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Abstract: Stereocontrolled synthesis of some amino acid-based carbocyclic nucleoside analogs 

containing ring C=C bond has been performed on β- and γ-lactam basis. Key steps were N-arylation 

of readily available β- or γ-lactam-derived amino ester isomers and amino alcohols with 5-amino-

4,6-dichloropyrimidine; ring closure of the formed adduct with HC(OMe)3 and nucleophilic 

displacement of chlorine with various N-nucleophiles in the resulting 6-chloropurine moiety. 
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1. Introduction and Aims 

In carbocyclic nucleoside analogs, a methylene group replaces the oxygen atom in the 

carbohydrate ring, thereby increasing stability towards hydrolases and phosphorylases. The 

synthesis of these molecules is an area of considerable interest to medicinal chemistry, thanks to their 

bioactivity. Within natural products, neplanocin A is an antitumor antibiotic, while aristeromycin has 

antibacterial and antiviral activities. With respect to synthetic compounds, (-)-carbovir (1) and 

abacavir (2) show anti-HIV activity (Scheme 1) while entecavir inhibits the hepatitis B virus [1–6]. 

Carbocyclic nucleoside analogs with a 6-membered ring received less attention. In their case, antiviral 

activity usually requires the presence of a C=C bond in the ring [1–3,5,7,8] (see 3 and 4), enabling the 

base to occupy a pseudoaxial position [1,5], but some (2-aminocyclohexyl)methanol derivatives (for 

example, 5 [9]) also exhibit bioactivity (Scheme 1). 
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Scheme 1. Some bioactive nucleoside analogs. 
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Cyclic β-amino acids have gained significant attention in the last few decades [10–14]. They can 

be found in natural products, such as peptidyl nucleoside antibiotics amipurimycin (6), chryscandin 

(7), blasticidin S (8) or gougerotin (9), and related analogous derivatives (Scheme 2) [15–17]. In the 

latter three nucleoside analogs, the sugar ring was replaced with a cyclic β-amino acid unit. Cyclic β-

amino acids are also promising building blocks of new bioactive peptides [14–21] and many simple 

representatives show relevant biological activity (Scheme 3), such as the analgesic drug tilidine (10) 

or antifungal antibiotics cispentacin and icofungipen (11) [10–13]. 

Highly-functionalized cyclic γ-amino acid derivatives possessing multiple stereogenic centers 

are also of considerable importance in drug research. Neuraminidase inhibitors Peramivir (12, 

Scheme 3), Zanamivir and Oseltamivir and their modified analogs are used in the treatment of 

influenza [22], while Gabapentin [23] and CPP-115 [24] (13, Scheme 3) are anticonvulsant drugs. 

 

Scheme 2. Some bioactive β-amino acid-based nucleoside analogs. 

 

Scheme 3. Examples of bioactive cyclic amino acid derivatives. 

2. Results and Discussion 

Taking into account the importance of carbocyclic nucleoside analogs and the bioactivity of 

peptidyl nucleoside antibiotics containing β-amino acids, our aim was the synthesis of new 

carbocyclic nucleoside analogs with an amino acid moiety on a β- and γ-lactam basis. This pathway 

is similar to the first synthesis of carbovir from unsaturated γ-lactam (±)-14 (also known as Vince 

lactam) [25–27]. The synthesis of some 6-membered carbocyclic nucleoside analogs containing γ-

amino alcohol was also planned. 

Our synthetic work started with the opening of the heteroring of racemic Vince lactam (±)-14 

[28]. Construction of the nucleobase part on the resulting amino ester (±)-15 was accomplished in 
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three steps. First, compound (±)-15 was subjected to N-arylation with 5-amino-4,6-

dichloropyrimidine to furnish (±)-16. This process was accompanied by C=C bond migration thanks 

to the basic conditions, enabling the formation of a more stable conjugated π-system. Then, reaction 

with trimethyl orthoformate generated the second heteroring. The remaining chlorine atom of the 

obtained nucleoside analog (±)-17 was then replaced with N-nucleophiles to obtain adenosine analogs 

(±)-18, (±)-19 and (±)-20 (Scheme 4). It is worth to note that compound (±)-19 contains a 

cyclopropylamino group similar to abacavir, while the azido group of compound (±)-20 enables many 

further transformations (e.g., triazole formation). 

