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Abstract: Xanthones represent a structurally diverse group of compounds with a broad range
of biological and pharmacological activities, depending on the nature and position of various
substituents in the dibenzo-y-pyrone scaffold. Among the large number of natural and synthetic
xanthone derivatives, carboxyxanthones are very interesting bioactive compounds as well as
important chemical substrates for molecular modifications to obtain new derivatives. A remarkable
example is 5,6-dimethylxanthone-4-acetic acid (DMXAA), a simple carboxyxanthone derivative,
originally developed as an anti-tumor agent and the first of its class to enter phase III clinical
trials. From DMXAA new bioactive analogues and derivatives were also described. In this review,
a literature survey covering the report on carboxyxanthone derivatives is presented, emphasizing their
biological activities as well as their application as suitable building blocks to obtain new bioactive
derivatives. The data assembled in this review intends to highlight the therapeutic potential of
carboxyxanthone derivatives and guide the design for new bioactive xanthone derivatives.
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1. Introduction

Xanthones (9H-xanthen-9-ones) are an important class of oxygenated three-membered heterocyclic
compounds with a dibenzo-y-pyrone scaffold (1, Figure 1) [1]. Over the years, considerable
interest has been attracted in xanthone derivatives mainly because of their diverse range of
biological /pharmacological activities [2-5]. The xanthone scaffold is considered a privileged
structure [6,7], which can belong to the pharmacophoric moiety for the activity exhibited or as a
substituent group associated with other chemical cores to modulate diverse biological responses [3].

Naturally-occurring xanthones can be found as secondary metabolites in diverse terrestrial
sources including higher plants, fungi, lichens [8,9] as well as isolated from marine invertebrates, such
as sponges, tunicates, mollusks and bryozoans, in addition to algae and marine microorganisms
(cyanobacteria and fungi) [10,11]. They comprise a variety of different types of substituents in
certain positions of the xanthone scaffold, leading to a vast diversity of biological /pharmacological
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activities [3] as well as different physicochemical and pharmacokinetic properties [12,13], being a
remarkable basis for the discovery of new potential drug candidates.

Currently, there are many drugs on the market and in clinical trials, which were isolated
or based on natural products [14-16], highlighting that natural compounds, such as xanthone
derivatives, have always been a source of inspiration for the discovery of new therapeutic agents [14].
Some commercially available extracts with human health promotion properties present xanthone
derivatives in composition [9]. Nevertheless, biosynthetic pathways only allow the presence of
certain groups in specific positions on the xanthone scaffold. Therefore, the total synthesis strategy
allows access to structures that otherwise could not be reached within the natural product as a
launching platform for molecular modification [17]. In fact, with proper synthetic pathways, many
other substituents can be introduced into the xanthone scaffold affording the development of more
diverse compounds for biological activity and structure-activity relationship (SAR) studies [18], as well
as other applications such as preparation of fluorescence probes [19,20] or stationary phases for liquid
chromatography [21-23]. For the last several years, the isolation and synthesis of new bioactive
xanthone derivatives using different synthetic methodologies has remained in the area of great interest
of our group, as exemplified in [24-35].

Among the large number of natural and synthetic xanthone derivatives, those containing a
carboxylic group have shown great significance in medicinal chemistry. A remarkable example
is 5,6-dimethylxanthone-4-acetic acid (DMXAA, Vadimezan, ASA404, 2, Figure 1), a simple
carboxyxanthone derivative, which reached phase III clinical trials towards antitumor activity [36].

This review aims to describe the research findings on biological and pharmacological activities of
natural and synthetic carboxyxanthone derivatives. Their applications as suitable chemical substrates
to obtain new analogues and derivatives are also presented.
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Figure 1. Xanthone scaffold and numbering (1) and DMXAA (2).
2. Natural Carboxyxanthone Derivatives

Typically, natural xanthones are classified in six main groups, depending on the nature of
the substituents in the xanthone scaffold: simple xanthones, glycosylated xanthones, prenylated
xanthones, bis-xanthones, xanthonolignoids and miscellaneous [3,9]. More recently, Masters and
Bréase [8] subdivided the natural xanthones in monomers and dimers/heterodimers. Regarding
the structural characteristics of natural carboxyxanthone derivatives, in this review they are
classified into simple carboxyxanthone derivatives, prenylated carboxyxanthone derivatives, caged
carboxyxanthone derivatives, and carboxyxanthone derivatives bound or fused to polysubstituted
oxygenated heterocycles.

2.1. Simple Carboxyxanthone Derivatives

2.1.1. 2-Hydroxy-6-Methyl-8-Methoxy-9-ox0-9H-Xanthene-1-Carboxylic Acid (3) and
2-Hydroxy-6-Hydroxymethyl-8-Methoxy-9-Oxo-9H-Xanthene-1-Carboxylic Acid (4)

Healy et al. [37] described, in 2004, the isolation of two new carboxyxanthones, 2-hydroxy-6-
methyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (3) and 2-hydroxy-6-hydroxymethyl-8-
methoxy-9-oxo-9H-xanthene-1-carboxylic acid (4) (Figure 2), from the strain Xylaria sp., of the
tree Glochidion ferdinandi. These compounds were tested for toxicity in a brine shrimp (Artemia
salina) lethality assay and for antimicrobial activity against Escherichia coli, Streptococcus pneumonia,
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Enterococcus faecalis, Pseudomonas aeruginosa, Straphylococcus aureus and Candida albicans, showing
no activity in either of the assays [37]. In 2016, Beattie et al. [38] tested these compounds for
antimicrobial activity against several organisms, including Escherichia coli, Staphylococcus aureus,
Candida albicans, Cryyptococcus neoformans and Cryptococcus gatti as well as cytotoxicity against
mammalian cells. Although compound 4 was inactive, compound 3 showed mild antifungal activity
against Cryptococcus neoformans and Cryptococcus gatti [38].
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Figure 2. Structures of simple carboxyxanthone derivatives (3-23).
2.1.2. Monodictyxanthone (5)

In 2007, Krick et al. [39] isolated a new carboxyxanthone, monodictyxanthone (5) (Figure 2),
from the fungus genus Monodictys putredinis and tested it in a series of bioassays for potential
cancer chemopreventive activities. The results showed dose-dependent Cytochrome P450 1A activity
inhibition and a slight inhibition of the enzyme aromatase [39].
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2.1.3. 8-(Methoxycarbonyl)-1-Hydroxy-9-Oxo-9H-Xanthene-3-Carboxylic Acid (6)

The carboxyxanthone 8-(methoxycarbonyl)-1-hydroxy-9-oxo-9H-xanthene-3-carboxylic acid (6)
(Figure 2), isolated from a culture broth of the mangrove endophytic fungus Penicillium sp. from the
bark of Acanthus ilicifolius Linn, by Shao et al. in 2008 [40], was tested for cytotoxicity against human
epidermoid carcinoma and multidrug-resistant human epidermoid carcinoma of the nasopharynx;
however, no activity in either assays was observed [40].

2.1.4. Yicathin C (7)

Sun et al. [41] reported, in 2013, the isolation of yicathin C (7) (Figure 2), from the inner tissue
of the marine red alga Gymnogongrus flabelliformis. Yicathin C (7) was assayed for antibacterial and
antifungal activities using a standard agar diffusion test. Inhibitory activity against E. coli, S. aureus
and C. lagenarium was observed [41]. In addition, it was found that this marine carboxyxanthone
exhibited weak brine shrimp (Artemia salina) toxicity [41].

