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Abstract: High-valent cobalt–oxo complexes are reactive transient intermediates in a number of
oxidative transformation processes e.g., water oxidation and oxygen atom transfer reactions. Studies
of cobalt–oxo complexes are very important for understanding the mechanism of the oxygen evolution
center in natural photosynthesis, and helpful to replicate enzyme catalysis in artificial systems.
This review summarizes the development of identification of high-valent cobalt–oxo species of
tetrapyrrolic macrocycles and N-based ligands in oxidation of organic substrates, water oxidation
reaction and in the preparation of cobalt–oxo complexes.
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1. Introduction

In biological systems, metalloenzymes, typically containing Mn, Fe and Cu centers, are known to
catalyze a wide range of reactions including aliphatic and aromatic C–H hydroxylation, epoxidation,
desaturation, and heteroatom (S, N or O) dealkylation or oxidation [1,2]. It is well known that
iron-oxo species are the reactive oxidants in the catalytic cycle of heme [3] and non-heme iron
enzymes [4]. Similarly, manganese–oxo complex has been suggested the key intermediate in
oxygen-evolving center of photo-system II (PSII) [5–7]. The transition metal–oxo complexes of iron
and manganese involved in artificial oxygen transfer and C–H bond activations reactions have been
extensively reviewed [8–13]. Except for the early transition metal–oxo complexes, high-valent metal–oxo
complexes of late transition metals, particularly cobalt–oxo complexes, are also highly reactive transient
intermediates in cobalt-catalyzed C-H bond activation and O-O bond formation reactions [14–16],
and they are considered to be more reactive then related iron-oxo species due to a weak metal–oxygen
bond [17,18]. Currently, clean energy production by maneuvering natural photosynthesis in water
oxidation reactions to develop artificial photosynthesis [19–21] for efficient water splitting is a hot
topic of research [22–24]. In particular, the cobalt oxides are often used materials for water oxidation
to generate molecular oxygen [25–28]. The high-valent cobalt–oxo complexes of N-based ligand can
be implicated as reactive species in the O–O bond-forming event during water oxidation [29,30].
Furthermore, cobalt complexes based on tetrapyrrolic macrocycles are often used in mimicking the
peroxidase-like activity for the selective oxidation of organic substrates via high-valent cobalt(IV)–oxo
intermediates [31,32]. Obviously, in the study of the reactive oxidants in these catalytic reactions it is
essential to provide insight into their mechanism of reaction, allowing us to probe the critical step in
these challenging reactions. However, the isolation and identification of these transient intermediates
is considerable challenge. The cobalt–oxo complexes are not stable because cobalt has large number of
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d-electrons which produces strong electronic repulsion between the rich electron oxygen and cobalt
center. Also, the strong oxidative environment will cause oxidative degradation of the ligand, making
the high-valent cobalt–oxo complexes unstable. To reduce the electronic repulsion between cobalt and
oxygen, and to avoid oxidative degradation, tetrapyrrolic macrocylces and N-based ligands with a
different electronic environment were implemented to increase the stability of cobalt–oxo complexes
(Figure 1). Mostly, these can only be characterized in situ by electron paramagnetic resonance (EPR) [33],
X-ray absorption [34] and time-resolved Fourier-transform infrared (FT-IR) [16] spectroscopic methods.
Computational studies were also carried out to understand the nature of species involved in water
oxidation [35]. Recently, the isolation and/or identification of high-valent cobalt–oxo complexes has
become a key topic in order to develop and understand the mechanism of artificial photosynthesis and
to replicate enzymatic process in artificial reactions.
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Figure 1. Some of the most used tetrapyrrolic macrocycles and N-based ligands used to stabilize
high-valent cobalt–oxo complexes.

This review comprehends the high-valent cobalt–oxo complexes of tetrapyrrolic macrocycles
and N-based ligands reported to date, along with outlooks in this intriguing research area. It has
been divided into three sections: identification of cobalt–oxo species involved in oxidation of organic
substrates; identification of cobalt–oxo species involved in heterogeneous and homogeneous water
oxidation reactions; and preparation of high-valent cobalt–oxo complexes.

2. Cobalt–Oxo Species Involved in Oxidation of Organic Substrates

Cobalt–oxo species are involved in many of oxidative and C-H bond activation reactions.
The ligands used to generate cobalt–oxo species play a key role in stabilizing cobalt–oxo species.
Also, to mimic the enzymes-like environment, different types of support are used as protein backbone
for example cellulosic fiber and multiwall carbon nanotubes. These supports cannot alter the reaction
mechanism however, precisely control the generation of reactive intermediate, which also determines
the activity, durability and stability of the complexes [36–38].