 

Scheme 4. Synthesis of cyclic γ-amino acid-based nucleoside analogs. 

We continued our synthetic work with ethyl cis β-amino ester hydrochloride (±)-22 obtained 

from β-lactam (±)-21 [29,30]. Lactam ring opening, construction of the nucleobase moiety, and 

aromatic nucleophilic substitution resulted in nucleoside analogs (±)-25 and (±)-26. From ethyl trans 

β-amino ester hydrochloride (±)-28 [31,32], azidonucleoside (±)-31 was prepared in a similar way 

(Schemes 5 and 6). 
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Scheme 5. Synthesis of β-amino acid-based nucleoside analogs from ethyl cis-2-aminocyclohex-4-

enecarboxylate hydrochloride (±)-22. 

 

Scheme 6. Synthesis of β-amino acid-based nucleoside analogs from ethyl trans-2-aminocyclohex-4-

enecarboxylate hydrochloride (±)-28. 

Note that the synthetic protocol took place with stereocontrol in both cases. Since the 

configuration of the chiral centers are not affected during the syntheses, their integrity is conserved 

and therefore, the cis-amino acid starting material led to the corresponding carbanucleoside analog 

in which the relative configuration of the groups is cis, while the trans-amino acid provided the 

carbocyclic nucleobase analog with trans relative steric arrangement of the ester and the heterocycle. 

Analogous treatment of ethyl cis-2-aminocyclohex-3-enecarboxylate hydrochloride (±)-33 (a 

regioisomer of (±)-22), obtained from β-lactam (±)-32 [33,34], resulted in nucleoside analog (±)-35, the 

C=C regioisomer of compound (±)-24 (Scheme 7). 
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Scheme 7. Synthesis of β-amino acid-based nucleoside analog (±)-35 from ethyl cis-2-aminocyclohex-

3-enecarboxylate hydrochloride (±)-33. 

In order to synthesize compounds with a five-membered carbocycle, the strategy was also 

extended to β-lactam (±)-36. Nucleoside analog (±)-39 was obtained successfully using the protocol 

described above for the six-membered analogs, although both nucleobase construction steps had 

lower yields (Scheme 8). 

 

Scheme 8. Synthesis of β-amino acid-based nucleoside analog (±)-39 with a 5-membered carbocycle. 

Taking into account the bioactivity of compounds 3, (±)-4 and (±)-5, the synthesis of similar 

molecules was attempted. Reduction of β-amino acids (±)-40 and (±)-44 with LiAlH4 [32] afforded γ-

amino alcohols (±)-41 and (±)-45, which were further reacted with 5-amino-4,6-dichloropyrimidine. 

Ring closing with trimethyl orthoformate in the last step yielded, through stereocontrol, nucleoside 

analogs (±)-43 and (±)-47 (Scheme 9). These compounds show high structural similarity to bioactive 

compound (±)-5. 



Molecules 2019, 24, 161 6 of 15 

 

Scheme 9. Synthesis of unsaturated carbanucleoside isomers (±)-43 and (±)-47 analogs of carbocyclic 

nucleoside (±)-5. 

3. Conclusions and Outlook 

A stereocontrolled synthetic pathway was developed to prepare new carbocyclic nucleoside 

analogs containing a ring olefin bond with a β-amino acid, γ-amino acid or γ-amino alcohol moiety 

from readily available β- and γ-lactams (across the amino acid isomers). The structure of the starting 

cycloalkene amino acids determined the configuration of the stereogenic centers of the products. 6- 

Nucleoside analogs containing the chloropurine moiety proved to be useful intermediates in various 

reactions with nucleophiles to access substituted nucleobases. Taking into consideration our 

widespread experiences in selective and controlled functionalization of versatile unsaturated cyclic 

amino acid derivatives [35–38], further studies in order to investigate the possible functionalization 

of the ring olefin bond of product nucleoside analogs are currently being investigated in our 

laboratory. Furthermore, based on our experiences in enzymatic resolution of various bicyclic β- and 

γ-lactams [39,40], as well as on enzymatic ester hydrolysis methodologies [41], synthesis of 

enantiomerically pure substances will be performed. 