2.1.5. 2,8-Dihydroxy-1-Methoxycarbonyl-9-Oxo-9H-Xanthene-6-Carboxylic Acid (8) and
2,8-Dihydroxy-9-Oxo-9H-Xanthene-6-Carboxylic acid (9)

The isolation of the carboxyxanthone 2,8-dihydroxy-1-methoxycarbonyl-9-oxo-9H-xanthene-6-
carboxylic acid (8) (Figure 2) was firstly described, in 2014, from the marine derived fungus
Penicillium citrinum SCSGAF 0167 strain [42]. This compound was tested as potential cathepsin
B inhibitor; however, it showed no inhibitory activity [42]. In 2015, Ma et al. [43] reported the isolation
of compound 8 from the fungal endophyte Aspergillus versicolor. Further biological activity evaluation
showed a strong inhibitory activity against «-glucosidase enzyme [43]. Recently, Liao et al. [44] isolated
the same compound (8) from an endophytic fungus Arthrinium arundinis of Anoectochilus roxburghii as
well as a new carboxyxanthone, 2,8-dihydroxy-9-oxo-9H-xanthene-6-carboxylic acid (9) (Figure 2).

2.1.6. 6,8-Dihydroxy-3-Methyl-9-Oxo-9H-Xanthene-1-Carboxylic Acid (10)

In 2010, Li et al. [45] reported the isolation of 6,8-dihydroxy-3-methyl-9-ox0-9H-xanthene-1-carboxylic
acid (10) (Figure 2) from the toxigenic fungus Penicillium oxalicum. To the best of our knowledge, no
activities were described for this compound.

2.1.7. Globosuxanthone D (11)

Wijeratne et al. [46] isolated the carboxyxanthone globosuxanthone D (11), from the fungal strain
Chaetomium globosum of the cactus, Opuntia leptocaulis, in 2006, and tested it against seven human solid
tumor cell lines; however, no activity was observed (Figure 2).

2.1.8. 2,5-Dihydroxy-8-Methoxy-6-Methyl-9-Oxo-9H-Xanthene-1-Carboxylic Acid (12)

The carboxyxanthone 2,5-dihydroxy-8-methoxy-6methyl-9-oxo-9H-xanthene-1-carboxylic acid
(12) (Figure 2) was isolated by Davis et al. [47], in 2006, from the endophytic fungus Xylaria sp. FRR
5657; however, no biological activity was reported so far.

2.1.9. Pinselic Acid (13)

Pinselic acid (13) (Figure 2) was firstly isolated, in 1953, by Munekata [48] from the fungal strain
Penicillum amarum. In 2004, Healy et al. [37] isolated the same compound (13) from a microfungus of
Xylaria sp. genus. To the best of our knowledge, no activity studies were performed for this compound.

2.1.10. 8-Hydroxy-6-Methyl-9-Oxo-9H-Xanthene-1-Carboxylic Acid (14)

In 2014, Abdissa et al. [49], isolated the carboxyxanthone 8-hydroxy-6-methyl-9-oxo-9H-
xanthene-1-carboxylic acid (14) (Figure 2), from the roots of Bulbine frutescens. Additionally, this
compound (14) demonstrated to be inactive against KB-3-1 cervix carcinoma human cell line [49].
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2.1.11. 2,3,6-Trihydroxy-7-Hydroxymethylene Xanthone-1-Carboxylic Acid (15) and Glycosilated
Analogues (16-17)

2,3,6-Trihydroxy-7-hydroxymethylene xanthone-1-carboxylic acid (15), 2-methoxy-4-hydroxy-7-
methyl-3-O-f3-D-glucopyranosyl xanthone-1,8-dicarboxylic acid (16), and 2-hydroxy-7-hydroxymethylene
xanthone-1,8-dicarboxylic acid 3-O-p-D-glucopyranosyl(2'—3'’)-3""-O-stigmast-5-ene (17) (Figure 2)
were described in 2011 by Singh et al. [50] upon isolation from the seeds of Rhus coriaria L. All
compounds were further tested for antifungal activity against Aspergillus flavus, Candida albicans, and
Penicillum citrinum strains. Carboxyxanthones 16 and 17 were effective, showing inhibitory growth
activity for all three fungal strains. The only exception was compound 15 which was ineffective against
Penicillum citrinum [50].

2.1.12. Scriblitifolic Acid (18) and Teysmannic Acid (19)

The isolation of scriblitifolic acid (18) (Figure 2), from the heartwood of Calophyllztm scriblitifolium,
was first described by Jackson et al. [51], in 1967. Later, in 2000, Kijjoa et al. [52] reported the isolation
of a new carboxyxanthone derivative, teysmannic acid (19), along with scriblitifolic acid (18), from
the wood of Calophyllum teysmmannii var. inophylloide from Southern Thailand. To the best of our
knowledge, no activities were described for both compounds.

2.1.13. (2E,2'E)-3,3'-(9-Ox0-9H-Xanthene-2,6-Diyl)Diacrylic Acid (20)

(2E,2'E)-3,3'-(9-ox0-9H-xanthene-2,6-diyl)diacrylic acid (20) (Figure 2), was isolated from the
leaves of Santolina insularis, in 2005, by Cottiglia et al. [53]. This carboxyxanthone was proven to
have moderate anti-inflammatory activity against croton oil-induced ear oedema in rats, after topical
application [53].

2.1.14. Glomexanthones A-C (21-23)

The isolation of glomexanthones A-C (21-23) (Figure 2), from an ethanol extract of Polygala glomerata,
was described by Li et al., in 2014 [54]. These compounds were subjected to neuroprotection bioassays
in human neuroblastoma SK-N-SH cells and showed moderate neuroprotective effects on L-Glutamic
acid-induced cellular damage [54].

2.2. Prenylated Carboxyxanthone Derivatives

2.2.1. 2,8-Di-(3-Methylbut-2-Enyl)-1,3,8-Trihydroxy-4-Methyl-Xanthone (24)

Gopalakrishnan and Balaganesan [55] reported, in 2000, the isolation of a new carboxyxanthone,
2,8-di-(3-methylbut-2-enyl)-1,3,8-trihydroxy-4-methyl-xanthone (24) (Figure 3), from the fruit hulls of
Garcinia mangostana. To the best of our knowledge, no activity was reported for compound 24.

2.2.2. Oliganthic Acid A (25), Oliganthic Acid B (26), and (%)-Oliganthic Acid C (27)

In 2016, Tang et al. [56] isolated three new carboxyxanthones, oliganthic acid A (25), oliganthic acid
B (26), and (+)-oliganthic acid C (27) (Figure 3), from the leaves of Garcinia oligantha. The cytotoxicity
activity was evaluated against A549, HepG2, HT-29, PC3, and HL-7702 human cancer cell lines;
however, no activity against these cell lines was observed.
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Figure 3. Structures of prenylated carboxyxanthone derivatives (24-27).

2.3. Caged Carboxyxanthone Derivatives

2.3.1. Gambogic Acid (28) and Analogues (29-70)

Gambogic acid (28) and neogambogic acid (29) were firstly isolated, in 1984, by Lu et al. [57]
from Garcinia hanburyi. Since then, several studies regarding the isolation and biological activity
evaluation of gambogic acid (28) and its analogues (29-70) (Figure 4) have been published [58-73].
In 1993, Lin et al. [58] reported the isolation of isogambogic acid (30). In 1996, Asano et al. [59]
reported the isolation of five additional caged carboxyxanthone derivatives from the gamboge resin of
Garcinia hanburyi, including the previously reported gambogic acid (28), as well as the morellic (31),
moreollic (39), gambogenic (47) and gambogellic (58) acids [59].