Nam et al. reported [39] the catalytic oxidation of alkene and alkane using cobalt-substituted
polyoxotungstate and employed different oxidants such as iodosylbenzene, potassium monopersulfate
and m-CPBA. Cobalt-substituted polyoxotungstate was proved to be a good catalyst. They proposed
the involvement of different cobalt–oxo species with the different oxidants. Two possible species
may form with iodosylbenzene, high-valent cobalt(V)–oxo 1 and cobalt–iodosylbenzene adduct 2
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(Scheme 1). They suggested that complex 2 is responsible for oxygen transfer because cobalt cannot be
obtained in +5 oxidation state. KHSO5 and m-CPBA predict the involvement of cobalt(III)–oxygen
adducts as oxygen transfer complex. Isotopically labeled water (H2

18O) is a useful experimental tool
to investigate the involvement of high-valent cobalt–oxo species in cobalt-mediated oxygen atom
transfer reactions, but all the attempts to obtain 18O-labeled products have failed. Furthermore,
porphyrins are extensively used to get stable metal–oxo complexes [13]. Therefore, porphyrins with a
different electronic environment were used to stabilize cobalt–oxo species [40,41]. Cobalt(IV)-oxo [40]
and cobalt(IV)–oxo porphyrin radical [41] were proposed to be involved in C-H bond activation
reaction. These species are quite reactive towards the oxidation of alkane and alcohol, respectively.
However, there is no experimental evidence to support presence of cobalt–oxo species due to instability.
Likewise, a cobalt(IV)–oxo species was reported [42], based on the tetraanionic cobalt(II) complex
of (BrHBA-Et)H4, N,N′-(ethane-1,2-diyl)bis(5-bromo-2-hydroxybenzamide), that provides a strong
ligand field. Consequently, this specie was stable enough to be characterized by EPR and ESI-MS
spectroscopy analysis. Also, the presence of high-valent cobalt(IV)–oxo porphyrin was reported during
the oxidation of alcohol to benzaldehyde by molecular oxygen in the presence of isobutyraldehyde,
using bifunctional hybride catalyst originated from cobalt tetra(4-sulfonatophenyl)porphyrinate
anion [43] and a cationic meso-tetrakis (1-methyl-4-pyridyl) cobalt porphyrin immobilized in
montmorillonite interlayers [44]. The presence of a cobalt(IV)–oxo specie was predicted by an
18O-labeled experiment of product [43]. The turnover frequency and catalytic yield was higher
in the prior case. Later, the cobalt(IV)–oxo porphyrin was generated [45] by the oxidation of cobalt
porphyrin Co(TPFPP)(CF3SO3) utilizing m-CPBA as oxidant in solvent mixture of CH3CN and CH2Cl2.
Incorporation of H2