4. Materials and Methods 

4.1. General Information 

Chemicals were purchased from Sigma–Aldrich (Budapest, Hungary). Solvents were used as 

received from the suppliers. Amino ester hydrochlorides (±)-15 [28], (±)-22 [29,30], (±)-28 [31,32], (±)-

33 [33,34], (±)-37 [42] and γ-amino alcohols (±)-41, (±)-45 [32] were synthesized according to literature. 

The 1H-NMR and 13C-NMR spectra of all new compounds are available in Supplementary Materials. 

4.1.1. General Procedure for N-Arylation of Amino Ester Hydrochlorides with 5-Amino-2,6-

Dichloropyrimidine 

To a solution of the amino ester hydrochloride (10 mmoles) in EtOH (30 mL), 5-amino-2,6-

dichloropyrimidine (10 mmoles) and Et3N (30 mmoles) were added, then the mixture was treated at 

reflux temperature for 20 h. After cooling to room temperature, the reaction mixture was 

concentrated under reduced pressure and the residue was taken up in EtOAc (100 mL). The organic 

layer was washed with water (3 × 50 mL), dried with Na2SO4, and concentrated under reduced 
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pressure. The crude product was purified by column chromatography on silica gel (eluent: n-hexane-

EtOAc 2:1). 

4.1.2. General Procedure for N-Arylation of γ-Amino Alcohols with 5-Amino-2,6-

Dichloropyrimidine 

To a solution of the γ-amino alcohol (8 mmoles) in EtOH (25 mL), 5-amino-2,6-

dichloropyrimidine (8 mmoles) and Et3N (24 mmoles) were added, then the mixture was kept at 

boiling temperature for 20 h. After cooling to room temperature, the reaction mixture was 

concentrated under reduced pressure and the residue was taken up in EtOAc (100 mL). The organic 

layer was washed with water (3 × 40 mL), dried with Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by column chromatography on silica gel (eluent: n-hexane-

EtOAc 1:2). 

4.1.3. General Procedure for the Formation of the Purine Skeleton of Amino Ester Nucleoside 

Analogs 

To a solution of amino ester (2 mmoles) in trimethyl orthoformate (5 mL), a catalytic amount of 

methanesulfonic acid or p-TsOH (30 mg) was added. After stirring at 20 °C for 6 h, the reaction 

mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaCl solution (3 × 15 

mL). The organic phase was dried with Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by column chromatography on silica gel (eluent: n-hexane-EtOAc 1:1). 

4.1.4. General Procedure for the Formation of the Purine Skeleton of Amino Alcohol Nucleoside 

Analogs 

To a solution of amino alcohol nucleoside analog (1 mmol) in trimethyl orthoformate (4 mL), a 

catalytic amount of p-TsOH (20 mg) was added. After stirring at 20 °C for 6 h, the reaction mixture 

was diluted with EtOAc (20 mL) and washed with saturated aqueous NaCl solution (3 × 15 mL). The 

organic phase was dried with Na2SO4 and concentrated under reduced pressure. The crude product 

was purified by column chromatography on silica gel (eluent: n-hexane-EtOAc 1:2). 

4.1.5. General Procedure for the Introduction of the Azido Group 

To a solution of 6-chloropurinyl nucleoside analog (150 mg) in THF/H2O (10 mL, 4:1), sodium 

azide (4 eq.), acetic acid (3 drops), and Et3N (4 drops) were added. After heating at reflux temperature 

for 20 h, the reaction mixture was diluted with EtOAc (20 mL) and washed with water (2 × 15 mL). 

The organic phase was dried with Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by column chromatography on silica gel (eluent: n-hexane-EtOAc 1:2). 

4.1.6. General Procedure for the Introduction of the Cyclopropylamino Group 

To a solution of 6-chloropurinyl nucleoside analog (150 mg) in EtOH (10 mL), cyclopropylamine 

(4 eq.) was added. After the mixture was kept at boiling temperature for 12 h, the reaction mixture 

was concentrated under reduced pressure. The crude product was purified by column 

chromatography on silica gel (eluent: n-hexane-EtOAc 1:1). 

