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Abstract: Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition
and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for
type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium
hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type
2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were
treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg).
Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin
was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate
tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats
NaSH at 1.6–5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased
serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH
only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and
insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate
metabolism in type 2 diabetic rats.
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1. Introduction

Hydrogen sulfide (H2S), a novel gasotransmitter, is involved in many (patho)physiological
processes [1]. H2S exerts its well-known effect, i.e., decreasing blood pressure, mostly by opening
ATP-sensitive potassium channels (KATP) in vascular smooth muscle cells [2]. KATP channels also
play a key role in insulin secretion in pancreatic β-cells [3], where opening of the channels by H2S
decreases insulin secretion [4]. Both endogenous and exogenous H2S inhibit insulin secretion from
β-cells by activation of KATP channels and inhibition of L-type voltage-dependent calcium channels [5].
In addition, through inhibition of glucose transporter-4 (GLUT-4), H2S inhibits insulin-stimulated
glucose uptake in white adipocytes in rat, indicating that H2S decreases insulin sensitivity of
adipocytes [6]. In Zucker diabetic fatty rats, the rate of endogenous H2S production is higher than
non-diabetic rats and inhibition of H2S production restores hyperglycemia to near normal levels [7].
Inhibition of H2S synthesis has been therefore suggested to be a potential therapeutic approach for
insulin resistance states and also for protecting β-cells during the induction phase of diabetes [8].

On the other hand, type 2 diabetes is a state of H2S deficiency [9–12] and H2S protects β-cells
against glucotoxicity-induced apoptosis [13]. Chondroitin sulfate prebiotic diet, which increases
H2S levels in colon, stimulates glucagon like peptide-1 (GLP-1) secretion, which has anti-diabetic
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actions [14]. H2S up-regulates insulin signaling pathways essential for glucose utilization [15] and
mediates the effects of vitamin D on translocation of GLUT-4 in adipocytes [16]. These data are in
favor of boosting H2S as a treatment for type 2 diabetes.

To our knowledge, there is only one in vivo study with the aim of assessing H2S effects on
carbohydrate metabolism in type 2 diabetic rats [17]; results indicate decreased plasma glucose at a
low dose of sodium hydrosulfide (NaSH) and increased plasma glucose at a high dose. Other studies,
all involving db/db mice and assessing the effects of H2S administration on cardiac function [18–20]
or learning and memory [21], have reported beneficial effects on glucose metabolism [20], no effect on
blood glucose levels [18,19,21], or glucose tolerance [19,21].

Whether H2S has beneficial or deleterious effects on carbohydrate metabolism in type 2 diabetes
has not been answered yet and before suggesting strategies to augment/inhibit H2S levels in clinic,
further in vivo animal studies are needed considering long-term and dose-dependent effects of
exogenous H2S. The aim of this study was therefore to determine effects of long-term administration
of different doses of NaSH, a H2S donor, on carbohydrate metabolism in type 2 diabetic rats.

2. Results

2.1. Effect of NaSH on Serum Total Sulfide Levels

Diabetic rats had lower total serum sulfide levels than controls (16.5 ± 2.8 vs. 28.3 ± 2.4 µmol/L,
p = 0.001). NaSH administration increased total serum sulfide levels in control rats at doses 2.8 and
5.6 mg/kg and in diabetic rats at doses 0.56 mg/kg and higher (Figures 1 and S1).
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2.2. Effect of NaSH on Body Weight, Water Consumption, and Food Intake 

Body weights were comparable in all groups before starting the high fat diet (HFD). HFD 
consumption for 2 weeks caused a significant (p < 0.001) increase in body weights, but streptozotocin 
(STZ) injection to the HFD-fed rats resulted in a significant (p < 0.001) reduction in the body weights. 
Before starting the NaSH administration, the body weights were similar between all groups. During 
9 weeks of NaSH administration, the body weights decreased gradually in the NaSH-treated diabetic 
rats and these decreases were significant at the doses of 2.8 and 5.6 mg/kg. The differences in body 
weight gain were significant from weeks 7 and 8 in NaSH-treated diabetic rats at 5.6 and 2.8 mg/kg, 
respectively, and were observed throughout the remainder of the study (Figures 2 and S2). 