18O in the catalytic oxidation demonstrated the presence of 18O-labeled alcohol in
the product, which is evidence for the presence of cobalt–oxo species. Furthermore, cobalt(V)=O
and cobalt(IV)=O were generated [46] by the oxidation of a mononuclear non haem cobalt(III)
[Co((bpc)Cl2][Et4N] (H2bpc=4,5-dichloro-1,2-bis(2-pyridine-2-carboxamido)benzene) complex of a
tetradentate ligand containing two deprotonated amide moieties with PhIO. Oxidation of the cobalt(III)
complex generated cobalt acylperoxo intermediate, which on the heterolytic and homolytic cleavage
of O-O bond generated respective cobalt(V)–oxo and cobalt(IV)–oxo species. These species are also
not enough stable to be characterized spectroscopically. Similarly, a cobalt(IV)=O specie based on
isoindole-core ligand was proposed [47] as a reactive intermediate, during the stereoselective oxidation
of alkane using m-CPBA as oxidant. The kinetic isotopic effect and 18O-labeled experiment predict the
involvement of cobalt–oxo species. Recently, the involvement of a high-valent cobalt(IV)=O radical
cation was proposed [48] during the reduction of O2. The dianionic pentadentate ligand system based
on bis-pyrazolyl diaryl borate arms attached to a 2,6-substituted pyridyl frame was used to stabilize
the cobalt(IV)–oxo intermediate. Cobalt(IV)=O radical cation was generated by the cleavage of Co-O
bond, and examined theoretically and experimentally. A density functional theory (DFT) calculation
suggests the presence of maximum electron density at oxygen 70% with Co-O bond length of 1.67 Å.
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Moreover, to mimic the enzyme activity for controllable catalytic oxidation, researchers made
extensive efforts to develop and discover functional materials having properties intrinsic to enzymes.
Many transition-metal complexes were prepared [49–51] to mimic the expected features of enzymes,
such as selectivity and steric accessibility, but these do not present the said features due to the
non-natural environment. A catalyst which is a replication of enzyme should possess a suitable
cavity or cleft for accessibility of substrates and introduction of functional groups that act as active
sites within the cavity [52,53]. Enzymatically inspired catalytic system was prepared by using cobalt
tetraaminophthalocyanine (CoTAPc) as a catalyst supported by ordered-mesoporous-carbon (OMC)
for controllable activation of hydrogen oxide (H2O2) to generate stable cobalt–oxo intermediate [32].
Ordered-mesoporous-carbon provides the steric environment for a substrate to attach with active
sites and protects the active sites against the external interface. However, a disadvantage of hydrogen
peroxide is the formation of hydroxyl radical that is highly reactive, so it decreases the selectivity. A fifth
ligand dodecylbenzenesulfonate (LAS) is employed to inhibit the production of hydroxyl radical. This
fifth ligand also helps to generate high-valent cobalt(IV)–oxo specie by heterolytic cleavage of peroxide
O-O bond. The involvement of cobalt–oxo specie was corroborated by the results of semiempirical
quantum-chemical PM6 calculations. Similarly, a modification in the tetrapyrrolic macrocycle of cobalt
tetraaminophthalocyanine (CoTAPc) was made by the attachment of epoxy compound 2,3-epoxypropyl
triethylammonium chloride (EPTAC), to obtain a new catalyst with positively charged quaternary
ammonium salt chain (OMC-CoTAPc-EPTAC) [31]. The modified catalyst displays high catalytic
activity especially for negatively charged substrates. The free radical trapping EPR analysis using
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) as a free radical scavenger did not detect DMPO-·OH and
DMPO-·OOH signal, ruling out the free radical type mechanism. That is why, the cobalt(IV)–oxo
complex was proposed as a reactive intermediate due to the heterolytic cleavage of O-O bond of
peroxide. Moreover, cellulosic fiber could play the role of the protein backbone in enzymes, providing
an enzyme-like environment with enhanced regioselectivity to remove organic dyes and improve
the stability of intermediate generated. A catalyst was developed based on cellulosic fiber-bonded
cobalt phthalocyanine catalytic entity to activate hydrogen peroxide in order to generate cobalt–oxo
specie [54]. The reaction channel was controlled by linear alkylbenzene sulfonate (LAS). High-valent
cobalt(IV)–oxo specie 4 was generated by the heterolytic cleavage of peroxide O-O bond and homolytic
cleavage generate cobalt(III)–oxo specie 3 (Figure 2).
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Figure 2. Possible pathway for the formation of active species in cellulosic fiber-bonded
cobalt phthalocyanine (CoPc) H2O2 system. (A) Generation of hydroxyl radicals without ligand
dodecylbenzenesulfonate (LAS) by the homolytic cleavage of the peroxide O-O bond; (B) Generation
of cobalt–oxo with LAS by the heterolytic cleavage of the peroxide O-O bond [54].
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The in situ X-band EPR analysis was conducted at room temperature in the presence of LAS
demonstrating a signal at geff = 2.099 identifying the presence of CoIV with spin state (S = 1

2 ).
Usually, metal–oxo species have been detected at low temperature [55,56]; a high oxidation state
of PcCoIV=O was observed at room temperature, presenting high stability of complex, auto-oxidation
protected by cellulose matrix. Cellulosic fiber bonded cobalt phthalocyanine (CoPc) can also activate
peroxymonosulfate [57]. The oxidation activity of catalyst is remarkably enhanced in the presence
of bicarbonate ion (HCO3

