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Abstract: The theoretical calculation of pKa values for Brønsted acids is a challenging task that
involves sophisticated and time-consuming methods. Therefore, heuristic approaches are efficient
and appealing methodologies to approximate these values. Herein, we used the maximum surface
electrostatic potential (VS,max) on the acidic hydrogen atoms of carboxylic acids to describe the H-bond
interaction with water (the same descriptor that is used to characterize σ-bonded complexes) and
correlate the results with experimental pKa values to obtain a predictive model for other carboxylic
acids. We benchmarked six different methods, all including an implicit solvation model (water):
Five density functionals and the Møller–Plesset second order perturbation theory in combination with
six different basis sets for a total of thirty-six levels of theory. TheωB97X-D/cc-pVDZ level of theory
stood out as the best one for consistently reproducing the reported pKa values, with a predictive
power of 98% correlation in a test set of ten other carboxylic acids.
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1. Introduction

The hydrogen bond is a strong, directional, non-covalent interaction responsible for a large
number of chemical phenomena spanning from chemistry to biochemistry [1–3], which has become
a paradigm amongst the toolbox of chemical concepts [4,5]. Hydrogen bonding is also a major driving
force of chemical reactivity. For instance, the deprotonation of Brønsted acids in aqueous media,
where the reaction constant, Ka, and its associated logarithmic quantity, pKa = −logKa, are an intrinsic
characteristic of each acid. This process occurs through the abstraction of the acidic hydrogen atom
using a water molecule (Equation (1)). It is commonly regarded that the deprotonation reaction is
mainly promoted by electrostatic interactions, given the partial positive charge on the acid hydrogen.
Characterization of a protic acid through the pKa values is of practical importance and usefulness in
various steps of the chemical design rationale, and therefore, it is an important quantity.

HA + H2O→ H3O+ + A− (1)

The accurate prediction of pKa values for carboxylic acids by means of computational methods
covers a wide range of potential applications from chemical design and biochemistry research to drug
development [6–8]. However, calculating the equilibrium constant for the deprotonation reaction
of a Brønsted acid implies the calculation of the Gibbs Free Energy change, (−∆G), which in turn
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entails the calculation of extremely accurate solvation energies for all species involved (Scheme 1).
Calculation of accurate solvation free energies remains challenging, since it requires the use of
sophisticated and computationally intensive methods, such as G3MP2 or CBS-QB3 [9], mostly due
to a poor description of the solute–solvent interactions [10]. This method is highly sensitive to even
slight deviations, since an error of only 1.36 kcal/mol—Barely above chemical accuracy—Leads to
a unit error in the pKa, making it impractical for large molecules.
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from the interpolation of the mutual dissociation energies [11]. 

Previous efforts for deriving suitable pKa descriptors from ab initio or DFT descriptors have 
been successfully published, in some cases mixing implicit and explicit solvation models [12]. 
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parameters model which uses the MEP maxima, the number of carboxylic acid and amine groups for 
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Since the interaction of water molecules with the acidic hydrogen atom is not isotropic,
some parallels between hydrogen and σ–hole bonded systems arise. The formation of these directional
interactions implies the presence of an electrostatic potential maximum located on the opposite side
of the O–H σ–bond, which can be quantified by the maximum surface electrostatic potential, VS,max.
By assuming that the deprotonation of a carboxylic acid begins with the formation of a hydrogen
bond with a water molecule, RCOOH···H2O, we propose the use of VS,max as a suitable descriptor
for the strength of this interaction, which in turn correlates with the corresponding pKa values,
in a similar fashion to how a σ-hole-based interaction is quantified in halogen or tetrel bonds.
Previously, the nucleophilicities and electrophilicities of Lewis acids and bases, respectively, have been
derived from the interpolation of the mutual dissociation energies [11].