As expected, in the diabetic rats, water consumption (Figures S3 and S4) and calorie intake 
(Figures S5 and S6) were significantly higher, while food intake (Figures S7 and S8) was significantly 
lower than the control group. NaSH-treated diabetic rats at 2.8 and 5.6 mg/kg displayed higher water 
consumption and lower food and calorie intake. NaSH administration in control rats had no effects 
on body weight, food and calorie intakes, or water consumption. 

Figure 1. Effect of NaSH on serum total sulfide levels in control and diabetic rats. Rats were treated
daily with different concentrations of NaSH for 9 weeks. Results are mean ± SEM (n = 10/group).
* p < 0.05 compared to non-treated control rats, † p < 0.05 compared to non-treated diabetic rats.

2.2. Effect of NaSH on Body Weight, Water Consumption, and Food Intake

Body weights were comparable in all groups before starting the high fat diet (HFD). HFD
consumption for 2 weeks caused a significant (p < 0.001) increase in body weights, but streptozotocin
(STZ) injection to the HFD-fed rats resulted in a significant (p < 0.001) reduction in the body weights.
Before starting the NaSH administration, the body weights were similar between all groups. During 9
weeks of NaSH administration, the body weights decreased gradually in the NaSH-treated diabetic
rats and these decreases were significant at the doses of 2.8 and 5.6 mg/kg. The differences in body
weight gain were significant from weeks 7 and 8 in NaSH-treated diabetic rats at 5.6 and 2.8 mg/kg,
respectively, and were observed throughout the remainder of the study (Figures 2 and S2).
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Figure 2. Effects of NaSH on body weight at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg. 
Results are mean ± SEM (n = 10/group). * p < 0.05 compared to non-treated control rats, † p < 0.05 
compared to non-treated diabetic rats. 

2.3. Effect of NaSH on Serum Glucose Concentration 

Compared to the control group, diabetic rats had higher serum glucose levels before NaSH 
treatment (178.6 vs. 85.5 mg/dL, p < 0.001). After 9 weeks of NaSH administration at 1.6, 2.8, and 5.6 

Figure 2. Effects of NaSH on body weight at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg.
Results are mean ± SEM (n = 10/group). * p < 0.05 compared to non-treated control rats, † p < 0.05
compared to non-treated diabetic rats.

As expected, in the diabetic rats, water consumption (Figures S3 and S4) and calorie intake
(Figures S5 and S6) were significantly higher, while food intake (Figures S7 and S8) was significantly
lower than the control group. NaSH-treated diabetic rats at 2.8 and 5.6 mg/kg displayed higher water
consumption and lower food and calorie intake. NaSH administration in control rats had no effects on
body weight, food and calorie intakes, or water consumption.
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2.3. Effect of NaSH on Serum Glucose Concentration

Compared to the control group, diabetic rats had higher serum glucose levels before NaSH
treatment (178.6 vs. 85.5 mg/dL, p < 0.001). After 9 weeks of NaSH administration at 1.6, 2.8,
and 5.6 mg/kg, serum glucose concentrations increased significantly (253.0, 255.9, and 432.8 vs.
187.6 mg/dL, respectively, p < 0.001) and these became evident at weeks 4 (233.9 vs. 180.0 mg/dL,
p = 0.001), 2 (247.3 vs. 184.9 mg/dL, p < 0.001), and 2 (292.4 vs. 184.9 mg/dL, p < 0.001), respectively.
NaSH at 0.28 and 0.56 mg/kg, had no effect on serum glucose levels in diabetic rats. In the control rats,
only the highest dose of NaSH (5.6 mg/kg) (128.3 vs. 82.5 mg/dL, p = 0.001) increased serum glucose
concentrations at week 9 (Figures 3 and S9).
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Figure 3. Effects of NaSH at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg on serum glucose
concentrations. Area under the curves (from week 3 to week 12) are shown in columns on the right.
Results are mean ± SEM (n = 10/group). * p < 0.05 compared to non-treated control rats, † p < 0.05
compared to non-treated diabetic rats.
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2.4. Effect of NaSH on Serum Insulin Concentrations