−) due to the generation of (PcCoIV=O) by the heterolytic cleavage of
O–O bond of peroxymonosulfate. Later, the same group [58] employed the multiwall carbon
nanotubes (MWCNTs) as protein-like backbone anchored on cobalt phthalocyanine (CoPc) for
peroxidase like activation of hydrogen peroxide. The anchoring of catalytic entity on MWCNTs
decreases the diffusional mass transfer process (DMTP) and enhances the resistance of CoPc-MWCNTs
oxidative decay. The introduction of linear alkylbenzene sulfonates (LAS) facilitates the heterolytic
cleavage of O-O bond of peroxide to generate cobalt(IV)–oxo species. Furthermore, pyridine
functionalized MWCNTs were produced and axially coordinated on the cobalt phthalocyanine (CoPc),
generating a catalyst with increased catalytic activity and stability [59]. The heterolytic cleavage
of O-O bond of hydrogen peroxide to produce cobalt(IV)–oxo without presence of any fifth ligand.
The high-valent cobalt(IV)–oxo was analyzed by in situ ESI-MS and density functional theory. The DFT
calculated bond length of Co-O bond is 1.806 Å and unpaired electron spin populations are mainly
on the oxygen. Cobalt(IV)–oxo 5 was generated at pH = 10, the catalytic cycle starts with the
coordination of OOH− with CoII, and the heterolytic cleavage of O-O occurs with the release of
OH− (Figure 3a). Moreover, non-haem cobalt(III) oxamate anion could also be used to stabilize
high-valent cobalt(IV)–oxo species [60]. The oxidation of industrial contaminants was reported [61] by
immobilizing non haem cobalt(III) complex [CoIII(opbaX)]−(opbaX = 4-X-o-phenylenebis(oxamate) on
pyridine-modified MWCNTs, where pyridine acts as a fifth ligand. Similarly, cobalt(III) complexes of
[CoIII(opbaX)]-(opbaX = 4-X-o-phenylenebis(oxamate), X = H, NO2, CH3) with different substituents
was reported [62] for accelerating heterolytic cleavage of hydrogen peroxide to imitate the essential
and general principle of natural enzymes without using any fifth ligand (Figure 3b). An ESI-MS and
EPR trapping technique revealed the presence of cobalt(IV)–oxo reactive specie. The generation of
cobalt–oxo species depends on the electronic environment of substituent. In Scheme 2 pathway (b) the
electron rich cobalt complex favors the homolytical cleavage of the hydroperoxide O-O bond while
the electron deficiency favors the heterolytic cleavage with generation of (CoIV=O)10. The tendency
of generation of (CoIV=O) was in order 8 > 7 > 9. Density functional theory also demonstrated that
electron withdrawing group helps in pulling electron and lowering the corresponding energy levels.
Keeping in mind the concept of the “oxo wall” [63], another pathway (a) also proposed, heterolytic
cleavage of O-O generate the ligand based radical intermediate OH–CoIII(opbaX)11, in which ligand
transfers one electron to cobalt and cobalt transfers it to oxygen.

Our group recently [64] reported the catalytic oxidation of alkene using four cobalt(III) corroles of
different electronic environment F0C-Co, F5C-Co, F10C-Co and F15C-Co employing various oxidants.
The in situ ESI HR-MS analysis of styrene oxidation with KHSO5 predicts the presence of high-valent
cobalt(V)–oxo complex as active intermediate. The in situ X-band CW EPR analysis revealed a signal
at g = 2.0135 for the presence of cobalt–oxo specie.
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3. Cobalt–Oxo Species Involved in Water Oxidation Reaction

Water oxidation is a process that involved the four-electron-four-proton oxidation of water to evolve
O2. In natural photosynthesis, sunlight is converted to chemical energy by the oxidation of water [20].
As a consequence, understanding nature’s water oxidation mechanism in photosystem II has been the
focus of research for the development of artificial water oxidation catalyst. The development of efficient
water oxidation catalysts with minimal cost is a challenge [65–68]. Various water oxidation catalysts
were developed to understand the O-O bond formation event in natural photosynthesis to evolve
oxygen. Cobalt is the most abundant and cheap earth metal. Cobalt oxide materials are among the
most promising catalyst for water oxidation [69–71] and cobalt–oxo species are involved in the O-O
forming event of water oxidation.