4.2. Synthesis of Methylamino Compound (±)-18 

To a solution of 6-chloropurinyl nucleoside analogue (±)-17 (150 mg) in EtOH (10 mL), MeNH2 

(4 eq.) was added. After heating under reflux for 20 h, the reaction mixture was concentrated under 

reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: 

n-hexane-EtOAc 1:1). 
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Ethyl (S*)-4-((5-amino-6-chloropyrimidin-4-yl)amino)cyclopent-1-ene-1-carboxylate, (±)-16. 

Brownish white solid, m.p. 121–123 °C, 40%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.30 (t, 3H, CH3, 

J = 7.14 Hz), 2.43–2.59 (m, 2H, CH2), 3.00–3.16 (m, 2H, CH2), 3.44 (brs, 2H, NH2), 4.17–4.25 (m, 2H, 

OCH2), 4.79–4.86 (m, 1H, H-4), 5.08 (d, 1H, N-H, J = 5.76 Hz), 6.76-6.78 (m, 1H, H-2), 8.08 (s, 1H, Ar-

H); 13C-NMR (DMSO, 100 MHz): δ (ppm) = 15.0, 39.3, 41.2, 51.3, 60.7, 124.6, 135.1, 137.7, 142.6, 146.4, 

152.0, 164.9; MS (ES, pos) m/z = 283 (M + 1). 

 

Ethyl (S*)-4-(6-chloro-9H-purin-9-yl)cyclopent-1-ene-1-carboxylate, (±)-17. 

Yellowish white solid, m.p. 83–85 °C, 81%; 1H-NMR (DMSO, 400 MHz): δ = 1.20 (t, 3H, CH3, J = 7.08 

Hz), 2.93–3.05 (m, 2H, CH2), 3.06–3.20 (m, 2H, CH2), 4.09–4.17 (m, 2H, OCH2), 5.38–5.47 (m, 1H, H-4), 

6.70–6.81 (m, 1H, H-2), 8.69 (s, 1H, Ar-H), 8.74 (s, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): δ (ppm) = 

14.6, 39.2, 40.9, 54.2, 61.2, 132.2, 135.5, 140.1, 143.5, 151.6, 151.8, 152.3, 164.2; MS (ES, pos) m/z = 293 (M 

+ 1). 

 

Ethyl (S*)-4-(6-(methylamino)-9H-purin-9-yl)cyclopent-1-ene-1-carboxylate, (±)-18. 

Yellow oil, 68%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.32 (t, 3H, CH3, J = 7.12 Hz), 2.86–3.03 (m, 2H, 

CH2), 3.10–3.29 (m, 5H, NCH3 and CH2), 4.20–4.31 (m, 2H, OCH2), 5.41–5.50 (m, 1H, H-4), 6.16 (brs, 

1H, N-H), 6.86–6.89 (m, 1H, H-2), 7.75 (s, 1H, Ar-H), 8.41 (s, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): 

δ (ppm) = 14.6, 39.3, 41.1, 50.6, 58.9, 61.1, 120.4, 135.5, 136.1, 137.7, 140.5, 153.4, 155.9, 164.5; MS (ES, 

pos) m/z = 288 (M + 1). 

 

Ethyl (S*)-4-(6-(cyclopropylamino)-9H-purin-9-yl)cyclopent-1-ene-1-carboxylate, (±)-19. 

Yellow oil, 53%; 1H-NMR (CDCl3, 500 MHz): δ (ppm) = 0.64–0.69 (m, 2H, CH2), 0.90–0.97 (m, 2H, 

CH2), 1.32 (t, 3H, CH3, J = 7.13 Hz), 2.86–3.08 (m, 3H, CH2), 3.18–3.32 (m, 2H, CH2, CH), 4.21–4.28 (m, 

2H, OCH2), 5.35–5.43 (m, 1H, H-4), 6.03 (brs, 1H, N-H), 6.86-6.91 (m, 1H, H-2), 7.75 (s, 1H, Ar-H), 8.48 

(s, 1H, Ar-H); 13C-NMR (CDCl3, 126 MHz): δ (ppm) = 7.4, 14.3, 23.7, 38.9, 40.8, 52.9, 60.7, 119.9, 135.1, 

137.6, 140.2, 153.2, 155.8, 164.1; MS (ES, pos) m/z = 314 (M + 1). 
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Ethyl (S*)-4-(6-azido-9H-purin-9-yl)cyclopent-1-ene-1-carboxylate, (±)-20. 