Before starting NaSH treatment, serum insulin concentrations were comparable between the
control and the diabetic rats (Figure S10). Continuing HFD increased serum insulin concentrations
in non-treated diabetic rats (188.40 ± 14.09 vs. 79.31 ± 11.31 pmol/L, p < 0.001). In the diabetic
rats, NaSH administration at 1.6, 2.8, and 5.6 mg/kg significantly decreased serum insulin levels
(120.9 ± 14.3, 56.6 ± 8.7, and 34.5 ± 4.3 vs. 188.4 ± 14.1, pmol/L p < 0.001, respectively), whereas this
was not changed at 0.28 and 0.56 mg/kg. In the control rats, only the highest dose of NaSH (5.6 mg/kg)
significantly decreased serum insulin levels (50.4 ± 5.8 vs. 79.3 ± 11.3 pmol/L, p < 0.001) (Figure 4).
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Figure 4. Effect of NaSH administration on fasting serum insulin levels at the end of the study. Results
are mean ± SEM (n = 8/group). * p < 0.05 compared to non-treated control rats, † p < 0.05 compared to
non-treated diabetic rats.

2.5. Effect of NaSH on Glucose Tolerance

As shown in Figures 5 and S11, compared to the control rats, non-treated diabetic rats had
impaired glucose tolerance (p < 0.001). Chronic NaSH administration at 1.6, 2.8, and 5.6 mg/kg,
impaired glucose tolerance in diabetic rats (p < 0.001), while improved it at 0.56 mg/kg (p = 0.009)
and had no effect at 0.28 mg/kg. In the control rats, only the highest dose of NaSH impaired glucose
tolerance (p < 0.001).

2.6. Effect of NaSH on Gluconeogenesis

To investigate the ability of NaSH treatment to modulate gluconeogenesis, pyruvate tolerance test
(PTT) was performed. In non-treated diabetic rats, pyruvate administration, a gluconeogenic substrate
precursor, caused higher glucose production compared to the control rats (AUC: 26844 ± 1286.0 vs.
10523 ± 435.1, p < 0.001). Chronic NaSH administration at 1.6 (AUC: 30876 ± 1848 vs. 26844 ± 1286,
p = 0.048), 2.8 (AUC: 40241 ± 2955 vs. 26844 ± 1286, p < 0.001), and 5.6 (AUC: 62190 ± 2303 vs.
26844 ± 1286, p < 0.001) mg/kg, increased serum glucose concentration during PTT in diabetic rats,
while it had no effect at 0.28 and 0.56 mg/kg. In controls, NaSH only at 5.6 mg/kg significantly (AUC:
14598 ± 730.2 vs. 10523 ± 435.1, p = 0.046) impaired pyruvate tolerance (Figures 6 and S12).



Molecules 2019, 24, 190 6 of 15Molecules 2019, 24, x 6 of 15 

 

A
U

C
 (a

rb
itr

ar
y 

un
it)

A
U

C
 (a

rb
itr

ar
y 

un
it)

AU
C

 (a
rb

itr
ar

y 
un

it)
A

U
C

 (a
rb

itr
ar

y 
un

it)
A

U
C

 (a
rb

itr
ar

y 
un

it)

 
Figure 5. Effects of NaSH on glucose tolerance at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg. 
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2.6. Effect of NaSH on Gluconeogenesis 
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Figure 5. Effects of NaSH on glucose tolerance at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg.
Area under the curves are shown in columns on the right. Results are mean ± SEM (n = 10/group).
* p < 0.05 compared to non-treated control rats, † p < 0.05 compared to non-treated diabetic rats.
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Figure 6. Effects of NaSH on pyruvate tolerance at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) mg/kg.
Area under the curves are shown in columns on the right. Results are mean ± SEM (n = 10/group).
* p < 0.05 compared to non-treated control rats, † p < 0.05 compared to non-treated diabetic rats.