Frei et al. reported [16] the photocatalytic water oxidation using cobalt oxide. The water oxidation
was carried out in the presence of photosensitizer [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) that creates
a hole and S2SO8

−2 as an electron acceptor. The FT–IR characterization revealed the involvement
of two intermediates with absorption band at 1013 cm−1 and 840 cm−1. The band at 1013 cm−1

was assigned to Co(III)OO (fast site) group with a neighboring hydroxyl group. Incorporation of
H2

18O shifts the peaks at 995 cm−1 and 966 cm−1. The shifting of frequency agrees well with the
presence of superoxide moiety on a metal-oxide surface [72,73]. The superoxide surface intermediate
causes the three-electron water oxidation. The band at 840 cm−1 was assigned to CoIV=O (slow site)
surface species. No change in the spectrum was observed by the incorporation of H2

18O, ruling
out the presence of any peroxide intermediate. From the mechanistic point of view, CoIV=O was
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generated by the oxidation of surface group Co(III)–OH. At the fast site catalytic species, catalytic turn
over frequency is at least 10 times more than slow site catalytic species, because it has no neighbor
hydroxyl group. Furthermore, Stahl et al. reported [74] the water oxidation employing cobalt oxide as
an electrocatalyst, and proposed the involvement of (CoIV-O) as reactive specie. The EPR analysis with
signals at g-values 2.59, 2.17 and 1.99 revealed the presence of multiple paramagnetic species during
water oxidation, possibly arising from (CoIV-O) sites in the catalyst with a different coordination
environment. The mechanism of water oxidation is pH dependent, at acidic pH homogeneous
catalysis leading to H2O2 production, while at pH above 3.5 heterogeneous catalysis takes place,
generating O2 from four-electron water oxidation (Scheme 3). The oxidation of 12 produced 14
(12→13→14) corresponds to a 3H+/e− process. Subsequently, 1e− oxidation generated specie 15
corresponding to 7H+/3e− process. Further, oxidation of 15 afforded 16. A key step to evolve oxygen
is the nucleophilic attack of water at 16 to produce 17 [75–77]. Under the acidic pH, the PCET-mediated
formation of 11 was prevented (Scheme 3). The oxidation of 10 produced 18 that dissolve from surface.
The intermediate specie 18 invoked the homogeneous oxidation of water to H2O2 [78]. Similarly,
bridging cobalt(IV)–oxo [79] and terminal cobalt(IV)–oxo radical [80] species were proposed as reactive
catalytic sites for water oxidation, employing amorphous cobalt oxide. X-ray absorption near the edge
provides the insight that the generation of high-valent (CoIV-O) depended on the potential applied
and pH. The edge position of the spectra was taken at pH = 7 and pH = 9 differs by about 1.0 eV
by keeping potential constant at 0.95 V, and edge position of the spectra were taken at pH = 7 by
increasing electrode potential from 0.95 to 1.34 V differs by about 1.2 eV [79]. However, the study
of cobalt–oxo species involved in water oxidation was difficult because in oxygen evolving catalysis
(OEC), large number of spectroscopically active backgrounds species are present which limits their
detection and characterization.
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Consequently, suitable catalysts to reduce background active species are needed to design.
N-based ligands have attractive properties to be used as homogenous molecular water oxidation
catalysts [81]. Recently, a significant number of catalysts are developed based on single site and
multinuclear transition metal including Mn, Fe, Co, Cu, Ru and Ir [82–87]. The biggest challenge is to
find a suitable coordination environment because the metal–ligand bond opposite a metal–oxygen bond
can be compromised at higher redox level leading the catalyst to be susceptible to degradation [88].
So, single site N-based ligand homogeneous catalysts of cobalt were developed utilizing stable
pentadentate ligand environment of 2,6-(bis(bis-2-pyridyl)methoxy-methane)-pyridine [89] and
6-(bis(bis-2-pyridyl)-methoxymethane)pyridine [30] for water oxidation. The electrochemical studies
revealed that over pH range 7.6–10.3 an oxidation event was observed at +1.43 V vs. NHE corresponding
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to [CoIV–OH]3+/[CoIII–OH]2+ with significant rise in current. This signal is not classified as PCET
because E1/2 is static over this pH range. A pH dependent step was observed at pH > 10.3 corresponding
to [CoIV=O]2+/[CoIII–OH]2+ which is consistent with PCET. High-valent [CoIV=O]2+ species evolves O2