Previous efforts for deriving suitable pKa descriptors from ab initio or DFT descriptors have
been successfully published, in some cases mixing implicit and explicit solvation models [12].
Electrostatic properties, such as the total molecular electrostatic potential (MEP) on the acidic hydrogen,
combined with the sum of the valence Natural Atomic Orbital (NAO) energies on the acidic atom
and the leaving proton for amino acids and nucleotides exhibits a correlation coefficient R2 = 0.91 [13]
with the experimental pKa values. Monard and Jensen used various kinds of atomic charges of
the conjugated phenolates, alkoxides, or thiolates, with the best correlations being observed for the
atomic electrostatic charges from a Natural Population Analysis (NPA) calculated at the B3LYP/3-21G
(R2 = 0.995) and M06-2X/6-311G (R2 = 0.986) levels of theory for alcohols and thiols, in implicit
solvent, respectively. Other efforts include correlations on the excited states of photoacids [14] using
Time Dependent DFT at theωB97X-D/6-31G(d) level of theory for a family of hydroxyl-substituted
aromatic compounds. QSPR models have yielded, for instance, a three parameters model which uses
the MEP maxima, the number of carboxylic acid and amine groups for phenols, at the HF/6-31G(d,p)
and B3LYP/6-31G(d,p) levels of theory (R2 = 0.96) [15]. It involves a four parameters linear equation
comprising the highest normal mode vibrational frequency, the partial positive and negative charges
divided by the total surface area and a reactivity index, defined in terms of a population analysis
on the frontier orbital HOMO (R2 ca. 0.95 sic.) [16] for N-Base ligands at the semi empirical AM1
level of theory, as well as a Principal Components Analysis (PCA) for organic and inorganic acids
(RMSE = 0.0195) [17]. Moreover, genetic algorithms (GA) and neural networks (NN) have employed
frontier orbital energies for a chemical space of sixty commercial drugs [18] (GA, R2 = 0.703; NN,
R2 = 0.929). Thus far, the only major commercial program capable of including the effects of molecular
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conformations on the estimation of pKa values is ‘Jaguar pKa′ [19,20]. For more thorough reviews on
the development of pKa descriptors, please refer to References [21–23].

Non-covalent interactions like tetrel [24], pnicogen [25], chalcogen [26,27], carbon [28],
and halogen [29–31] bonds offer some resemblances to H-bonded systems, both in structural and
reactivity terms. All these forms of bonding correspond to directional, intermolecular non-covalent
interactions of an electrostatic nature involving elements in groups 14 through 17, respectively.
These atoms behave as electrophiles through the interaction with either n or π electrons from Lewis
bases [32,33]. The formation of these non-covalent interactions stems from a similar origin, via the
presence of σ–holes [34–36], a localized region of positive electrostatic potential on the surface of the
bridge atom (prominently present in atoms of group 17), and opposite to the internuclear axis of one of
the covalent σ bonds, hence the σ–holes. A stretch of this label has been applied to hydrogen bonding,
despite the absence of p electrons on hydrogen atoms and the high polarizability of the hydrogen
bonds [37–39].

Energetically, the strength of these interactions increases as the bridging atom increases its atomic
number, the electronegativity of the atom bonded opposite to the non-covalent bond, and the number
of electron-withdrawing groups bonded to the bridging atom. Tetrel bonds, for instance, are stabilizing
interactions in nature [40,41] that form cooperative networks [26,42–46], a feature that is used as
a powerful tool for the design of crystal structures [47–49]. The stabilization arising from these
interactions ranges from 1 kcal/mol to 50 kcal/mol [50]. Therefore, the formation and strength of these
interactions closely depends on the polarization of the electron density surrounding the bridging atom.
In the particular case of tetrel bonds, these factors have been extensively investigated by Scheiner,
who has further assessed the electronic [50,51] and steric [52] contributions.

Several computational studies on the nature of tetrel bonds have been published so far, from their
strict quantum treatment [53] to their charge transfer dynamics in the attoseconds regime [54], and the
tunneling bond-breaking processes promoted by σ-holes [55].

Thus, the importance of the study of non-covalent interactions has large implications for crystal
engineering [56], biochemistry, and the understanding of chemical reactivity [57–59]. In our research
group, we have reported the chemical reduction of a trichloromethyl group into a methyl group via the
attack of σ–holes on chlorine atoms by thiophenolate anions, a reaction mechanism which is extensible
to other trichloromethyl compounds [60].

Herein, we presented a benchmark of linear models which correlate the VS,max calculations with
various DFT methods, and used MP2 as a reference (see methodology section), to the pKa values of
carboxylic acids. Physically, the obtained value of VS,max on the acidic hydrogen atom reflects the
attractive interaction between it and a water molecule, and thus in turn can be used to describe the
deprotonation process in electrostatic terms.

2. Results

Thirty (30) different carboxylic acids with reported pKa values were selected from Lange′s
Handbook of Chemistry [61], and they were optimized and the surface electrostatic potential calculated
(see methods section for full details). The structures of the acids are shown in Figure 1. The levels
of theory used were obtained from the combination of the following functionals: ωB97X-D (A) [62],
B3LYP (B) [63], LC-ωPBE (C) [64], M06-2X (D) [65] and PBE0 (E) [66], as well as the Møller-Plesset
second-order perturbation theory, MP2 (F), and the following basis sets, 6-31+G(d,p) (1), 6-311++G(d,p)
(2), cc-pVDZ (3), cc-pVTZ (4), aug-cc-pVTZ (5), and Def2-TZVP (6).
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Figure 1. Thirty carboxylic acids comprising the chemical space under study.