2.7. Effect of NaSH on In Vivo Insulin Secretion

We next measured serum insulin levels during glucose tolerance test (GTT) to determine the
effects of NaSH on in vivo insulin secretion. In non-treated diabetic rats, increases in insulin secretion
during GTT, were lower than the control rats (AUC: 29582 ± 2235 vs. 46553 ± 1857, p < 0.001);
NaSH administration for 9 weeks at 1.6 (AUC: 21459 ± 2938 vs. 29582 ± 2235, p = 0.026), 2.8 (AUC:
17668 ± 3085 vs. 29582 ± 2235, p = 0.002), and 5.6 (AUC: 8112 ± 1000 vs. 29582 ± 2235, p < 0.001) mg/kg,
decreased insulin response to glucose injection in the diabetic rats. In controls, NaSH only at 5.6 mg/kg
significantly (AUC: 39150 ± 3323 vs. 46553 ± 1857, p = 0.028) decreased insulin response to glucose
injection (Figures 7 and S13).
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Figure 7. Effects of NaSH on in vivo insulin secretion at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6 (E) 
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Figure 7. Effects of NaSH on in vivo insulin secretion at 0.28 (A), 0.56 (B), 1.6 (C), 2.8 (D), and 5.6
(E) mg/kg. Areas under the curves are shown in columns on the right. Results are mean ± SEM
(n = 8/group). * p < 0.05 compared to non-treated control rats, † p < 0.05 compared to non-treated
diabetic rats.

2.8. Effect of NaSH on Blood Pressure

As shown in Figure 8, compared to the controls, non-treated diabetic rats had higher systolic
blood pressure (SBP) (129.0 ± 1.9 vs. 112.6 ± 2.1, p = 0.007); NaSH administration for 9 weeks at
all doses decreased SBP in diabetic rats. In controls, NaSH at 1.6, 2.8, and 5.6 mg/kg significantly
decreased SBP.
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3. Discussion

This study showed that chronic administration of high doses of NaSH aggravated carbohydrate
metabolism in obese type 2 diabetic rats. NaSH administration at high doses increased serum glucose
and impaired glucose tolerance and pyruvate tolerance, as well as decreased insulin secretion and
serum insulin levels.

In this study, NaSH administration increased total sulfide levels in the serum of both control
and diabetic rats, however, this increase was about 40% lower in the diabetic rats as compared to the
corresponding controls. In this regard, literature reports are quite controversial as increased [22,23],
decreased [10,18,24], and even no change [25] in blood H2S levels have been reported in diabetic
patients [10,22,24] and animals [18,23,25]. Our results may be explained in light of what has been
reported in the literature where it has been shown that hyperglycemia results in an increase in H2S
consumption due to increases in reactive oxygen species [26]; moreover, the activities of H2S-generating
enzymes have been reported to be lower in diabetes [18] which results in lower H2S levels which is in
line with our observations reported here.

In this study, chronic NaSH administration in diabetic rats only at higher doses (2.8 and 5.6 mg/kg)
inhibited weight gain, decreased food intake, and increased water consumption; NaSH administration,
had however no effect on these parameters in the control rats. Few studies have reported effects of H2S
on body weight gain in type 2 diabetes; in line with our results in control rats and low dose of NaSH in
diabetic rats, no change in body weight have been reported following H2S donors administration in
type 2 diabetic animals [18,20,21]. In addition, there was no significant differences in food intake in
cystathionine γ-lyase-knockout (CSE-KO) mice [27] as well as in HFD-induced insulin resistance mice
treated with the slow H2S-donating compound, GYY4137 [28].