For the past 17 years, several research groups have reported the isolation of novel caged
prenylated carboxyxanthones, analogues of gambogic acid, from the leaves, resin and fruits of
Garcinia hanburyi and Garcinia morella, including, isomorellic acid (32) [60], 7-isoprenylmorellic acid
(33) [60], 30-hydroxygambogic acid (34) [65], 10-methoxygambogic acid (35) [67], 10-ethoxygambogic
acid (36) [67], 7-methoxygambogic acid (37) [68], oxygambogic acid (38) [68], gambogic acids A and
B (40 and 41) [63], 8,8a-dihydro-8hydroxymorellic acid (42) [68], 8,8a-dihydro-8-hydroxygambogic
acid (43) [68], garcinolic acid (44) [69], 10a-ethoxy-9,10-dihydromorellic acid (45) [69],
10ax-butoxygambogic acid (46) [72], gaudichaudic acid (48) [63], isogambogenic acid (49) [63],
10-methoxygambogenic acid (50) [67], epigambogic acid (51) [64], 30-hydroxyepigambogic acid
(52) [65], epiisogambogic acid (53) [66], 7-methoxyepigambogic acid (54) [68], 12-hydroxygambogefic
acid (55) [70], 8,8a-dihydro-8-hydroxygambogenic acid (56) [68], 10-methoxygambogenic acid
(57) [69], 7-methoxygambogellic acid (59) [68], 8,8a-epoxymorellic acid (60) [62], hanburinone
(61) [61], gambogollic acid (62) [71], epigambogollic acid (63) [71], gambogefic acid (64) [68],
22,23-dihydroxydihydrogambogenic acid (65) [70], gambogic acid C (66) [72], gambogenific acid
(67) [68] and epigambogic acids A, B and C (68-70) [72]. All these compounds were subjected to
bioactivity assays and, it is important to highlight their overall cytotoxic activities against several cell
lines including P-388, KB, Col-2, BCA-1, LU-1, ASK, K-562/ADR and K-562/S [62,63,74]. Anti-HIV-1
activity of gambogic acid (28) and morellic acid (31), by inhibiting the HIV-1 reverse transcriptase
enzyme [62] and the antiatherosclerosis activity of gambogic acid (28) via inhibition of vascular smooth
muscle cell proliferation were also significant [75]. The isolation and biological activity evaluation of
these compounds have been extensively reviewed by several groups [76-80].
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Figure 4. Structures of gambogic acid (28) and analogues (29-70).

In 1998, Cao et al. [81] isolated a set of five caged carboxyxanthone derivatives from the leaf

extract of Garcinia gaudichaudii, namely, gaudichaudiic acids A-E (71-75). Later, in 2000, other caged
carboxyxanthone derivatives, gaudichaudiic acids F-I (76-79), were reported by Xu et al. [82]. In both
studies, compounds 71-79 (Figure 5) were tested for cytotoxicity against several cell lines, including
P388/DOX and Messa [82], P388 [81,82], WEHI1640, MOLT4, HePG2, and LL/2 [81]. It was found
that all compounds showed cytotoxic activity against P388 cell line. Gaudichaudiic acids A-E (71-75)
were also active against WEHI1640, MOLT4 and LL/2, while only gaudichaudiic acids A (71) and E
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(75) showed activity against the HePG2 cell line [81]. Regarding gaudichaudiic acids G-I (77-79), they
were cytotoxic against P388/DOX and Messa cell lines [82].

O OH

Figure 5. Structures of gaudichaudiic acid A-I (71-79).

2.3.3. Scortechinones (80-90)

The isolation of caged carboxyxanthones was primarily achieved by Rukachaisirikul and
colleagues [83-86], from several plant parts of Garcinia scortechinii. In 2000, the same group reported the
isolation of scortechinones B (80), and C (81) (Figure 6), from the twigs of Garcinia scortechinii [83]. These
compounds were tested for antimicrobial activity against methicillin-resistant Staphylococcus aureus
(MRSA SK1), and both showed good antibacterial activity [83]. Later, in 2003, three new carboxylated
scortechinones were isolated from the latex of Garcinia scortechinii, namely, scortechinones F (82),
G (83) and K (84), along with the previously mentioned scortechinone B (80) [84]. A year later,
four new carboxylated scortechinones (M-P) (85-88) (Figure 5) were isolated from the bark stem of
Garcinia scortechinii, along with scortechinones 80-84 [85]. Scortechinones C (81) and M (85) were
identified as having identical structures; however, due to the difference in their optical rotation values,
scortechinone M (85) was identified as a C-11 epimer of scortechinone C (81) [85]. All the isolated
scortechinones were tested for antibacterial activity against two strains of Staphylococcus aureus, namely
ATCC25923 and MRSA SK1 [83]. In this study, the antibacterial activities of scortechinones B (80), and
C (81) against MRSA SK1 [83], as well as against the ATCC25923 strain was confirmed. Regarding
scortechinones F (82), G (83), and K (84), it was found that these compounds were active against both
Staphylococcus aureus strains [84]. The best minimum inhibitory concentration (MIC) indices were
achieved by Scortechinone F (82). Scortechinones M-P (85-88) presented good antibacterial activity
results overall, with scortechinone P (88) showing the best MIC indices for both strains [85].

In 2005, two more caged carboxylated scortechinones were isolated from the fruits of
Garcinia scortechinii, specifically scortechinones R (89) and S (90), (Figure 6) [86]. These new
scortechinones (89-90) were tested against MRSA SK1, showing good antibacterial activity [86].
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Figure 6. Structure of scortechinones 80-90.

2.4. Carboxyxanthone Derivatives Bound or Fused to Polysubstituted Oxygenated Heterocycles

2.4.1. Vinaxanthone 411F (91) and Analogues (92-95)

Vinaxanthone 411F (91) (Figure 7) was firstly isolated from Penicillium vinaceum NR6815, by
Aoki et al. [87], in 1991, being identified as a novel phospholipase C selective inhibitor of murine colon
26 adenocarcinoma and murine fibroblasts NIH3T3. Three years later, it was found that vinaxanthone
411F (91) also interact with multiple sites of CD4 cells, inhibiting anti-Leu3a and HIV gp120 binding to
human CD4 cells, as well as antigen-induced T-cell proliferation of CD4+ [88]. In the same year, three
new vinaxanthone analogues were isolated from Penicillium glabrum, specifically vinaxanthones 411P
(92), 411] (93), and 2383 (94), the cyclized form of 411] (Figure 7) [89]. In 2008, another vinaxanthone
analogue, comprising axial chirality, (aR)-2’-methoxyvinaxanthone (95), (Figure 7), along with the
previously reported vinaxanthones 91 and 92, were isolated from a strain of Penicillium vinaceum [90].
In this study, vinaxanthone 411F (91), vinaxanthone 411] (93) and (aR)-2’-methoxyvinaxanthone (95)
exhibited significant growth inhibition of crown gall tumors on Agrobacterium tumefaciens cultures [90].
Recently, other activities were reported for vinaxanthone 91, such as inhibition of the bacterial enzyme
enoyl-ACP reductase (FablI) from S. aureus, as well as a growth inhibition of two resistant strains,
namely methicillin-resistant and quinolone-resistant S. aureus [91].

2.4.2. Xanthofulvin (96)

In 1993, the pharmaceutical company Hoffmann-La Roche AG, in the person of Dr. Masubuchi,
filed a patent on the isolation of a new carboxyxanthone, xanthofulvin (96) (Figure 7), from cultures of
Eupenicillium sp. NR7125 [92]. This compound (96) was found to have good inhibitory activity against
the enzyme chitin synthase [92]. A decade later, in 2003, Kumagai et al. [93] isolated compound 96 from
cultures of Penicillium sp. SPF-3059, and demonstrated that it also exhibited semaphorin inhibitory
activity. In the same year, Kikuchi et al. [94] and Kaneko et al. [95] reported that xanthofulvin (96)
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was the first described Sema3A inhibitor in both in vitro and in vivo studies promoting spinal cord
regeneration. Recently, it was evaluated for inhibition of cysteine synthase enzyme by Mori et al. [96]
showing inhibitory activity against both EhCS1 and EhCS3. Recently, the mechanism of action of
xanthofulvin (96) and vinaxanthone (91) for inhibition of Sema3A have been described [97].