White solid, m.p. 145–147 °C, 68%; 1H-NMR (DMSO, 400 MHz): δ (ppm) = 1.22 (t, 3H, CH3, J = 7.08 

Hz), 2.97–3.09 (m, 2H, CH2), 3.22–3.28 (m, 2H, CH2), 4.12–4.23 (m, 2H, OCH2), 5.53–5.64 (m, 1H, H-4), 

6.86–6.89 (m, 1H, H-2), 8.66 (s, 1H, Ar-H), 10.07 (s, 1H, Ar-H); 13C-NMR (DMSO, 100 MHz): δ (ppm) 

= 15.0, 34.9, 39.2, 55.1, 61.0, 121.2, 134.5, 136.3, 141.8, 142.8, 143.8, 146.3, 164.5; MS (ES, pos) m/z = 300 

(M + 1). 

 

Ethyl (1R*,6S*)-6-((5-amino-6-chloropyrimidin-4-yl)amino)cyclohex-3-ene-1-carboxylate, (±)-23. 

White solid, m.p. 120–121 °C, 42%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.28 (t, 3H, CH3, J = 7.12 

Hz), 2.26–2.38 (m, 1H, CH2), 2.42–2.56 (m, 2H, CH2), 2.62–2.73 (m, 1H, CH2), 2.95–3.03 (m, 1H, H-1), 

3.39 (brs, 2H, NH2), 4.11–4.24 (m, 2H, OCH2), 4.74–4.85 (m, 1H, H-6), 5.66–5.87 (m, 3H, H-3, H-4, N-

H), 8.08 (s, 1H, Ar-H); 13C-NMR (DMSO, 100 MHz): δ (ppm) = 14.8, 25.5, 30.4, 41.4, 47.1, 60.6, 124.6, 

125.4, 125.9, 138.0, 146.1, 152.2, 173.4; MS (ES, pos) m/z = 297 (M + 1), 299 (M + 3). 

 

Ethyl (1R*,6S*)-6-(6-chloro-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-24. 

Yellow oil, 76%. 1H-NMR (DMSO, 400 MHz): δ (ppm) = 0.98 (t, 3H, CH3, J = 7.12 Hz), 2.31–2.52 (m, 

2H, CH2), 2.74–2.84 (m, 2H, CH2), 3.28–3.33 (m, 1H, H-1), 3.83–3.90 (m, 2H, OCH2), 5.25–5.32 (m, 1H, 

H-6), 5.85–5.89 (m, 2H, H-3, H-4), 8.56 (s, 1H, Ar-H), 8.78 (s, 1H, Ar-H). 13C-NMR (DMSO, 100 MHz): 

δ (ppm) = 14.5, 25.4, 29.3, 42.0, 51.2, 61.2, 125.3, 126.4, 131.2, 146.6, 149.9, 152.2, 153.0, 172.4; MS (ES, 

pos) m/z = 307 (M + 1). 

 

Ethyl (1R*,6S*)-6-(6-azido-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-25. 

White solid, m.p. 130–132 °C, 51%; 1H-NMR (DMSO, 400 MHz): δ (ppm) = 1.03 (t, 3H, CH3, J = 7.10 

Hz), 2.34–2.65 (m, 2H, CH2), 2.78–3.00 (m, 2H, CH2), 3.31–3.43 (m, 1H, H-1), 3.82–4.00 (m, 2H, OCH2), 

5.40-5.48 (m, 1H, H-6), 8.54 (s, 1H, Ar-H), 10.13 (s, 1H, Ar-H); 13C-NMR (DMSO, 100 MHz): δ (ppm) = 

14.6, 25.4, 29.7, 42.3, 51.5, 61.3, 125.3, 126.4, 129.4, 130.4, 135.3, 142.8, 147.9, 170.5; MS (ES, pos) m/z = 

314 (M + 1). 
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Ethyl (1R*,6S*)-6-(6-(cyclopropylamino)-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-26. 