In the present study, higher doses (1.6, 2.8, and 5.6 mg/kg) of NaSH increased fasting serum
glucose and decreased serum insulin levels in the diabetic rats. Few studies have assessed the effects
of H2S on glucose metabolism in type 2 diabetes; in line with our study, administration of high dose
of NaSH (6.72 mg/kg for 6 weeks) to Goto-Kakizaki (GK) rats increased plasma glucose levels by
86.5% [17] (cf. with 115% increase in our study following 9 weeks of NaSH at 5.6 mg/kg).

In our study, diabetic rats exhibited insulin resistance as confirmed by 137% increase of
fasting serum insulin in the presence of moderate stable hyperglycemia. Administration of NaSH
dose-dependently decreased serum insulin levels in the presence of aggravated hyperglycemia,
indicating decreased insulin secretion by pancreatic β-cells as previously reported in in vitro
studies [4,29]. This result is also in agreement with decreased in vivo insulin secretion during
GTT observed in our study. In our study, the highest dose of NaSH increased serum glucose and
decreased serum insulin levels and in vivo insulin secretion in control rats. This is consistent with
pathophysiology of type 2 diabetes with partial dysfunction of β-cells. H2S-induced hyperglycemia
is associated with decreased glucose-induced Ca2+ influx [29], activating pancreatic β-cell KATP

channels [4], and decreased ATP production in the pancreatic β-cells [29]. Other explanations for
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H2S-induced hyperglycemia include a decrease in peripheral glucose uptake and an increase in
glycogenolysis [30].

In contrast to our results, Rong et al. reported a decrease in serum glucose concentrations
following administration of NaSH at 1.68 mg/kg in GK type 2 diabetic rats [17]. Our model of obese
type 2 diabetes (HFD-STZ) is characterized with a stable hyperglycemia (~15% fasting serum glucose
fluctuation during 8 weeks) along with insulin resistance. However, non-obese GK rats in the study
of Rong et al. did not show stable hyperglycemia and their fasting plasma glucose levels fluctuated
by as much as 75% during the 10 weeks of their study. In addition, in the Rong et al. study, fasting
plasma insulin at the end of their study was approximately one-third of the corresponding control rats,
indicating the absence of insulin resistance as the main characteristic of type 2 diabetes. Indeed, it has
been reported that β-cell defect is the primary defect in the GK rats [31]. These observations strongly
suggest that the blood-glucose lowering effects of a low dose of H2S as has been reported by Rong et
al. needs further verification in other models of type 2 diabetes.

Other studies that assessed the effects of H2S donors on blood glucose levels in type 2 diabetic
animals are all in male db/db mice and have reported no effect on blood glucose concentrations using
NaSH (4.5 mg/kg for 8 weeks) [21], Na2S (0.1 mg/kg for one week) [18], and NaSH (5.6 mg/kg for
12 weeks) [19]. These data showing that high doses of NaSH have no effect of on blood glucose levels
is in contrast to our results reported here. One potential explanation for this apparent discrepancy
is the use of different species. In our study we used rats whereas others used mice. The lethal dose
(LD50) of NaSH following intraperitoneal (IP) injection has been reported to be lower in male rats (i.e.,
15 mg/kg) [32] compared to male mice (i.e., 25.2 mg/kg) [33]. In addition, mouse models may not be
suitable for studying H2S effects, as has been reported in assessing neurological squeal of H2S [34];
this however remains to be determined as it pertains to the metabolic effects of H2S.