by the nucleophilic attack of H2O [89,90]. An alternative pathway proposed that the attack of OH- at
[CoIV–OH]3+ in the rate determining step will evolve O2 [30]. Likewise, [CoIV-O] specie was proposed
as reactive intermediate during water oxidation at basic pH using cobalt-porphyrins as catalyst [91].
Similarly, Groves and Wang reported [92] the single site homogeneous water oxidation catalyst,
employing a series of cobalt porphyrins 19, 20 and 21 (Scheme 4). A high-valent CoIV-porphyrin cation
radical acts as reactive intermediate. The electrochemical experiment provides the evidence for the
formation of high-valent CoIV–O specie. The redox event at 250 mV vs. Ag/Cl reference represents
the resting state of catalyst H2O–CoIII–OH 23. The observed anodic features at ~1 V demonstrates
the oxidation of CoIII porphyrin to CoIII porphyrin radical cation (+P-CoIII–OH) 24. As first oxidation
occurred before the onset potential of WOC catalytic current, so +P–CoIII–OH is not the reactive
oxidant in this system. The second oxidation at 1320 mV generates a reactive high-valent CoIV–O
porphyrin radical cation 25. The key step for O-O bond formation is the nucleophilic addition of
H2O to +P–CoIV–O 25 to form Co-hydroperoxo or peroxo which further oxidized to evolve O2 as
shown in Scheme 5. Likewise, photo-induced generation of CoIV=O as active oxidant for the water
oxidation was reported [93] based on a cobalt(II) complex of salophen ligand. Moreover, a high-valent
CoIVO complex isoelectronic to CoVO was reported [29] to act as active specie to generate O2 based on
a cobalt(III) complex of N-based ligand bTAML (bTAML = biuret-modified tetraamidomacrocyclic)
ligands. The complex [Co(O)(bTAML)]1− cannot be characterized by spectroscopic techniques due
to the non-innocent nature of the ligand except UV-vis spectra. The same specie was generated by
the one electron oxidation using cerium ammonium nitrate in the presence of ZnCl2. The HR-MS
analysis revealed the m/z = 497.026 corresponding to [CoIV(O)(Zn)(bTAML)(H+)]. Further, Nocera
et al. reported [94] the dicobalt oxidized site Co(III)2Co(IV)2 during water oxidation using cobalt
cubane modified by pyridine ligands that can stabilize tetracobalt core. This pyridine-modified
cobalt cubane has molecular nature and termed as molecular cubane. Electrochemical investigation
demonstrated two reversible oxidation events at E0(1) = 0.3 V and E0(2) = 1.25 V corresponding
to Co(III)3(IV)/Co(III)4 and Co(III)2(IV)2/Co(III)3(IV). X-ray absorption spectroscopy also confirms
the presence of Co(III)2(IV)2 specie. The adjacent terminal CoIV=O species in cubane provide a site
for direct O–O bond formation by radical coupling to evolve O2. Likewise, the proton-coupled
electron transfer generation of (CoIV-O) was also reported [95] using molecular model cubane,
[Co4O4(CO2Me2)2(bpy)4]. Furthermore, molecular cobalt cubane Co4O4(OAc)4py4 26 [96] and a
series of modified molecular cobalt cubane with electron rich and electron poor groups [97] were
reported to understand the nature of high-valent cobalt–oxo species involved in the water oxidation
reaction. The electrochemical studies of 26 revealed the presence of only one fully redox couple from
pH 4 to pH 10 at E1/2 = 1.25 V corresponding to Co(III)4/Co(III)3(IV) redox. The increase of pH to 12
produced a significant anode wave current and bubble formation, consistent with the oxidation of
hydroxide to oxygen. No change in the current intensity was observed in the presence of EDTA, ruling
out the possibility of heterogeneous water oxidation due to the presence of CoII oxide. The ESI-MS
analysis by incorporating 97% enriched Na18OH observed the presence of 90% 36O2. No evidence
for the exchange of 18O-oxygen between 26 revealing that only terminal oxo/hydroxide specie was
involved in O-O bond formation. The reaction of protonated 26+ and hydroxide showed the importance
of the cobalt(IV) oxidation state in O2 formation. The generation of cobalt(V)=O 26(O) was proposed
by PCET before the evaluation of O2 as shown in Scheme 6 [96]. The protonated 26+ reacts with
hydroxide ion to produce 26(O)− which further oxidized to cobalt(V)=O 26(O). The specie 26(O) had
acted as reactive intermediate to evolve O2. Involvement of high-valent cobalt(V)=O complex during
water oxidation was also theoretically proposed [98–101]. Corroles are analogous of porphyrin which
have one carbon less than porphyrin and can stabilize metals in a higher oxidation state. A high-valent
CoV=O specie suggested [102] to act as reactive specie during water oxidation by using series of cobalt
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corroles with different axial ligand. Electrochemical study of cobalt corroles represent two reversible
oxidation events at E1/2 = 0.75 and E1/2 = 1.32 V vs. NHE corresponding to CoIV/CoIII and CoV/CoIV

redox couples, respectively. Nucleophilic attack of the water at Co-O bond to generate Co-hydroperoxo
specie is the key step to evolve O2. Cobalt corroles with electron-donating ligands are more reactive
because it causes the Co-O bond to be weaker and nucleophilic attack become easier.