2.4.3. 6,7,11-Trihydroxy-10-Methoxy-9-(7-Methoxy-3-Methyl-1-Oxoisochroman-5-yl)-2-Methyl-
12-Oxo0-12H-Benzo[b]Xanthene-4-Carboxylic Acid (97) and 6,7-Dihydroxy-10,11-Dimethoxy-9-
(7-Methoxy-3-Methyl-1-Oxoisochroman-5-yl)-2-Methyl-12-Oxo-12H-Benzo[b] Xanthene-4-Carboxylic
Acid (98)

In 2012, Omolo et al. [98] isolated two new carboxyxanthones, 6,7,11-trihydroxy-10-methoxy-9-
(7-methoxy-3-methyl-1-oxoisochroman-5-yl)-2-methyl-12-oxo-12H-benzo[b]xanthene-4-carboxylic acid
(97) and 6,7-dihydroxy-10,11-dimethoxy-9-(7-methoxy-3-methyl-1-oxoisochroman-5-yl)-2-methyl-12-
oxo-12H-benzo[b]xanthene-4-carboxylic acid (98) (Figure 7), from the tubers of Pyrenacantha kaurabassana.
Their activity against an HIV strain via the deCIPhR assay was evaluated demonstrating that both
compounds showed moderate anti-HIV activity; however, low selectivity indices were observed,
concluding that they were not effective as anti-HIV entry inhibitors [98].

92 R=H 9

OH COOH OH OH
96 97 R=0H
98 R=0CH3

OH

OH O OH

102R=H
103 R = OH

Figure 7. Structures of carboxyxanthone derivatives bound or fused to polysubstituted oxygenated
heterocycles (91-103).
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2.4.4. Scortechinones V (99), W (100) and X (101)

Scortechinones V (99), W (100), and X (101) (Figure 7) were isolated from the fruits of Garcinia
scortechinii, together with the previously described caged scortechinones R (89) and S (90) (Figure 6) [86].
These carboxylated derivatives presented antibacterial activity against MRSA SK1, especially
scortechinone W (100), showing the lowest MIC value (52.8 uM) [86].

2.4.5. Dehydrocitreaglycon A (102) and Citreaglycon A (103)

In 2012, Liu et al. [99] isolated two new carboxyxanthones, dehydrocitreaglycon A (102) and
citreaglycon A (103) (Figure 7), from marine-derived Streptomyces caelestis. These two compounds
showed antibacterial activity against S. haemolyticus, S. aureus and Bacillus subtillis [99,100].

3. Synthetic Carboxyxanthone Derivatives

Michael and Kostanecki introduced one of the first methods for the synthesis of xanthones,
which involved the distillation of a mixture of a phenol, O-hydroxybenzoic acid, and acetic
anhydride [101,102]. Since then, several other routes affording higher yields and less drastic
experimental conditions have been developed [103-110].

In general, four methods can be applied for the synthesis of simple xanthones: Grover, Shah
and Shan method, in one step reaction, synthesis via benzophenone and diaryl ether intermediates,
which overcome the limitations of one-step methods [17,18], and synthesis via chromen-4-one
derivatives [111] (Figure 8). For the synthesis of carboxylated xanthone derivatives any of these
methods can be applied if using suitable building blocks.

L O
O 0

quu] l b)
0] x}A o
X 2 O
0]

Other T
methodologies
0

a) via chromen-4-one; b) wia diaryl-ether, c) via one-step synthesis, d) via benzophenone
Figure 8. Commonly used synthetic routes of xanthones.

3.1. DMXAA (2), XAA (104) and Analogues (105-161)

Among the synthetic carboxyxanthone derivatives, DMXAA (5,6-dimethylxanthone-4-acetic
acid, Vadimezan, ASA404, 2, Figure 1) aroused much interest in the scientific community due to its
remarkable pharmacological profile. Several reviews can be found in the literature focused on DMXAA
(2), mainly highlighting its antitumor activity [36,112-121]. DMXAA (2) selectively attacks established
tumor blood vessels through induction of apoptosis in tumor vascular endothelial cells [122,123],
causing vascular collapse and hemorrhagic necrosis, and expanding tumor hypoxia [124,125].
It has inductive effects on different cytokines, chemokines, and vasoactive factors [126-128], which
interact with tumor endothelial cells resulting in hemorrhagic tumor necrosis. It also induces nitric
oxide [129-131], serotonin [132,133], and nuclear factor kB [134,135]. In addition to antitumor
activity, other activities have been reported for DMXAA (2), including antiviral [136], antiplatelet and
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antithrombotic [137]. In phase I/1I clinical trials, DMXAA (2), in combination with standard anticancer
agents, showed promising results for the treatment of non-small-cell lung cancer [138-142]; however,
in two large-scale phase III clinical trials the combination of DMXAA (2) with other anticancer drugs
failed to increase their efficacy [143].

This carboxyxanthone derivative (2) was discovered, in 1991, in a structure-activity relationship
study using diverse xanthenone-4-acetic acid (XAA, 104) analogues (105-118) of a flavone acetic acid
drug (Figure 9) [144]. Analogues 107-109 comprising only one substituent in each aromatic ring of
xanthone scaffold, were synthesized by coupling sodium salts of 2-iodo-3-methylbenzoic acid with a
suitable methyl-substituted 2-hydroxyphenylacetic acid, using tris-[2-(2-methoxyethoxy)ethyl]amine
as catalyst. Then, an acid-catalyzed cyclodehydration of the obtained diacids was carried out [144].
The same route was used for analogues 110-111 and 114-118, including DMXAA (2), by coupling salts
of 2-hydroxyphenylacetic acid with appropriate disubstituted 2-iodobenzoic acids. For the analogues
112-113, a nucleophilic displacement of chlorine from 6-chloro-5-methyl-9-oxo-9H-xanthene-4-acetic
acid with methoxide and dimethylamine, respectively, was performed [144].

In 2002, an improved synthesis of DMXAA (2) was developed by optimization of the synthesis
of the key intermediate 3,4-dimethylanthranilic acid via nitration of 3,4-dimethylbenzoic acid and
separation by crystallization [145]. A higher overall yield was obtained from 3,4-dimethylbenzoic acid,
specifically 22%. Seven years later, a new short and efficient synthesis of DMXAA (2) was reported
using 3,4-dimethylbenzoic acid as starting material [146]. The synthetic pathway comprises of four
steps, being the key steps the dibromination of 3,4-dimethylbenzoic acid, followed by the regioselective
coupling with 2-hydroxyphenylacetic acid and further cyclodehydration, in an overall yield of 51%.

o)
LT
o]
CH,COOH
R R
104 H 112 5-CHg, 6-OCH;
105 5CH; 113 5-CHj, 6-N(CHs),
106 5-Cl 114 5,6-Cl,

107 1,5(CH3), 115 5-Cl, 6-CH3
108 2,5(CH;3), 116 5,6-(CH3),
109 3,5(CHj3), 117 5,6-benzo
110 5-CHj; 6-F 118 6,7-benzo
111 5-CHs;, 6-Cl

Figure 9. Structure of XAA (104) and analogues 105-118.