In our study, NaSH at high doses impaired glucose tolerance and increased gluconeogenesis
(as measured by PTT) in diabetic rats. Unlike our results, no change [21] or even an increase [17,20]
in glucose tolerance have been reported in db/db mice [20,21] and GK rats [17] following NaSH
administration. In our study, decreased insulin secretion in response to exogenous glucose resulted in
poor glucose clearance during GTT. Our study is the first to show increased gluconeogenesis in type 2
diabetic rats; this finding is in line with both in vitro and in vivo studies in non-diabetic conditions.
In CSE-KO mice, glucose production in hepatocytes is lower [30] and NaSH administration (2.18
and 3.53 mg/kg) increases gluconeogenesis [35]. H2S donors increased gluconeogenesis in vitro by
increasing activities of gluconeogenic enzymes [30,35].

In the present study, all doses of NaSH (0.28–5.6 mg/kg) decreased SBP in diabetic rats. In line
with our results, antihypertensive properties of NaSH at 0.56–5.6 mg/kg have been reported in animal
models of hypertension [36–40] and in one study in type 2 diabetic rats [17]. H2S decreases blood
pressure mainly by the opening of vascular KATP channels [41]; opening of these channels in pancreatic
β-cells also decreases insulin secretion [4]. Our data indicate that effects of H2S on carbohydrate
metabolism should be taken into account when favorable effects including its antihypertensive effect
are intended.

Regarding strengths of this study, different doses of NaSH were administrated for a long time.
In addition, an animal model of diabetes (HFD-STZ) which closely reflects characteristics of human
type 2 diabetes was used; in this model, feeding a HFD induces insulin resistance and a low dose
of STZ partially destroys β cells [42]. This study however has some limitations; serum total sulfide
level was measured by the methylene blue method which measures all sulfur compounds rather than
only free H2S; this method is however one of the most commonly used methods for measuring H2S in
biological systems [43]. In addition, we did not measure oxidative stress and GLUT-4 protein levels in
insulin sensitive tissues; these factors affect glucose metabolism in type 2 diabetes.

In conclusion, the unfavorable effects of chronic administration of NaSH in particular at high
doses on carbohydrate metabolism in type 2 diabetic rats are reported. Further studies are indeed
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needed to clear the in vivo effects of different doses of H2S on carbohydrate metabolism in type
2 diabetes.

4. Materials and Methods

4.1. Animals and Induction of Diabetes

The care and use of laboratory animals was approved by the ethics committee of the National
Institute for Medical Research Development (IR.NIMAD.REC.1396.307), Tehran, Iran. All animal
treatments were carried out according to internationally approved guidelines for the use and care
of laboratory animals. A total of 120 male Wistar rats (190–210 g) were housed under controlled
conditions (23 ± 2 ◦C, relative humidity of 50 ± 6%, 12/12-h light-dark cycle). Rats had free access to
water and a normal rat pellet diet with a total caloric value of ~3,100 kcal/kg, or a HFD with a total
caloric value of ~4,900 kcal/kg.

Diabetes was induced using HFD-STZ as described previously [42]. After feeding the HFD for two
weeks, a single IP injection of low dose of STZ (30 mg/kg dissolved in 0.1 mM citrate buffer, pH = 4.5;
Sigma Aldrich, Hamburg, Germany) was done. One week after STZ injection, serum glucose levels
were measured and rats with a fasting glucose levels ≥150 mg/dL were considered to be diabetic. The
rats were allowed to continue on their respective diets for 9 weeks, when the study ended.

4.2. Experimental Design

Rats were randomly divided into 2 groups of 60 each: a control group and a diabetic group.
Each group was sub-divided into 6 groups (n = 10) and treated daily with IP injection of NaSH (0.28,
0.56, 1.6, 2.8, and 5.6 mg/kg) or vehicle (normal saline) for 9 weeks. For minimizing oxidation of
SH– (hydrosulfide anion) the solutions were prepared and injected immediately (within 15 min).
Body weight (using Tefal Scale; sensitivity 1 g), food intake (g/day), and water consumption (mL/day)
were recorded every week. Fasting serum glucose concentrations were measured weekly for one
month and then at the end of the study. Fasting serum levels of insulin and total sulfide levels were
measured before and after the treatment. Intraperitoneal GTT was performed at the end of the eighth
week of treatment and in vivo insulin secretion was assessed during GTT. PTT was done 3 days after
GTT and blood pressure was measured at the end of the study. The experimental design is shown in
Figure 9.Molecules 2019, 24, x 12 of 15 
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4.3. Measurement of Serum Glucose and Insulin Levels