In total, thirty-six levels of theory were used to calculate the electronic structure of the thirty
carboxylic acids, which comprised the chemical space under study for a total of 1080 different wave
functions, upon which the maximum surface potential, VS,max, was calculated and plotted against
the experimental pKaexp value. Our model was based on simple linear regressions to obtain the
best fittings. The VS,max on each acidic hydrogen atom was used for the correlations, as an example,
Figure 2 depicts the location of VS,max on the acid hydrogen atom for compound 14. This value was
calculated on the isodensity surface $ = 0.001 a.u., and it was used as a descriptor for the magnitude of
the attractive interaction RCOOH···H2O.
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All the correlation coefficients, slopes, and intercepts for all thirty-six levels of theory are collected
in Table 1.

Table 1. Linear regression parameters obtained for the pKa vs VS,max plots. Intercept units in kcal/mol.

Level of Theory Slope Intercept R2 Level of Theory Slope Intercept R2

A1 −0.1954 16.1237 0.9626 D1 −0.1987 16.3352 0.9598
A2 −0.1975 15.8213 0.9645 D2 −0.1947 15.5073 0.9598
A3 −0.2185 16.1879 0.9680 D3 −0.2201 16.2212 0.9653
A4 −0.2113 16.3958 0.9627 D4 −0.2082 16.2411 0.9577
A5 −0.2063 16.3542 0.9594 D5 −0.2027 16.0780 0.9535
A6 −0.2131 16.3967 0.9589 D6 −0.2095 15.9993 0.9534

B1 −0.1902 15.1863 0.9494 E1 −0.1953 15.8840 0.9553
B2 −0.1909 14.8019 0.9515 E2 −0.1953 15.3858 0.9511
B3 −0.2191 15.5109 0.9570 E3 −0.2167 15.8799 0.9616
B4 −0.2072 15.4614 0.9521 E4 −0.2118 16.1281 0.9536
B5 −0.1983 15.1505 0.9457 E5 −0.2038 15.8232 0.9490
B6 −0.2030 15.1449 0.9277 E6 −0.2125 15.9739 0.9485

C1 −0.2001 16.4372 0.9654 F1 −0.1996 15.8814 0.9613
C2 −0.1996 15.9700 0.9647 F2 −0.2123 15.9191 0.9625
C3 −0.2272 16.6499 0.9682 F3 −0.2285 16.3778 0.9702
C4 −0.2166 16.7945 0.9633 F4 −0.2198 16.3264 0.9661
C5 −0.2085 16..4776 0.9597 F5 −0.2094 16.0399 0.9550
C6 −0.2162 16.4972 0.9579 F6 −0.2187 16.1635 0.9616

The obtained linear model is shown in Figure 3 for method (A) only, the plots with the rest of the
methods (B)–(F) are presented in the Supporting Information section (Figures S3, S5, S7, S9 and S11).

A physical interpretation of the trends observed in Figure 3 can be rationalized in terms of the
polarization of the O–H bond in the carboxylic acid motif. When the electron density of this bond
was more polarized towards the oxygen atom, then the hydrogen atom possessed a more positive
electrostatic potential, at the same time it was more labile and readily available for water to abstract it,
thus having a lower pKa.

To further analyze the obtained models, a comparison between the experimental and calculated
pKa values was made by calculating the ∆pKa = pKaexp − pKacal. Figure 4 shows these plots for the
results obtained with the functional (A), where the corresponding ∆pKa plots for the other levels of
theory are collected in the Supporting Information section (Figures S4, S6, S8, S10 and S12).
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The set of models obtained for functionals (C) and (A) had the highest correlation values across
the basis sets employed (see the discussion in Section 3 for further results analysis). Particularly, the A3
level of theory (ωB97X-D/cc-pVDZ) exhibited simultaneously, a high correlation (R2 = 0.9680) and the
lowest ∆pKa values. Table S8 shows the pKa intervals for all levels of theory and it can be observed that
all (C) models have a ∆pKa interval above 1.0 units, whereas all (A) models have ∆pKa intervals below
1.0 unit, which means an accuracy of ±0.5 pKa units. Considering these results and the calculation
parameters supplied (isodensity and grid values), we proposed the following equation:

pKa = −0.2185 VS,max + 16.1879 (2)
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To assess the predictive capabilities of our model, given by Equation (2), we built a test set with
ten carboxylic acids (Figure 5), with pKa values that lay within the range covered by the original
training set. The experimental pKa values were reported in Reference [61] and were reproduced
in Table 2, together with the calculated values for the test set and the differences, which lay in the
range of ∆pKa = ±0.3 units. Figure 6 shows the remarkable correlation between the experimental and
calculated values with a correlation coefficient R2 = 0.9801.
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Table 2. VS,max calculated with the A3 model. Experimental and calculated pKa values for compounds
a–j and the differences.