From a biological activity perspective, it is evident that DMXAA (2) may be a useful scaffold for the
development of other bioactive compounds and, over the years, several analogues and derivatives have
been developed. In 2006, Gobbi et al. [147], synthetized several carboxylated DMXAA (2) analogues
(119-134) with potential antitumoral activity (Figure 10). The synthesis was performed through
a multi-step pathway by derivatization of 4-allyl-3-hydroxy-9H-xanthen-9-one. All compounds
were tested for antiproliferative activity towards human ovarian adenocarcinoma 2008 cell line, and
cisplatin-resistant subline C13* [147]. It was found that compounds 119 and 128 presented good ability
to inhibit 2008 cell line [148]. Most of the other compounds only presented cytotoxic activity at the
highest tested concentration [147].

In the same study, Gobbi et al. [147] also described another 12 XAA derivatives (135-146)
(Figure 10), specifically the intermediates for synthesis of the analogues 119-134; however, they
were not tested for cytotoxic activity.
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Figure 10. Structure of DMXAA analogues 119-146.

In 2007, eight new analogues of DMXAA (2) and XAA (104) bearing azido, nitro and amino
moieties, compounds 147-154 (Figure 11), were reported by Palmer [148]. All compounds were tested
for their cytotoxicity on HECPP murine endothelial cells, as well as their ability to induce hemorrhagic
necrosis in mice with colon 38 tumors [148]. It was found that compounds 147 and 148 caused profound
necrosis on the tested tumors, when compared to the carboxyxanthone derivative 2 [148]. Compound
147 was able to bind specifically to cellular proteins through photoreaction, which could be a useful
tool to identify the receptors of DMXAA (2) [148]. In 2009, Marona et al. reported the synthesis of
seven new analogues (155-161) (Figure 11) of DMXAA (2), with weak cytotoxicity against J7774A.1

cells [149].

O O
YsoolTsa o0
O O

147
148
149
150
151
152
153
154

COOH
R

5 N3

5-Ns, 6-CH
5-CHg, 6-N5

5
5.

A-
A.

5-NH,
NO,, 6-CH,
CHa, 6-NO,
NH,, 6-CHj
CHa, 6-NH,

1565
156
157

R
H

6-OCH,

{-Cl

158
1569
160
161

0]
0]
R4 R

H 2-OCH{CH4)COOH
H  6-SC(CH,),COOH
2-CH; 6-OCH(CH3)COQH
2-CH; 6-OC(CH,;),COOH

Figure 11. Structures of DMXAA analogues 147-161.

Moreover, additional efforts aiming to identify derivatives with improved activity than DMXAA
(2) are under investigation. Recently, DMXAA-pyranoxanthone hybrids were reported to enhance

inhibition activity against human cancer cells with multi-target functions [150].
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3.2. 9-Oxo-9H-Xanthene-2-Carboxylic Acid (162) and Analogues (163-284)

3.2.1. Synthesis

The synthesis of 9-oxo-9H-xanthene-2-carboxylic acid (162) was first reported by
Anschutz et al. [151], in 1925, from 2-methylphenylsalicilate. Later, in 1960, E1 Abbady et al. [152],
described its synthesis through oxidation of y-oxo-y-2-xanthenylbutyric acid. In 1977, Graham and
Lewis [153], described other synthetic strategy, via benzophenone intermediate, through reaction of
2-methoxybenzoic acid with methyl 4-hydroxybenzoate. Later, in 1998, the same carboxyxanthone
(162) was synthesized by Pickert and Frahm [154], via diaryl ether intermediate, using Ullman
coupling reaction of 2-chlorobenzoic acid with 4-hydroxybenzoic acid.

Several analogues of 9-oxo-9H-xanthene-2-carboxylic acid (162) have been synthesized through
the years, holding different patterns of substitution (Table 1) [151,153-166]. The synthetic
methodologies used to obtain these analogues were via diaryl ether and benzophenone intermediates,
and through the derivatization of xanthones as building blocks. In 1972, Pfister et al. [155], synthesized
various analogues (163-184) with potential antiallergic activity. 1-Methoxy-9-oxo-9H-xanthene-2-
carboxylic acid (163) was obtained through Friedel-Crafts acylation of 1-hydroxyxanthone and further
methylation followed by an oxidation with NaBrO [155]. Xanthone-2-carboxylic acids 164-178 were
synthesized via diaryl ether intermediates, by Ullmann coupling reactions between an aryl halide and a
phenol followed by intramolecular electrophilic cyclization, using polyphosphoric acid as catalyst [155].
The total synthesis of carboxyxanthone derivatives 166 and 169 were also reported by our group, being
the methodologies improved in order to decrease reaction time and to increase the final yield [167].

7-Chloro-9-oxo-9H-xanthene-2-carboxylic acid (178) was also synthesized by Graham and Lewis,
in 1977, via benzophenone intermediate, through the reaction of 5-chloro-2-mehoxybenzoic acid
with methyl 4-hydroxybenzoate [153]. 7-Hydroxy-9-oxo-9H-xanthene-2-carboxylic acid (179) was
obtained through ether cleavage of 7-methoxy-9-oxo-9H-xanthene-2-carboxylic acid (168) using HBr in
acetic acid, and analogues 180-184 through alkylation of 168 with the corresponding haloalkane [155].
The synthesis of analogues 186-205 was reported by Bristol et al., in 1978, through alkylation of
methyl 7-hydroxy-9-oxo-9H-xanthene-2-carboxylate with epichlorohydrin, followed by reaction of the
obtained epoxide with a suitable mercaptide or alkoxide, in basic conditions, and further hydrolysis of
the ester [157].

In 1978, a series of other 9-oxo-9H-xanthene-2-carboxylic acid analogues (206-231) were
specifically developed for antiallergic activity, by Pfister et al. [158], using different methodologies.
Analogues 206-210 were obtained using carboxyxanthone 162 as a building block to obtain
xanthene-2-carboxylic acid through a Huang-Minlon reduction, followed by esterification of the
carboxylic acid, and Friedel-Crafts acylation with an acyl halide. The obtained compound was then
oxidized with Jones reagent, and the saponification of the ester provided the desired compounds [158].
7-Mercapto-9-oxo-9H-xanthene-2-carboxylic acid (211) was prepared through derivatization of
methyl 7-hydroxy-9-oxo-9H-xanthene-2-carboxylate with dimethylcarbamothioic chloride, followed
by thermal rearrangement and base hydrolysis. Compound 211 was used as precursor for synthesis of
analogues 212-216, through alkylation with Mel or i-C3H7Br, and further oxidation and base hydrolysis
to afford compounds 212 and 213, or simply base hydrolysis to obtain compounds 214 and 215 [158].
Oxidation of 7-(methylthio)-9-oxo-9H-xanthene-2-carboxylic acid (214) with hydrogen peroxide in
acetic acid gave 7-(methylsulfonyl)-9-oxo-9H-xanthene-2-carboxylic acid (216) [158]. Ullman coupling
reactions between dimethyl 4-bromoisophthalate and several phenols were performed for the synthesis
of six diaryl ether intermediates that, after saponification and intramolecular electrophilic cyclization,
afforded compounds 217-223 [158]. 5-Methoxy-7-(methylthio)-9-oxo-9H-xanthene-2-carboxylic acid
(223) was used as precursor for synthesis of analogues 224-231 through O-demethylation of the
methoxy group at 5-position of xanthone scaffold, followed by esterification of the carboxylic acid
using suitable haloalkane, and further saponification [158].
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In 1979, Barnes et al. [159], described the synthesis of several analogues bearing a sulphur-based
moiety at 7-position of xanthone scaffold (methylthio, methylsulfinyl, and S-methylsulfonimidoyl
groups). Analogues 232-236 and 233-235 were synthesized via diaryl-ether intermediate.
Through Ullmann coupling reaction between a methyl 4-bromoisoftalate and 4-mercaptophenol,
2-hexyl-4-mercaptophenol, or 4-mercapto-2-(pentyloxy)phenol, followed by ester hydrolysis, and
further intramolecular cyclization using polyphosphoric acid as catalyst, compounds 232-234
were obtained [159]. The carboxylic acid group of these compounds was then protected through
esterification, and oxidation of the methylthio group was performed to afford the analogues 235, 236
and 228, after saponification, [158,159]. The methyl esters of these compounds were further reacted
with sodium azide and polyphosphoric acid to give compounds 237-239, post saponification. Several
N-substituted sulfoximidoxanthonecarboxylic acids (240-246) were also obtained through the reaction
of methyl esters of 237 and 238 with a suitable reagent, followed by ester hydrolysis [159]. Analogue
247 was prepared by the same methodology; however, the compounds used for the reaction was
7-(methylthio)-9-ox0-9H-xanthene-2-carboxylic acid (232) [159].