White solid, m.p. 128–129 °C, 62%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 0.61–0.65 (m, 2H, CH2), 

0.88–0.93 (m, 2H, CH2), 1.20 (t, 3H, CH3), 2.48–2.55 (m, 2H, CH2), 2.70–2.74 (m, 2H, CH2), 2.99–3.04 (m, 

1H, H-1), 3.14–3.20 (m, 1H, CH), 3.97–4.08 (m, 2H, OCH2), 5.30–5.38 (m, 1H, H-6), 5.91–5.98 (m, 2H, 

H-3, H-4), 6.04 (brs, 1H, N-H), 7.98 (s, 1H, Ar-H), 8.44 (s, 1H, Ar-H); 13C-NMR (CDCl3, 126 MHz): δ 

(ppm) = 7.4, 13.9, 23.7, 25.2, 29.8, 42.0, 49.2, 61.0, 119.3, 124.8, 125.9, 139.0, 148.6, 153.0, 155.7, 172.1; MS 

(ES, pos) m/z = 328 (M + 1). 

 

Ethyl (1S*,6S*)-6-((5-amino-6-chloropyrimidin-4-yl)amino)cyclohex-3-ene-1-carboxylate, (±)-29. 

White solid, m.p. 120–121 °C, 42%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.19 (t, 3H, CH3, J = 7.12 

Hz), 2.03–2.12 (m, 1H, CH2), 2.34–2.43 (m, 1H, CH2), 2.56–2.75 (m, 2H, CH2), 2.83–2.92 (m, 1H, H-1), 

3.47 (brs, 2H, NH2), 4.06–4.16 (m, 2H, OCH2), 4.62–4.69 (m, 1H, H-6), 5.13 (d, 1H, N-H, J = 8.12 Hz), 

5.66–5.78 (m, 2H, H-3, H-4), 8.09 (s, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): δ (ppm) = 14.5, 27.5, 31.9, 

45.2, 48.5, 61.3, 122.1, 124.2, 125.1, 143.7, 150.1, 154.8, 174.1; MS (ES, pos) m/z = 297 (M + 1). 

 

Ethyl (1S*,6S*)-6-(6-chloro-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-30. 

Colorless oil, 58%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 0.96 (t, 3H, CH3, J = 7.12 Hz), 2.53–2.68 (m, 

3H, CH2), 3.01–3.07 (m, 1H, CH2), 3.56–3.66 (m, 1H, H-1), 3.86–3.96 (m, 2H, OCH2), 4.94–5.03 (m, 1H, 

H-6), 5.78−5.89 (m, 2H, H-3, H-4), 8.17 (s, 1H, Ar-H), 8.76 (s, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): 

δ (ppm) = 14.2, 29.0, 30.7, 44.1, 54.5, 61.4, 124.4, 125.6, 132.2, 145.3, 151.5, 151.9, 152.1, 173.0; MS (ES, 

pos) m/z = 307 (M + 1). 

 

Ethyl (1S*,6S*)-6-(6-azido-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-31. 

White solid, m.p. 140–141 °C, 68%; 1H-NMR (DMSO, 400 MHz): δ (ppm) = 0.74 (t, 3H, CH3, J = 7.08 

Hz), 2.46–2.57 (m, 3H, CH2), 2.86–3.00 (m, 1H, CH2), 3.60–3.66 (m, 1H, H-1), 3.69–3.76 (m, 2H, OCH2), 

5.08–5.15 (m, 1H, H-6), 5.80–5.92 (m, 2H, H-3, H-4), 8.79 (s, Ar-H), 10.13 (s, 1H, Ar-H). 13C-NMR 

(DMSO, 100 MHz): δ (ppm) = 14.3, 29.3, 31.9, 44.7, 54.3, 61.1, 125.1, 125.9, 136.5, 139.3, 142.9, 144.6, 

146.3, 173.1. MS (ES, pos) m/z = 314 (M + 1). 
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Ethyl (1R*,2S*)-2-((5-amino-6-chloropyrimidin-4-yl)amino)cyclohex-3-ene-1-carboxylate, (±)-34. 