VS,max pKaexp * pKacal ** ∆pKaexp − cal

a 70.3733 0.7200 0.8097 −0.0897
b 66.8745 1.3900 1.5743 −0.1843
c 66.2754 1.4700 1.7052 −0.2352
d 65.6112 1.9000 1.8503 0.0497
e 62.0236 2.3600 2.6343 −0.2743
f 61.9719 2.9500 2.6456 0.3044
g 59.0914 3.1600 3.2750 −0.1150
h 54.9561 3.9100 4.1787 −0.2687
i 54.6370 4.2200 4.2484 0.0284
j 52.8925 4.3600 3.6296 −0.2696

* See Reference [61]. ** Values obtained with Equation (2).
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3. Discussion

3.1. Computational Method: DFT or Ab Initio?

As a comparison standard, the Møller-Plesset second-order perturbation theory, MP2 (F),
was included in the study, not only to assess its accuracy, but to compare the DFT and at least
one wave function method as well. From all the tested levels of theory, the highest R2 correlation
coefficients (Table 1) between VS,max and pKaexp values were obtained consistently with the ab initio
MP2 method. Nevertheless, the DFT functionalωB97X-D functional (A), yielded comparably similar
results at a fraction of the computational cost. The lowest correlation coefficients were obtained
with the B3LYP functional (B), which, despite being one of the most popular ones to model organic
molecules, could be describing the surface electrostatic potential inadequately. A similar performance
to that of B3LYP was observed for the PBE0 functional (E), which in turn, was slightly improved when
long range corrections were included in the case of LC-ωPBE (C). The latter functional was thought to
yield much better results due to this long-range correlation term; however, that was not the case.

The M06-2X functional (D) also showed to be properly describing the surface electrostatic
potentials, as shown in the high correlation coefficients. This was plausibly because of the dispersion
terms included in its formulation. The ωB97X-D functional included an empirical dispersion term
which was added a posteriori to correct the energy, but not the electron density [67].

Although the M06-2X functional is widely used and regarded as probably the best functional to
model organic reactions [65], in this case, it yielded a larger discrepancy in the ∆pKa plots than the
plots obtained withωB97X-D (Figure 4 and Figure S8).

The fact that the MP2/cc-pVDZ and theωB97X-D/cc-pVDZ yielded comparable results showed
that for the case of modeling surface electrostatic potentials, a computationally expensive method may
not always be preferred, as very similar or even better results can be obtained with a less demanding
approach in just a fraction of the time.

3.2. Basis Set: Is Larger Better?

Most of the reported benchmarks to model organic molecules deal with the selection of the proper
DFT functional methods [68–70]. However, little attention is paid to the basis set, or more precisely,
to the proper functional/basis set combination (i.e., the level of theory). For further details, refer to
Figures S13–S18, where the obtained models are organized by basis set.
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Four out of the six methods yielded the strongest VS,max-pKa correlations when using the relatively
medium size cc-pVDZ basis set. Surprisingly, the M06-2X functional presented the largest ∆pKa
deviations when combined with the largest basis set aug-cc-pVTZ (Figures S7 and S8).

In the case of the MP2 calculations (Figure S12), increasing the so-called quality of the basis set
may not be beneficial in all cases. When comparing the split-valence Pople’s basis sets, practically
the same correlation was found with the double-ζ set and the corresponding triple-ζ quality one,
0.9613 versus 0.9625, respectively. On the other hand, the Dunning–Huzinaga basis showed a decrease
in correlation when increasing the set size from cc-pVDZ to cc-pVTZ, 0.9702 and 0.9661, respectively.
However, the ∆pKa deviations were practically consistent among the MP2 levels of theory.

In terms of the difference between the experimental and correlated pKa values, the A3 level of
theory yielded the smallest ∆pKa deviations, with most of the differences kept under 0.5 pKa units,
showing that, for this case, a larger basis set size may not always be better.

