Supporting Information for

Solid-phase Synthesis and Circular Dichroism Study of $\boldsymbol{\beta}$-ABpeptoids

Ganesh A. Sable, Kang Ju Lee, and Hyun-Suk Lim*
Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
*Correspondence: hslim@postech.ac.kr

TABLE OF CONTENTS

1. Optical rotations of the products and intermediates (Table S1) S03
2. Chiral HPLC analysis of compound (S)/(R)-5a, (S)/(R)-6a (Figure S1) S04
3. Isolated yields and nature of synthesized β-ABpeptoid oligomers (Table S2) S06
4. Synthesized β-ABpeptoid oligomer sequence, purity, and mass data (Table S3) S07
5. HRMS data for Synthesized β-ABpeptoid oligomers (Table S4) S08
6. LC/MS spectra of crude product of nosyl protected dimer (S)-9a-Ns (Figure S2) S09
7. HPLC chromatograms of crude products (S)-9a-g and (S)-10a-g (Figure S3). S10
8. LC/MS spectra of purified oligomers (S)- and (R)-9a-g, and (S)-10a-g (Figure S4). S14
9. CD spectroscopic data (Figure S5-S8) S38
10. NMR data for; (R)-1, (S)-4, (S)-5a, (S)-5b, (S)/(R)-6a, and (S)-6b (Figure S9) S40
11. NOESY spectra for (R)-9a, (R)-9b and, 4mer (R)-9c (Figure S10) S58

Table S1. The optical rotations of (S)- and (R)-forms of the products and intermediates
(S)-isomer

Figure S1. Chiral HPLC analyses of compounds (S)/(R)-5a, and (S)/(R)-6a.

Figure S1, continued

Table S2. Isolated yields and nature of synthesized β-ABpeptoid oligomers

compd. no.	$\begin{gathered} \text { resin Qty. } \\ (\mathrm{mg})^{\mathrm{a}} \end{gathered}$	isolated product Qty. (mg) ${ }^{b}$	isolated product yield (\%) ${ }^{c}$	compound nature
(S)-9a	40	4.8	72\%	colorless sticky oil
(S)-9b	40	6.8	70\%	colorless sticky semi-solid
(S)-9c	40	8.9	69\%	white solid
(S)-9d	30	8.2	68\%	white solid
(S)-9e	30	10.4	72\%	white solid
(S)-9f	20	7.3	66\%	white solid
(S)-9g	20	8.1	63\%	white solid
(S)-9e-Ac ${ }^{\text {d }}$	40	12.6	64\%	white solid
(R)-9a	30	3.5	71\%	colorless sticky oil
(R)-9b	30	5.3	73\%	colorless sticky semi-solid
(R)-9c	30	6.5	67\%	white solid
(R)-9d	20	5.0	62\%	white solid
(R)-9e	20	6.1	63\%	white solid
(R)-9f	20	6.6	59\%	white solid
(R)-9g	20	7.2	57\%	white solid
(R)-9e-Ac ${ }^{\text {d }}$	20	5.7	58\%	white solid
(S)-10a	25	4.9	91\%	colorless sticky oil
(S)-10b	25	6.0	78\%	white semi-solid
(S)-10c	20	9.1	89\%	white solid
(S)-10d	20	7.8	76\%	white solid
(S)-10e	20	8.6	70\%	white solid
(S)-10f	20	9.6	68\%	white solid
(S) -10 g	20	10.3	63\%	white solid
(S)-10e-Ac ${ }^{\text {d }}$	20	7.6	60\%	white solid

${ }^{a}$ Initial resin loading was $0.45 \mathrm{mmol} / \mathrm{gm}$. ${ }^{b}$ Determined based on 100% initial resin loading of the first residue.
${ }^{c}$ Quantities of isolated products are given after lyophilization of purified products. ${ }^{d} N$-terminal is acetylated.

Table S3. Synthesized β-ABpeptoid Oligomer Sequence, Purity, and Mass Confirmation