Brown oil, 55%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.20 (t, 3H, CH3, J = 7.14 Hz), 1.99–2.19 (m, 4H, 

CH2), 2.99–3.05 (m, 1H, H-1), 4.00–4.17 (m, 2H, OCH2), 5.23–5.26 (m, 1H, H-2), 5.59 (d, 1H, N-H, J = 

9.04 Hz), 5.70–5.78 (m, 1H, H-4), 5.87–5.92 (m, 1H, H-3), 8.06 (s, 1H, Ar-H), 13C-NMR (CDCl3, 100 

MHz): δ (ppm) = 14.5, 22.7, 23.6, 43.4, 46.9, 61.1, 122.4, 127.5, 130.0, 143.4, 149.7, 154.6, 174.2; MS (ES, 

pos) m/z = 297 (M + 1). 

 

Ethyl (1R*,2S*)-2-(6-chloro-9H-purin-9-yl)cyclohex-3-ene-1-carboxylate, (±)-35. 

Brown solid, m.p. 119–121 °C, 68%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.03 (t, 3H, CH3, J = 7.14 

Hz), 2.00–2.08 (m, 2H, CH2), 2.27–2.33 (m, 1H, CH2), 2.41–2.46 (m, 1H, CH2), 3.12–3.20 (m, 1H, H-1), 

3.72–3.87 (m, 2H, OCH2), 5.67–5.70 (m, 1H, H-2), 5.83–5.90 (m, 1H, H-4), 6.28–6.33 (m, 1H, H-3), 8.23 

(s, 1H, Ar-H), 8.73 (s, 1H, Ar-H); 13C-NMR (DMSO, 100 MHz): δ (ppm) = 14.3, 20.3, 24.4, 44.1, 50.1, 

61.0, 123.1, 134.8, 147.5, 147.8, 149.9, 152.3, 152.9, 172.4; MS (ES, pos) m/z = 307 (M + 1), 309 (M + 3). 

 

Ethyl (1R*,2S*)-2-((5-amino-6-chloropyrimidin-4-yl)amino)cyclopent-3-ene-1-carboxylate, (±)-38. 

Brownish white solid, m.p. 104–106 °C, 34%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 1.04 (t, 3H, CH3, 

J = 7.12 Hz), 2.56–2.67 (m, 1H, CH2), 2.83–2.90 (m, 1H, CH2), 3.44–3.54 (m, 1H, H-1), 3.57 (brs, 2H, 

NH2), 3.85–4.02 (m, 2H, OCH2), 5.34 (d, 1H, N-H, J = 8.76 Hz), 5.69–5.76 (m, 2H, H-2, H-4), 5.98–6.01 

(m, 1H, H-3), 8.06 (s, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): δ (ppm) = 14.2, 35.4, 46.4, 58.2, 61.1, 

122.6, 130.2, 134.0, 143.0, 149.3, 154.1, 174.0; MS (ES, pos) m/z = 283 (M + 1), 285 (M + 3). 

 

Ethyl (1R*,2S*)-2-(6-chloro-9H-purin-9-yl)cyclopent-3-ene-1-carboxylate, (±)-39. 

Yellowish white solid, m.p. 118–119 °C, 39%; 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 0.72 (t, 3H, CH3, 

J = 7.14 Hz), 2.76–2.85 (m, 1H, CH2), 3.14–3.23 (m, 1H, CH2), 3.49–3.56 (m, 1H, H-1), 3.65–3.77 (m, 2H, 

OCH2), 5.86–5.89 (m, 1H, H-2), 5.15–5.17 (m, 1H, H-4), 6.44–6.47 (m, 1H, H-3), 7.99–8.01 (m, 1H, Ar-

H), 8.78–8.81 (m, 1H, Ar-H); 13C-NMR (CDCl3, 100 MHz): δ (ppm) = 13.8, 34.9, 47.2, 60.9, 61.4, 126.8, 

134.7, 138.7, 150.0, 152.2, 152.3, 154.2, 170.9; MS (ES, pos) m/z = 293 (M + 1), 295 (M + 3). 

  



Molecules 2019, 24, 161 12 of 15 

 

((1R*,6S*)-6-((5-Amino-6-chloropyrimidin-4-yl)amino)cyclohex-3-en-1-yl)methanol, (±)-42. 