Pfister and Wymann [161], in 1980, reported several 7-sulfamoyl-9-oxo-9H-xanthene-2-carboxylic
acid analogues (248-267) as potential aldose reductase inhibitors. The synthesis of these compounds
was achieved through three different pathways [161]. First, a chlorosulfonation of 9-oxo-9H-xanthene-
2-carboxylic acid (162) with chlorosulfonic acid was performed to afford 7-(chlorosulfonyl)-9-oxo-
9H-xanthene-2-carboxylic acid (248) and then reacted with NaOH or an amide to give analogues
249-261 [161]. The second pathway consisted in a reaction of 2-bromoethanol with the thiol group
of 7-mercapto-9-oxo-9H-xanthene-2-carboxylic acid (211) to afford 7-((hydroxyethyl)thio)-9-oxo-9H-
xanthene-2-carboxylic acid (262), followed by protection of the acid group through esterification with
methyl iodide. The methyl ester of 262 was then oxidized to obtain analogues 263 and 264, after ester
hydrolysis [161]. 7-((2-Methoxyethyl)sulfinyl)-9-oxo-9H-xanthene-2-carboxylic acid (265) was achieved
by reaction of methyl iodide with the 2-hydroxyethylthio moiety of the methyl ester of 262, followed
by ester hydrolysis [161]. Finally, analogue 266 was obtained through a catalytic hydrogenation of
sodium 7-acetyl-9-oxo-9H-xanthene-2-carboxylate, and 267 by formation of a methyl ether with methyl
iodide in acidic conditions [161]. Two years later, the same group developed two more analogues
(268 and 296), by Ullmann coupling reaction of methyl 4-bromoisoftalate with 2,4-diisopropylphenol
and 2,4-di-tert-butylphenol, respectively, followed by intramolecular electrophilic acylation using
polyphosphoric acid [162].

In 1993, Sawyer and coworkers [163,164] were able to synthesize the analogues 270-273,
as potential antagonists for leukotriene By receptor, through Ullmann coupling reaction of
suitable phenols and aryl bromides, followed by cyclization [163]. Analogue 274 was obtained
through reaction of methyl 5-(3-ethoxy-3-oxopropyl)-6-hydroxy-9-oxo-9H-xanthene-2-carboxylate
with 4-(3-chloropropoxy)-5-ethyl-4'-fluoro-2-phenoxy-1,1’-biphenyl, followed by saponification [164].

Pickert and Frahm described, in 1998, a series of carboxy- and dicarboxyxanthone derivatives
bearing nitro and amino groups (275-280) [154]. These compounds were synthesized via diaryl ether
intermediate by reaction of a series of benzoyl halides and phenols. In 2001, Fonteneau et al. [166]
reported the synthesis of analogues 281-283, through reaction of 2,6-dihydroxybenzoic acid with
5-methyl resorcinol to give 1-hydroxy-3-methyl-9-oxo-9H-xanthene, followed by suitable derivatization
(analogues 281-282), and through reaction of 2,6-dihydroxybenzoic acid with phloroglucinol, followed
by esterification and deprotection (analogue 283) [166]. In 2003, Hernandez et al. [168] synthesized a
novel carboxyxanthone (284), via diaryl ether intermediate by reaction of 4-bromo-5-nitroisophthalic
acid with potassium 4-(tert-butyl)-2-nitrophenolate.

It is important to emphasize that, in our group, carboxyxanthone derivative 169 has been used as
a suitable building block for the synthesis of several chiral derivatives [167,169] with high enantiomeric
purity [170-172]. Some chiral derivatives showed interesting growth inhibitory activity on A375-C5,
MCF-7 and NCI-H460 human tumor cell lines [167], ability to block sciatic nerve transmission [169]
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and inhibit cyclooxygenases 1 and 2 enzymes [173]. Some of them were also promising chiral selectors
in liquid chromatography enantioseparation [21,22].

3.2.2. Biological Activities

In general, 9-oxo-9H-xanthene-2-carboxylic acid (162) and analogues 163-284 have been studied
for antiallergic activity [155-159]. Some of them have also been tested for inhibitory activity against
aldose reductase and as antagonists of leukotriene B4 receptor [161,163].

Carboxyxanthone derivative 162 presents relatively low antiallergic activity, in rat passive
cutaneous anaphylaxis (PCA) assay, when compared with disodium cromoglycate [155,158]. In general,
for analogues of 162 it was found that, the presence of small groups in 5- and 7-positions of
xanthone scaffold, often increase the activity, while the presence of bulky groups have the opposite
effect [155,158,160]. In fact, several 5-substituted (167, 176, 184, 212, 214, 216, 224-231, 233-234, 236
and 238-239) and 7-substituted (168, 171, 173-174, 182, 185, 192, 206, 232, 235 and 237) compounds
exhibited higher antiallergic activity, when compared to 162, being some compounds (173-174, 182,
192, 237 and 238) orally active [155-160].

Inhibitory activity against aldose reductase enzyme was evaluated for compound 162 and
analogues 249-267 [161]. 7-(N,N-Dimethylsulfamoyl)-9-oxo-9H-xanthene-2-carboxylic acid (252)
was proved to be a good noncompetitive inhibitor of the enzyme; while 7-(N-(2-hydroxyethyl)-
N-methylsulfamoyl)-9-oxo-9H-xanthene-2-carboxylic acid (259) presented the higher potency of all
tested compounds [161].

Compounds 270-274 were studied as antagonists of leukotriene By receptor (LTBy4) [163,164].
These compounds were shown to be, in general, good antagonists of LTB4 by blocking the up-regulation
of the CD11b/CD18 receptor, being compounds 271, 272 and 274 the most active LTB, antagonists. It is
also important to highlight that compound 274 presented strong binding abilities to human neutrophils
and guinea pig lung membranes, being one of the most potent antagonists [163,164].
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Table 1. Structure of 9-oxo-9H-xanthene-2-carboxylic acid (162) and analogues (163-284).

