 5D4 excited state. The ability of TbL@Si wafer to sense NO
in the gas phase was tested and the results showed that the fluorescent response of TbL@Si wafer
was partially quenched according to increasing NO concentrations. Moreover, the initial fluorescence
of the sample was recovered as soon as NO was removed, showing the reversibility of the response.
Our approach offers the possibility of performing toxic NO gas sensing at a very low level of 1 ppm.
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It can be assumed that the present method might be adapted for other lanthanides and to sense
different gases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/10/1914/s1,
Figure S1: IR spectra of DOTAGA (L) and TbDOTAGA (TbL), Figure S2: High Resolution ESI MS spectrum of
TbL (negative mode, MeOH), Figure S3: Determination of q, the number of water molecules coordinated to the
Tb(III) center, Figure S4: Emission spectra of TbL (TbDOTAGA) in aqueous solution, solid state, and grafted at
the Si surface (TbL@Si), Figure S5: TbL@Si 545 nm emission band evolution on the course of vacuum/NO cycles,
Figure S6: Evolution of the relative emission band intensities according to the NO concentration, the reference
being the 545 nm emission (λexc = 230 nm, black—490nm, light grey—545 nm, grey—585 nm, dark grey—622nm).
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