White solid, m.p. 186–188 °C, 60%; 1H-NMR (DMSO, 400 MHz): δ (ppm) = 1.96–2.12 (m, 4H, CH2), 

2.21–2.30 (m, 1H, H-1), 3.24–3.32 (m, 1H, OCH2), 3.40-3.49 (m, 1H, OCH2), 4.43–4.48 (m, 2H, H-6 and 

O-H), 5.16 (brs, 2H, N-H), 5.59–5.70 (m, 2H, H-3, H-4), 6.24 (d, 1H, N-H, J = 7.56 Hz), 7.68 (s, 1H, Ar-

H); 13C-NMR (DMSO, 100 MHz): δ (ppm) = 25.9, 30.1, 39.8, 47.2, 61.4, 124.5, 125.6, 126.6, 138.0, 146.4, 

152.6; MS (ES, pos) m/z = 255 (M + 1), 257 (M + 3). 

 

((1R*,6S*)-6-(6-Chloro-9H-purin-9-yl)cyclohex-3-en-1-yl)methanol, (±)-43. 

White solid, m.p. 109–111 °C, 76%, 1H-NMR (CDCl3, 500 MHz): δ (ppm) = 1.36–1.47 (m, 1H, CH2), 

2.05–2.15 (m, 1H, CH2), 2.34–2.44 (m, 1H, H-1), 2.50–2.59 (m, 1H, CH2), 2.73–2.81 (m, 1H, OCH2), 2.93–

3.03 (m, 1H, CH2), 3.44–3.53 (m, 1H, OCH2), 4.65 (brs, 1H, OH), 5.31–5.37 (m, 1H, H-6), 5.98–6.06 (m, 

2H, H-3, H-4), 8.33 (s, 1H, Ar-H), 8.76 (s, 1H, Ar-H); 13C-NMR (CDCl3, 126 MHz): 22.6, 31.0, 39.7, 48.6, 

62.1, 124.7, 127.8, 131.1, 144.6, 151.6, 151.7, 152.5, MS (ES, pos) m/z = 265 (M + 1), 267 (M + 3). 

 

((1S*,6S*)-6-((5-Amino-6-chloropyrimidin-4-yl)amino)cyclohex-3-en-1-yl)methanol, (±)-46. 

White solid, m.p. 164–167 °C, 64%; 1H-NMR (DMSO, 400 MHz): δ (ppm) = 1.70–1.84 (m, 1H, CH2), 

1.89–2.05 (m, 2H, CH2), 2.14–2.25 (m, 1H, CH2), 2.26–2.36 (m, 1H, H-1), 3.26–3.43 (m, 2H, OCH2), 4.05–

4.15 (m, 1H, H-6), 4.36 (t, 1H, O-H, J = 5.32 Hz), 4.99 (brs, 2H, N-H), 5.51-5.67 (m, 2H, H-3, H-4), 6.50 

(d, 1H, N-H, J = 7.96 Hz), 7.64 (s, 1H, Ar-H), 13C-NMR (DMSO, 100 MHz): δ (ppm) = 28.7, 32.3, 41.3, 

48.3, 62.9, 124.2, 125.5, 127.3, 137.7, 146.4, 152.7, MS (ES, pos) m/z = 255 (M + 1), 257 (M + 3). 

 

((1S*,6S*)-6-(6-Chloro-9H-purin-9-yl)cyclohex-3-en-1-yl)methanol, (±)-47. 

White solid, m.p. 160–162 °C, 70%; 1H-NMR (DMSO, 500 MHz): δ (ppm) = 2.13–2.29 (m, 2H, CH2), 

2.42–2.49 (m, 1H, CH2), 2.53–2.62 (m, 1H, H-1), 2.83–2.95 (m, 1H, CH2), 2.98–3.05 (m, 1H, OCH2), 3.11–

3.17 (m, 1H, OCH2), 4.69–4.78 (m, 1H, H-6), 5.68–5.85 (m, 2H, H-3, H-4), 8.73–8.78 (m, 2H, Ar-H), 13C-

NMR (DMSO, 126 MHz): 28.5, 31.3, 39.0, 54.1, 61.7, 124.6, 127.2, 131.6, 147.6, 149.4, 151.7, 152.4; MS 

(ES, pos) m/z = 265 (M + 1), 267 (M + 3). 

Supplementary Materials: The Supplementary Materials are available online. 
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