R7 (0] R1
Re O COOH
R5 O RZ
R4 Rs

Comp. Rl RZ R3 R4 R5 R6 R7 REF
162 H H H H H H H [151-154]
163 OMe H H H H H H [155]
164 H OMe H H H H H [155]
165 H H OMe H H H H [155]
166 H H H H H H OMe [155,169]
167 H H H OMe H H H [155]
168 H H H H H OMe H [155]
169 H H H H OMe H H [155,163,167,169,172]
170 H H H H H Me H [155]
171 H H H H H C,H; H [155]
172 H H H H H C3Hy H [155]
173 H H H H H i-C3Hy H [155]
174 H H H H H sec-CyHy H [155]
175 H H H H H CsHyp H [155]
176 H H H i-C3Hy H H H [155]
177 H H H H H F H [155]
178 H H H H H cl H [153,155]
179 H H H H H OH H [155]
180 H H H H H OC,Hs H [155]
181 H H H H H OC;H; H [155]
182 H H H H H i-OC3H; H [155]
183 H H H H H OC,Hy H [155]
184 H H H i-OC3Hy H H H [155]
185 H H H H H COOH H [155,156]
186 H H H H H OCH,CH(OH)CH,SPh H [157]
187 H H H H H OCH,CH(OH)CH,S(4-F-Ph) H [157]
188 H H H H H OCH,CH(OH)CH,S(4-Cl-Ph) H [157]
189 H H H H H OCH,CH(OH)CH,S(3,4-Cl,-Ph) H [157]
190 H H H H H OCH,CH(OH)CH,S(4-Br-Ph) H [157]
191 H H H H H OCH,CH(OH)CH,S(4-OCHj-Ph) H [157]
192 H H H H H OCH,CH(OH)CH,SCH; H [157]
193 H H H H H OCH,CH(OH)CH,SC,H4OH H [157]
194 H H H H H OCH,CH(OH)CH,SCH(CHj), H [157]
195 H H H H H OCH,CH(OH)CH,SC(CH3)3 H [157]




Molecules 2019, 24, 180 18 of 33

Table 1. Cont.

Comp. R1 R2 R3 R4 R5 R6 R7 REF
196 H H H H H OCH,CH(OH)CH,SCgH1; H [157]
1972 H H H H H OCH,CH(OH)CH,S(1-adm) H [157]
198 H H H H H OCH,CH(OH)CH,SC;H;5 H [157]
199 H H H H H OCH,CH(OH)CH,0H H [157,161]
200 H H H H H OCH,CH(OH)CH,OCHj3; H [157]
201 H H H H H OCH,CH(OH)CH,0C,H,OH H [157]
202 H H H H H OCH,CH(OH)CH,0C,H,;OCHj3 H [157]
203 H H H H H OCH,CH(OH)CH,OCH,OF; H [157]
204 H H H H H OCH,CH(OH)CH,SOCgHs5 H [157]
205 H H H H H OCH,CH(OH)CH,SOCHj3 H [157]
206 H H H H H COCHj; H [158]
207 H H H H H COC,Hjs H [158]
208 H H H H H i-COC3H; H [158]
209 b H H H H H COC3H;5 H [158]
210¢ H H H H H COCsHg H [158]
211 H H H H H SH H [158]
212 H H H SOCH;3 H H H [158]
213 H H H i-S0OC3H; H H H [158]
214 H H H SCH; H H H [158]
215 H H H i-SC3H; H H H [158]
216 H H H SO,CHj H H H [158]
217 H H H OMe H OMe H [158]
218 H H H H OMe OMe H [158]
219 ¢ H H H H OMe H OMe [158]
220 H H H Me H Me H [158]
221 H H H H Me Me H [158]
222 H H H H H Me Me [158]
223 H H H OMe H SCH; H [158]
224 H H H OEt H SOCHj3 H [158]
225 H H H OCzH; H SOCHj; H [158]
226 H H H i-OC3H; H SOCH; H [158]
227 H H H OC,4Hy H SOCH; H [158]
228 H H H OCsHy; H SOCHj3 H [158,159]
229 H H H i-OCsHyy H SOCHj; H [158]
230 H H H OC5Hy H SOCH; H [158]
231 H H H OCgHj7 H SOCHj3 H [158]
232 H H H H H SCH; H [159]
233 H H H CeHi3 H SCH; H [159,160]
234 H H H OCsHyq H SCH; H [159]
235 H H H H H SOCHj3 H [159,161]
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Table 1. Cont.

19 of 33

Comp. R1 R2 R3 R4 R5 R6 R7 REF
236 H H H CeHis H SOCHj5 H [159]
237 H H H H H SO(=NH)CHj3; H [159]
238 H H H C¢His H SO(=NH)CHj3; H [159,160]
239 H H H OCsH1; H SO(=NH)CH3; H [159]
240 H H H H H SO(=NCONH,)CHj3 H [159]
241 H H H CgHis H SO(=NCONH,)CHj3 H [159]
242 H H H H H SO(=NCOPh)CHj3 H [159]
243 H H H H H SO(=NCOCH3)CHj3 H [159]
244 H H H H H SO(=NCOOC,H5)CH3 H [159]
2454 H H H H H SO(=N-Tos)CHj H [159]

o]
o] OH
246 H H H H H < 7 N\ H [159]
N=S
g >

2474 H H H H H S(=N-Tos)CH3 H [159]
248 H H H H H S0,Cl H [161]
249 H H H H H SOsH H [161]
250 H H H H H SO,NH, H [161]
251 H H H H H SO,NHCHj; H [161]
252 H H H H H SO,NH(CHj3), H [161]
253 H H H H H SO,NH(CH3)C,Hs H [161]
254 H H H H H SO,NH-i-C3Hg H [161]
255 H H H H H SO,NH(CH3)-i-C3Hg H [161]
256 H H H H H SO,NH(CH3)-i-C4Hy H [161]
257°¢ H H H H H SO,-pyrr H [161]
258 f H H H H H SO,-morp H [161]
259 H H H H H SO,NHC,H,0OH H [161]
260 H H H H H SO,NH(CH3)C,H,OH H [161]
261 H H H H H SO,NH(C,H,0H), H [161]
262 H H H H H SC,H4OH H [161]
263 H H H H H SOC,H,OH H [161]
264 H H H H H S0,C,H,OH H [161]
265 H H H H H SOC,H4OCHj; H [161]
266 H H H H H CH(OH)CHj; H [161]
267 H H H H H CH(OCH;)CHj5 H [161]
268 H H H i-C3Hg H i-C3Hg H [162]
269 H H H -C4Hy H +-C4Hy H [162]
270 H H H H OCyoHy; C,H,COOH H [163]
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Table 1. Cont.

Comp. R1 R2 R3 R4 R5 R6 R7 REF
271 H H H C,H,COOH OCyoHy; H H [163]
272 H H H C,H,COOH 0C,HzCH=CH(4-OMe-Ph) H H [163]
273 H H H C,H4,COOH  OC3HO(4-COCH;-2-Et-5-OH-Ph) H H [163,164]
274 H H H C,H,COOH  OC3HO(5-Et-4'-F-2-OH-1,1’-Ph,) H H [164,165]
275 H H H COOH H H H [154]
276 H H H COOH H NO, H [154]
277 H H H H H NO, H [154]
278 H H NO, H H NO, H [154]
279 H H NO, COOH H NO, H [154]
280 H H H H H NH, H [154]
281 H H OCOCH; H H H H [166]
282 H H OCOCH; OCOCH; H H H [166]
283 H H OH OH H H H [166]
284 H H NH, NO, H tert-Butyl H [168]

2 adm—Adamantyl; ® C3Hs—Cyclopropyl; ¢ CsHg—Cyclopentyl; 4 Tos—Tosyl; ¢ pyrr—Pyrrolidino; f morp—Morpholino; Me—Methyl; Et—Ethyl; Ph—Phenyl.
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3.3. Other 9-Oxo0-9H-Xanthene Carboxylic Acid Derivatives (285-338)

3.3.1. Synthesis

The synthesis of 9-oxo0-9H-xanthene-1-carboxylic acid (285), 9-oxo-9H-xanthene-3-carboxylic
acid (286) and 9-oxo-9H-xanthene-4-carboxylic acid (287) (Table 2), was described for the first
time by Anschutz et al. [151], in 1925, and were obtained through the intramolecular acylation
of 2-(3-carboxyphenoxy)benzoic acid or 2,2’-oxydibenzoic acid. In 1998, Pickert and Frahm [154],
described their synthesis via diaryl ether intermediate, by Ullmann coupling reaction of an aryl halide
and a phenol.