1. Wang, D.; Groves, J.T. Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with 
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Scheme 4. Molecular structures of cobalt porphyrins employed as water oxidation catalyst. 

Scheme 5, 7, 8, 9 also revised to make the manuscript coherent.  

 
Scheme 5. Proposed mechanism of water oxidation catalyzed by cobalt porphyrins [92]. 

 
Scheme 7. Preparation of high-valent {CoIV-O-Sc3+} complex 29. 

Scheme 4. Molecular structures of cobalt porphyrins employed as water oxidation catalyst.

1. Wang, D.; Groves, J.T. Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with 
critical roles for the buffer base. Proc. Natl. Acad. Sci. USA 2013, 110, 15579–15584. 

 

 

Scheme 4. Molecular structures of cobalt porphyrins employed as water oxidation catalyst. 

Scheme 5, 7, 8, 9 also revised to make the manuscript coherent.  

 
Scheme 5. Proposed mechanism of water oxidation catalyzed by cobalt porphyrins [92]. 

 
Scheme 7. Preparation of high-valent {CoIV-O-Sc3+} complex 29. 

Scheme 5. Proposed mechanism of water oxidation catalyzed by cobalt porphyrins [92].

Molecules 2018, 23, x FOR PEER REVIEW  9 of 16 

 

 
Scheme 4. Molecular structures of cobalt porphyrins employed as water oxidation catalyst. 

 
Scheme 5. Proposed mechanism of water oxidation catalyzed by cobalt porphyrins [92]. 

 
Scheme 6. Generation of high-valent CoV=O 26(O) during water oxidation by molecular cobalt cubane 
Co4O4(OAc)4py4 [96]. 

4. Preparation of Cobalt–Oxo Complexes 

The isolated preparation of cobalt–oxo complexes have two major problems (1). Ligands used to 
stabilize cobalt–oxo complexes are prone to oxidation (2). Electronic repulsion forces between the d-
electron of cobalt and electron of the oxygen. Chemists are focusing on how to overcome these 
problems to prepare cobalt–oxo complexes. 

Ray et al. reported [103] the first preparation and isolation of terminal cobalt(IV)–oxo complex 
using the N-based tetradentate tripodal ligand TMG3tren (tris[2-(N-

26+

O

Co
Co

O
Co

O
O

CoIV

O

O

O

Co
Co

O
Co

O
O

CoIV OH

OAc O

Co
Co

O
Co

O
O

CoIV O

OAc -

O

Co
Co

O
Co

O
O

CoV O

OAc

O

Co
Co

O
Co

O
O

CoIII O

OAc -

OH

O

Co
Co

O
Co

O
O

CoIII O

OAc -

O

O

Co
Co

O
Co

O
O

CoIII OH

OAc -

K1 OH-

OH-
H2O

K2

26+

26

OH-

K3

K4

26+26 +H2O

K5

K6

26+ + OH-

26 + O2

26+

26

K7

K-7

26(OH) 26(O)-

26(O)

26(OOH)-
26(O2)-

26(OH)-

Scheme 6. Generation of high-valent CoV=O 26(O) during water oxidation by molecular cobalt cubane
Co4O4(OAc)4py4 [96].



Molecules 2019, 24, 78 10 of 17

4. Preparation of Cobalt–Oxo Complexes

The isolated preparation of cobalt–oxo complexes have two major problems (1). Ligands used
to stabilize cobalt–oxo complexes are prone to oxidation (2). Electronic repulsion forces between the
d-electron of cobalt and electron of the oxygen. Chemists are focusing on how to overcome these
problems to prepare cobalt–oxo complexes.