compd no.	chain length	\% purity ${ }^{\text {a }}$	calcd mass	obsd mass ${ }^{\text {b }}$
(S)-9a	2	99	367.23	368.2 [$\mathrm{M}+\mathrm{H}]^{+}$
(S)-9b	3	98	542.33	543.3 [M+H] ${ }^{+}$
(S)-9c	4	98	717.43	718.4 [M+H] ${ }^{+}$
(S)-9d	5	99	892.53	893.4 [M+H] ${ }^{+}$
(S)-9e	6	97	1067.62	$1068.5[\mathrm{M}+\mathrm{H}]^{+}$
(S)-9f	7	99	1242.72	$1243.6[\mathrm{M}+\mathrm{H}]^{+}$
(S)-9g	8	99	1417.82	$1440.9[\mathrm{M}+\mathrm{Na}]^{+C}$
(S)-9e-Ac ${ }^{\text {d }}$	6	99	1109.64	$1132.5[\mathrm{M}+\mathrm{H}]^{+}$
(R)-9a	2	97	367.23	$368.2[\mathrm{M}+\mathrm{H}]^{+}$
(R)-9b	3	98	542.33	543.3 [M+H] ${ }^{+}$
(R)-9c	4	98	717.43	718.4 [M+H] ${ }^{+}$
(R)-9d	5	97	892.53	$893.5[\mathrm{M}+\mathrm{H}]^{+}$
(R)-9e	6	98	1067.62	$1068.6[\mathrm{M}+\mathrm{H}]^{+}$
(R)-9f	7	99	1242.72	$1265.8[\mathrm{M}+\mathrm{Na}]^{+C}$
(R) -9 g	8	98	1417.82	$1439.8[\mathrm{M}+\mathrm{H}]^{+c}$
(R)-9e-Ac ${ }^{\text {d }}$	6	98	1109.64	$1133.5[\mathrm{M}+\mathrm{Na}]^{+}$
(S)-10a	2	99	467.26	$468.2[\mathrm{M}+\mathrm{H}]^{+}$
(S)-10b	3	98	692.37	$693.4[\mathrm{M}+\mathrm{H}]^{+}$
(S)-10c	4	99	917.49	918.4 [M+H] ${ }^{+}$
(S)-10d	5	99	1142.60	$1144.5[\mathrm{M}+\mathrm{H}]^{+}$
(S)-10e	6	99	1367.72	$1368.6[\mathrm{M}+\mathrm{H}]^{+}$
(S)-10f	7	99	1592.83	$1614.8[\mathrm{M}+\mathrm{Na}]^{+c}$
(S)-10g	8	97	1817.95	$1839.9[\mathrm{M}+\mathrm{Na}]^{+C}$
(S)-10e-Ac ${ }^{\text {d }}$	6	98	1409.73	$1431.7[\mathrm{M}+\mathrm{Na}]^{+C}$

${ }^{a}$ Determined by analytical reversed-phase HPLC of purified products. ${ }^{b}$ Mass spectrometry data were acquired using ESI techniques. ${ }^{c}$ Mass spectrometry data were acquired using MALDI-TOF technique. ${ }^{d} N$-terminal is acetylated.