3.3. A Final Remark

In the thirty-six levels of theory tested in this study, the calculation of the VS,max of three
compounds (6, 7, and 12) required an average of conformers, where the angle (D1 = O=C-O-H)
was either 0.0◦ or 180.0◦. The conformation D1 = 180.0◦ was stable due to strong delocalization effects
from nearby Π bonds to the σ*O-H orbital in the acidic hydrogen atom or intramolecular hydrogen
bonding with Lewis basic motifs (Figure 7). For such kind of compounds, further improvements are
required in the methodology for our linear models.
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So far, the applicability domain of these regressions is limited by the pKa data used to construct
the models (0.5 < pKa < 5.0). Caution must be taken when using the linear models presented herein for
molecules outside this range.

4. Materials and Methods

Geometry optimizations and wave function printouts for the 30 carboxylic acids were performed
using the Gaussian 09 rev. E01 suite of programs as in Reference [71], at each of the different levels of
theory (see text). All calculations included the Conductor-like Polarizable Continuum Model (CPCM)
implicit solvation model (water) as described in References [72,73]. The radii for cavity construction
was the UFF default which takes the radii from the UFF (Universal Force Field) scaled by 1.1 with
explicit spheres for hydrogen atoms. Frequency analyses were performed at the end of each geometry
optimization at the same level of theory to verify that the found geometries corresponded to the energy
minima. The ultrafine integration grid was used in all the calculations.

The maximum surface potential (VS,max) calculations were performed on the wave function files
with the ‘MultiWFN’ program, version 3.3.8 as in Reference [74], using an isodensity value of 0.001 a.u.
All the computed values were collected in the Supporting Information (Tables S1–S6).
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5. Conclusions

VS,max is a scalar quantity that characterizes a σ-hole, and according to our calculations, it has
also proven to be a suitable descriptor to be correlated with the pKa value of carboxylic acids,
yielding differences in pKa of high accuracy. ∆pKa = ±0.30 when the ωB97X-D/cc-pVDZ level
of theory was used to calculate the associated electron density upon which the VS,max value was
obtained. By means of straightforward DFT calculations with a simple implicit solvation model
(CPCM), the value of the VS,max could be calculated and Equation (2) obtained herein, could be
used to estimate the pKa values without the need for a full thermodynamic cycle calculation;
thus, avoiding long computations of solvation free energies and other costly quantities which require
high accuracy methods.

TheωB97X-D/cc-pVDZ level of theory (A3) yielded the lowest ∆pKa values, standing as the best
choice for estimating the pKa of any given acid through the calculation of the VS,max. Hence, we highly
recommend this level of theory for geometry optimization and wave function file print. Care must be
taken as the pKa value sought after should be between 0.5 and 5.0 pH units, for this is the applicability
domain of our resulting equations, given the chemical space covered herein.

Further testing is needed for these regression models to become universal. However, it is
important to stress that VS,max has turned out to be a powerful descriptor for predicting the pKa values
of carboxylic acids as it is reflected by low, yet distinguishable differences across all methods studied
herein. The presence of intramolecular non-covalent interactions, for example, hydrogen bonding,
as well as highly electron-delocalizing groups within the chemical space, are key features to consider
in the inclusion of an average of the VS,max for the most stable conformers. Our proposed descriptor
is also dependent of the isodensity value for the definition of the surface upon which it is calculated,
and it is highly recommended to keep the value suggested by Bader et al. [75] of $ = 0.001 a.u.
However, by taking these considerations into account as part of the parametrical requirements of
Equation (2), then extremely accurate pKa results are obtained in a straightforward fashion.

Supplementary Materials: The following are available online, Tables S1–S6: Calculated VS,max values for
carboxylic H atoms to the different levels of theory studied, Table S7: Reported pKa values for carboxylic
acids studied. Figures S1, S3, S5, S7, S9 and S11: Correlation of pKaexp vs VS,max. Figures S2, S4, S6, S8, S10 and
S12: Difference between the experimental and calculated pKa values (∆pKaexp−cal).
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4. Yourdkhani, S.; Jabłoński, M. Revealing the physical nature and the strength of charge-inverted hydrogen
bonds by SAPT(DFT), MP2, SCS-MP2, MP2C, and CCSD(T) methods. J. Comput. Chem. 2017, 38, 773–780.
[CrossRef] [PubMed]

http://dx.doi.org/10.1021/cr800346f
http://www.ncbi.nlm.nih.gov/pubmed/21322583
http://dx.doi.org/10.1021/ar200135h
http://www.ncbi.nlm.nih.gov/pubmed/22070387
http://dx.doi.org/10.3390/molecules22030361
http://www.ncbi.nlm.nih.gov/pubmed/28264508
http://dx.doi.org/10.1002/jcc.24739
http://www.ncbi.nlm.nih.gov/pubmed/28145082


Molecules 2019, 24, 79 12 of 15
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