Ray et al. reported [103] the first preparation and isolation of terminal cobalt(IV)–oxo complex
using the N-based tetradentate tripodal ligand TMG3tren (tris[2-(N-tetramethylguanidyl)ethyl]amine).
The {Co-O} unit was stabilized by the Lewis acid interaction with Sc+3 ion, generating {Co-O-Sc}+3 unit.
The complex 29 was obtained by two electron oxidation of 27-OTf in the presence of Sc(OTf)3 (Scheme 7).
The complex 29 was characterized by electrospray mass spectrum, EPR and X-ray absorption spectroscopy,
and was reactive towards oxidation of triphenylphosphine and dihydroanthracene. The same group
two years later reported [104] the square pyramidal cobalt(IV)–oxo with enhanced stability based
on the tetraamido macrocyclic ligand (TMAL). The electrochemical study of 30 gave a reversible
oxidation peak at 1.00 V vs. a saturated colomel electrode. This reversible oxidation peak suggests that
CoIV state is thermally and kinetically accessible. The one electron oxidation of 30 in the presence of
cerium ammonium nitrate (CAN) afforded a blue-colored complex 31-Ce with a half-life of 20 min.
This blue complex can also be obtained by the oxidation of 30 with PhIO in the presence other
redox-inactive metals like Sc+3, Y+3 and Zn+2 (Scheme 8). The complex 31-M was characterized by
cold-spray ionization time-of-flight mass spectrometry (CSI-TOF MS), X-band EPR spectrum, and X-ray
absorption spectroscopy. All attempts to obtain resonance Raman spectrum have failed. The 31-Sc
complex demonstrated high reactivity in the hydrogen abstraction reaction and oxygen atom transfer
reactions. The first fully spectroscopically characterized high-valent Cobalt(IV)–oxo complex 33 was
generated [105] by the two electron oxidation of a cobalt complex of 13-TMC (2 mM) 32 by PhIO
(3 equiv.) following conventional method in the presence of triflic acid (CF3SO3H, HOTf; 1.2 equiv.) in
acetone (Scheme 9). The transient complex had a half-life of 3 h and was characterized by CSI-TOF
MS, EPR and X-ray absorption spectroscopy. Resonance Raman spectroscopy considered as authentic
technique to confirm the presence of metal–oxo complex [106,107]. The resonance Raman spectrum of
33 showed a band at 770 cm−1 which shifts to 736 cm−1 upon 18O-labelling of 33. Recently, preparation
of CoIII≡O complex was reported [108] by using tris-(imidazol-2-ylidene)borate ligand PhB(tBuIm)3

−.
This complex was characterized by infrared (IR) and X-ray diffraction (XRD) spectroscopy. The length
of Co-O bond determined by XRD was 1.68 Å. DFT calculations revealed two Co-O π* interactions
with highest lying dxz and dyz orbitals. These orbitals support the presence of two π-bonds. This
complex was thermodynamically unstable with half-life of 8 h.
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5. Summary and Outlook

High-valent cobalt–oxo complexes are implicated as key intermediates in many of the oxidative
transformation reactions and the water oxidation process. Identification of cobalt–oxo species in
water-splitting reactions have been extensively studied. However, the transient nature of cobalt–oxo
complexes limits their characterizations to in situ EPR, XAS and mass spectroscopy. Although different
strategies, such as using ligands with different electronic environments or MWCNT supports, have
been adopted to stabilize cobalt–oxo complexes, until now only one example of Raman characterization
for cobalt (IV)=O complex using 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane ligand has been
available. The isolation and identification of high valent cobalt–oxo species remains a great challenge.
The design of a suitable N-based ligand which can stabilize coordinated cobalt atom in high oxidation
might be the key step for the preparation of higher valent cobalt–oxo complexes, which will allow the
full characterization and “slow motion picture” study of the factors controlling its reactivity.
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Abbreviations

TPFPP Meso-tetrakis(pentafluorophenyl)porphinato dianion
CoTAPc cobalt tetraaminophthalocyanine
EPTAC 2,3-epoxypropyl triethylammonium chloride
Pc Phthalocyanine
TAPc Tetraaminophthalocyanine
MWNCTs Multiwall carbon nanotubes
DMPO 5,5-Dimethyl-1-pyrroline N-oxide
F0C-Co Co(III) complex of 5,10,15-triphenylcorrole
F5C-Co Co(III) complex of 5,15-bis(phenyl)-10-(pentafluorophenyl)corrole
F10C-Co Co(III) complex of 5,15-bis(pentafluorophenyl)-10-phenylcorrole
F15C-Co Co(III) complex of 5,10,15-tris(pentafluorophenyl)corrole
TMG3tren (tris[2-(N-tetramethylguanidyl)ethyl]amine)
sPhIO 2-(tert-butylsulfonyl)iodosylbenzene
TMAL Tetraamido macrocyclic ligand
13-TMC 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane
Co-TDMImP Co(III) complex of 5,10,15,20-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin
Co-TM4PyP Co(III) complex of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin
Co-TTMAP Co(III) complex of 5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)porphyrin
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