Table S4. HRMS Data for Synthesized β-ABpeptoid Oligomers

9a-g

compd no.	chain length	chemical formula	calcd mass	obsd mass
(S)-9a	2	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$	$368.2338[\mathrm{M}+\mathrm{H}]^{+}$	368.2339
(S)-9b	3	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{3}$	$543.3335[\mathrm{M}+\mathrm{H}]^{+}$	543.3332
(S)-9c	4	$\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{4}$	$718.4332[\mathrm{M}+\mathrm{H}]^{+}$	718.4334
(S)-9d	5	$\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{5}$	$893.5329[\mathrm{M}+\mathrm{H}]^{+}$	893.5332
(S)-9e	6	$\mathrm{C}_{66} \mathrm{H}_{8} \mathrm{~N}_{7} \mathrm{O}_{6}$	$1068.6327[\mathrm{M}+\mathrm{H}]^{+}$	1068.6323
(S)-9f	7	$\mathrm{C}_{77} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{7}$	$1243.7324[\mathrm{M}+\mathrm{H}]^{+}$	1243.7321
(S)-9g	8	$\mathrm{C}_{88} \mathrm{H}_{107} \mathrm{Ng}_{9} \mathrm{O}_{8}$	$1418.8321[\mathrm{M}+\mathrm{H}]^{+}$	1418.8329
(S)-9e-Ac ${ }^{\text {a }}$	6	$\mathrm{C}_{68} \mathrm{H}_{83} \mathrm{~N}_{7} \mathrm{O}_{7}$	$1132.6252[\mathrm{M}+\mathrm{Na}]^{+}$	1132.6252
(R)-9a	2	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$	368.2338 [M+H] ${ }^{+}$	368.2335
(R)-9b	3	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{3}$	$543.3335[\mathrm{M}+\mathrm{H}]^{+}$	543.3334
(R)-9c	4	$\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{4}$	$718.4332[\mathrm{M}+\mathrm{H}]^{+}$	718.4329
(R)-9d	5	$\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{5}$	$893.5329[\mathrm{M}+\mathrm{H}]^{+}$	893.5333
(R)-9e	6	$\mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{6}$	$1068.6327[\mathrm{M}+\mathrm{H}]^{+}$	1068.6330
(R)-9f	7	$\mathrm{C}_{77} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{7}$	$1243.7324[\mathrm{M}+\mathrm{H}]^{+}$	1243.7329
(R) -9 g	8	$\mathrm{C}_{88} \mathrm{H}_{107} \mathrm{NaO}_{9}$	$1418.8321[\mathrm{M}+\mathrm{H}]^{+}$	1418.8328
(R)-9e-Ac ${ }^{\text {a }}$	6	$\mathrm{C}_{68} \mathrm{H}_{83} \mathrm{~N}_{7} \mathrm{O}_{7}$	$1132.6252[\mathrm{M}+\mathrm{Na}]^{+}$	1132.6247
(S)-10a	2	$\mathrm{C}_{30} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	$468.2651[\mathrm{M}+\mathrm{H}]^{+}$	468.2653
(S)-10b	3	$\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{3}$	$693.3805[\mathrm{M}+\mathrm{H}]^{+}$	693.3808
(S)-10c	4	$\mathrm{C}_{60} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{4}$	$918.4958[\mathrm{M}+\mathrm{H}]^{+}$	918.4956
(S)-10d	5	$\mathrm{C}_{75} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{5}$	$1143.6112[\mathrm{M}+\mathrm{H}]^{+}$	1143.6110
(S)-10e	6	$\mathrm{C}_{90} \mathrm{H}_{93} \mathrm{~N}_{7} \mathrm{O}_{6}$	$1368.7266[\mathrm{M}+\mathrm{H}]^{+}$	1368.7272
(S)-10f	7	$\mathrm{C}_{105} \mathrm{H}_{108} \mathrm{~N}_{8} \mathrm{O}_{7}$	$1593.8419[\mathrm{M}+\mathrm{H}]^{+}$	1593.8427
(S)-10g	8	$\mathrm{C}_{120} \mathrm{H}_{123} \mathrm{~N}_{9} \mathrm{O}_{8}$	$1818.9573[\mathrm{M}+\mathrm{H}]^{+}$	1818.9580

${ }^{a} N$-terminal is acetylated. Note- High Resolution Mass Spectrometry (HRMS) data were acquired using Fast Atom Bombardment (FAB^{+}) ionization techniques.

Figure S2. LC/MS spectra of crude product of nosyl protected dimer (S)-9a-Ns

Figure S3. HPLC chromatograms of crude products (S)-9a-g and (S)-10a-g.

Figure S3, continued

Figure S3, continued

Figure S3, continued

Figure S3, continued

Figure S4. LC/MS spectra of purified oligomers (S)- and (R)-9a-g, and (S)-10a-g.

Figure S4, continued

Figure S5. CD data of N-benzylated β-ABpeptoid oligomers in PBS-ACN (1:3) $60 \mu \mathrm{M}$ (a) oligomers of (R)-form (R)-9a-g and, (b) (S)-form (S)-9a-g.

Figure S6. CD data of (S)-form of N-benzylated β-ABpeptoid oligomers (S)-9a-g in; (a) MeOH $(60 \mu \mathrm{M})$ and, (b) TFE ($60 \mu \mathrm{M}$).

Figure S7. CD data of (S)-form of N-napthylmethyl β-ABpeptoid oligomers (S)-10a-g in; (a) PBS-ACN $(1: 3,60 \mu \mathrm{M})$, (b) MeOH $(60 \mu \mathrm{M})$, (c) TFE $(60 \mu \mathrm{M})$.

Figure S8. CD spectra (S)-form of N-napthylmethyl β-ABpeptoid octamer (\mathbf{S})-10g in ACN (60 $\mu \mathrm{M}$) measured at $20^{\circ} \mathrm{C}$ before and after heating to $70^{\circ} \mathrm{C}$.

Figure S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of; (R)-1, (S)-4, (S)-5a, (S)-5b, (S)-6a, and (S)-6b.

Figure S9, continued

Figure S10. 2D ${ }^{1} \mathrm{H}$ NOESY spectra of (a) $2 \operatorname{mer}(\mathbf{R})-9 \mathbf{a}$ (b) $3 \mathrm{mer}(\mathbf{R})-\mathbf{9 b}$ and, (c) 4mer (R)-9c. [Dotted square regions indicate increase in additional NOEs from 2 mer to 4 mer , presumably due to the conformationally (cis) dominant ordered arrangement across the amide bond.]

Figure S10, continued