After 12–14 h fasting, blood samples were collected from tip of the tail and centrifuged at 5000 g
for 10 min. Serum levels of glucose were determined using commercially available kit (Pars Azmoon,
Tehran, Iran). Intra- and inter-assay coefficient of variations (CVs) for glucose were 2.1 and 3.4%,
respectively. A rat ELISA kit (Rat insulin ELISA; Mercodia, Uppsala, Sweden) was used for measuring
serum insulin levels; Intra- and inter-assay CVs were 3.3% and 7.6%, respectively. The assay sensitivity
was 1 µU/mL (6 pmol/L).
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4.4. Measurement of Serum Total Sulfide

Total sulfide levels in serum were measured using the methylene blue method [44].
Briefly, 100 µL serum was added into a test tube containing zinc acetate (1% w/v, 200 µL),
N,N-dimethyl-p-phenylenediamine sulfate in 7.2 M HCl (20 mM, 100 µL), and FeCl3 in 1.2 M HCl (30
mM, 133 µL). After incubation at 37 ◦C for 30 min, the tubes were centrifuged at 5000 g for 10 min.
Supernatants were then collected for measurement of total sulfide. Total sulfide concentration was
determined in the samples using a standard calibration curve established by 0–200 µM of NaSH at a
wavelength of 670 nm using a microplate reader (BioTek, MQX2000R2, Winooski, VT, USA).

4.5. Intraperitoneal Glucose Tolerance Test, Pyruvate Tolerance Test, and In Vivo Insulin Secretion

For GTT and PTT, after 12–14 h of fasting, animals were anesthetized with an IP injection of
sodium pentobarbital (60 mg/kg; Sigma Aldrich, Hamburg, Germany) and glucose (50% solution, 2
g/kg) or pyruvate (2 g/kg) was injected intraperitoneally. Blood samples for glucose measurements
were collected from the tail vein immediately before, and at 10, 20, 30, 60, and 120 min after glucose
or pyruvate administration [45]. Blood samples during GTT were used for assessment of in vivo
insulin secretion.

4.6. Measurement of Systolic Blood Pressure

Systolic blood pressure was measured in anesthetized rats using a noninvasive tail-cuff method
(AD Instruments, MLT125R, New South Wales, Australia) at room temperature as previously
reported [46]. SBP values were averaged from three consecutive recordings obtained from each rat.

4.7. Statistical Analysis

GraphPad Prism software (Version 6, La Jolla, San Diego CA, USA) was used for data analysis.
All values are presented as mean ± SEM. Two-way mixed (between-within) analysis of variance
(ANOVA), followed by Fisher post-hoc test was used for analyzing data of water consumption, food
intake, calorie intake, body weight, GTT, PTT, in vivo insulin secretion, and serum glucose. One-way
ANOVA was used for comparing the area under the curves (AUC), SBP, and serum levels of insulin
and H2S. Two-sided p values < 0.05 were considered to be statistically significant.

Supplementary Materials: The following are available online: Figure S1. Serum total sulfide levels before NaSH
administration; Figure S2. Effects of NaSH on body weight; Figures S3 and S4. Effects of NaSH on water
consumption; Figures S5 and S6. Effects of NaSH on calorie intake; Figures S7 and S8. Effects of NaSH on food
intake; Figure S9. Effects of NaSH on serum glucose; Figure S10. Serum insulin levels before NaSH administration;
Figure S11. Effects of NaSH on glucose tolerance; Figure S12. Effects of NaSH on pyruvate tolerance; Figure S13.
Effects of NaSH on in vivo insulin secretion.
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