El Abbady [152] reported, in 1960, the synthesis of carboxyxanthone derivative 288 (Table 2)
through oxidation of 4-oxo-4-(9H-xanthen-2-yl)butanoic acid with potassium permanganate in acetone.
In 1990, Sato et al. [174] reported the synthesis of several new carboxyxanthone derivatives (289-320).
Compounds 289-306 (Table 2) were synthesized via benzophenone intermediate through reaction of
2-fluorobenzoyl chlorides or 2-chlorobenzoyl chlorides with 5-substituted-1,3-dimethoxybenzene,
2-substituted-1,3-dimethoxybenzene or 1-substituted-2,4-dimethoxybenzene, followed by basic
etherification reaction to give 3-methoxy-9H-xanthen-9-one derivatives. Then, a reaction with
ethyl 2-bromoacetate and further saponification were carried out [174]. Carboxyxanthone
derivatives 307-320 were obtained through reaction of 3-hydroxy-9H-xanthen-9-one derivatives
with 3-bromoprop-1-ene followed by reaction with N-methylaniline or N-ethylaniline to give both
4-allyl-3-hydroxy-9H-xanthen-9-one and 2-allyl-3-hydroxy-9H-xanthen-9-one derivatives, that through
oxidation with m-chloroperbenzoic acid followed by Jones oxidation, afforded compounds 307-315
and 316-320, respectively (Table 2) [174].

Jackson et al. [163] described in 1993, the synthesis of carboxyxanthone derivatives 321 and 322
(Table 2) via diaryl ether intermediate through Ullmann coupling reaction of suitable phenols and aryl
bromides, followed by cyclization [163]. The synthesis of compounds 324-332 (Table 2) were reported
in 1998, by Pickert et al. [154], through the same synthetic pathway as described for compounds
276-281. Recently, Zelaszczyk et al. [175] synthesized carboxyxanthone derivatives 333-338 (Table 2)
though derivatization of the previously described 3-hydroxyxanthones with sodium chloroacetate or
ethyl 2-bromopropanoate followed by ester hydrolysis.

In our group, carboxyxanthone derivative 289 has been used as a building block to obtain
diverse chiral derivatives with potential biological activities [167,169,173], as well as chiral selectors
for analytical liquid chromatography application [21,22].

3.3.2. Biological Activities

Carboxyxanthone derivatives 289-320 were screened for their potential diuretic and uricosuric
activities in rats and compared with tienilic acid and indacrinone [174]. These compounds
presented, in general, similar or more potent, diuretic activities when compared to tienilic acid [174].
Some compounds (299, 301, 304, 306, 310, 312, and 320) also showed balanced diuretic and
uricosuric activities, with compound 301 presenting better balanced activities when compared
with indacrinone [174]. Carboxyxanthone derivatives 321 and 320 were evaluated as antagonists
of leukotriene B4 receptor [163]. Compounds 333-338 were tested for analgesic, anti-edema and
ulcerogenic activities [175]. Both compounds 337 and 338 exhibited promising anti-inflammatory
activity with compound 338 also showing excellent analgesic activity.
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Table 2. Structures of other 9-oxo-9H-xanthene carboxylic acid derivatives (285-338).
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Comp. Rl Rz R3 R4 R5 R6 R7 RS REF
285 COOH H H H H H H H [151,154]
286 H H COOH H H H H H [151,154]
287 H H H COOH H H H H [151,154]
288 H COC,H,COOH H H H H H H [152]
289 H H OCH,COOH H H H H H [169,174]
290 H H OCH,COOH H H H H F [167,174]
291 H H OCH,COOH cl H H H F [174]
292 H H OCH,COOH H H H H F [174]
293 H H OCH,COOH Me H H H F [174]
294 H H OCH,COOH Cl H H H Cl [174]
295 H H OCH,COOH Cl H H Cl H [174]
296 H H OCH,COOH cl H cl H H [174]
297 H H OCH,COOH Cl Cl H H H [174]
298 Cl Cl OCH,COOH H H H H H [174]
299 H cl OCH,COOH Cl H H H H [174]
300 Cl H OCH,COOH H H H H H [174]
301 H Cl OCH,COOH H H H H H [174]
302 H H OCH,COOH Cl H H H H [174]
303 Me H OCH,COOH H H H H H [174]
304 H Me OCH,COOH H H H H H [174]
305 H H OCH,COOH Me H H H H [174]
306 H Br OCH,COOH H H H H H [174]
307 H H OCH(COOH)CH, H H H H [174]
308 H H OCH(COOH)CH, H H H F [174]
309 H H OCH(COOH)CH, H H H Cl [174]
310 H cl OCH(COOH)CH, H H H H [174]
311 Cl H OCH(COOH)CH, H H H H [174]
312 H Me OCH(COOH)CH, H H H H [174]
313 Me H OCH(COOH)CH, H H H H [174]
314 Br H OCH(COOH)CH, H H H H [174]
315 Cl Me OCH(COOH)CH, H H H H [174]
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Table 2. Cont.

Comp. R1 R2 R3 R4 R5 R6 R7 Rg REF
316 H CH2CH(COOH)O Cl H H H F [174]
317 H CH2CH(COOH)O Me H H H F [174]
318 H CH2CH(COOH)O Cl H H H Cl [174]
319 H CH2CH(COOH)O Cl H H H H [174]
320 H CH2CH(COOH)O Me H H H H [174]
321 H H H COOH H OCy9Hz1 C,H,COOH H [163]
322 H H H COOH C,H,COOH OCqoHy H H [163]
323 H H H H C,H,COOH (5.t 4,_?_2%113(_)1/1,_%) H H [164]
324 COOH H H H H H NO, H [154]
325 H H COOH H H H NO;, H [154]
326 H H H COOH H H NO, H [154]
327 H H COOH COOH H H NO, H [154]
328 COOH NO, H H H H NO;, H [154]
329 H NO, COOH H H H NO, H [154]
330 H NO, H COOH H H NO;, H [154]
331 H NO, COOH COOH H H NO, H [154]
332 H H COOH H H H NH, H [154]
333 H H OC(CHj3),COOH H CHj; H H H [175]
334 H H OCH,COOH H H H CHj; H [175]
335 H H OCH,COOH H CHj H H H [175]
336 H H OCH(CH3)COOH H H H CHj; H [175]
337 H H OC(CHj3),COOH H H H CHj H [175]
338 H H H OCH(CH3)COOH H Cl H H [175]
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4. Conclusions

During several years, diverse carboxyxanthone derivatives have been obtained either from
natural sources or by synthetic methods. Nature afforded more complex structures, but synthetic
methodologies could furnish a large variety of carboxyxanthone derivatives for biological activity
and structure-activity relationship studies, enlarging the chemical/biological space. For the synthesis
of carboxylated xanthone derivatives, diverse methods can be applied if using suitable building
blocks. The biological and pharmaceutical significance of these compounds in different areas have
been highlighted in this review. Some of them revealed promising activities including antibacterial,
antifungal, antiviral, antitumor, antiallergic, anti-inflammatory, diuretic and uricosuric activities as
well as inhibitory activity against aldose reductase and as antagonists of leukotriene B4 receptor. Their
application as suitable chemical substrates to obtain new bioactive derivatives was also demonstrated.
It is anticipated that data compiled in this review will not only update researchers about the
pharmacologic significance of carboxyxanthones, but also guide the design for the synthesis of new
bioactive xanthone derivatives with improved medicinal properties.
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