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Abstract: Chromium carbide nanopowders were synthesized by mechanical alloying-assisted
microwave heating. The effect of gamma irradiation on phase composition and microstructure
of chromium carbide nanopowders synthesized by the microwave heating method was
analyzed. The samples were characterized by X-ray diffractometry (XRD), X-ray photoelectron
spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed that
well-dispersed chromium carbide nanopowders can be synthesized by maintaining the temperature
at 1000 ◦C for 1 h. Gamma ray irradiation had an important effect on the microstructure of chromium
carbide nanopowders. The interplanar spacings of chromium carbide (110) crystal faces before and
after gamma ray irradiation were 0.3725 nm and 0.3824 nm, respectively. The crystal structure of
chromium carbide was changed by gamma ray irradiation. Gamma ray irradiation can also increase
the binding energy of chromium carbide, which is beneficial to improve the thermal stability and
mechanical properties of chromium carbide at high temperature.
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1. Introduction

The transition metal carbides have attractive mechanical properties (e.g., excellent strength,
hardness, anti-erosion qualities), outstanding corrosion properties, positive temperature coefficients
of resistivity, and permanent non-magnetizability [1]. Chromium carbide (Cr3C2), as a typical
representative, demonstrates excellent properties, including high melting point (1810 ◦C), excellent
compressive strength (4.1 GPa [2]), high hardness (Hv, 18 GPa [3]), low density (6.68 g/cm3 [4]) and
good resistance to oxidation, corrosion, and wear. As a result, Cr3C2 has been widely used in a
variety of industrial applications, such as rocket nozzles, shaft seals, shaft bearings, cutting tools,
and anticorrosive coating [5–7].

Until now, there have been a number of methods for the preparation of chromium carbides,
including direct element reaction, gas reduction-carburization, and conventional carbothermal
reduction [8–10]. In the above-mentioned methods, the most commonly used method for synthesizing
Cr3C2 is the carbothermal reduction method using micron-sized chromium oxide and carbon powders
as raw materials. However, the process usually requires a high reaction temperature (>1400 ◦C) and a
long reaction time (20–40 h) [11].
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Mechanical alloying (MA) has been considered a powerful and practical process for the fabrication
of several advanced materials including solid solutions, intermetallic phases, nano-structured materials,
and amorphous alloys [12,13]. Microwave heating has become an interesting method for the synthesis
of ceramic materials [14]. It generates heat within the material, which then spreads in the entire
volume, and can save energy and time [15]. In this paper, Cr3C2 nanopowders were synthesized by
mechanical alloying-assisted microwave heating using micron-sized Cr2O3 and nano-sized carbon
black as raw materials. The direct and fast heating enhanced by the presence of carbon, led to the
synthesis of pure carbides in a reduced time, with very crystalline, fine particles presenting excellent
and interesting morphology [16].

Nowadays, irradiation (with electrons, ions, gamma rays, etc.) is considered an emerging
innovative, valuable tool for modifying the structure of nanomaterials [17,18]. Gamma ray irradiation
with different strengths is a powerful physical treatment that can produce structural ordering and
disordering of nanomaterials [19,20]. Kleut et al. [21] studied the gamma irradiation effects on the
structure of single-wall carbon nanotubes (SWCNT). Their results showed that gamma irradiation
caused SWCNT covalent functionalization, and the degree of disorder in the carbon nanotube structure
correlated with the irradiation dose. Naim et al. [22] reported the effect of gamma irradiation on
the mechanical properties of a PVC/ZnO polymer nanocomposite. The results showed that gamma
irradiation resulted in a detectable decrease of the elastic modulus for pure and low-weight ratio
ZnO nanoparticles. However, the irradiation dose did not have any effects on the elastic modulus of
nanoparticles with a wt% ratio of 10.

Little attention has been paid to the comparison between the effects of irradiation and those of
other conditional treatments of carbide nanopowders. In this study, the effect of gamma irradiation
on phase composition and microstructure of Cr3C2 nanopowders was examined for the first time.
The results may be helpful to investigate the mechanism of the interaction between gamma ray and
carbide materials.

2. Results and Discussion

Figure 1 shows the XRD patterns of the powders after mechanical alloying and their microwave
synthesis products at 1000 ◦C for different carbon contents (32 wt% C and 34 wt% C). As shown
in Figure 1a,b, all peaks were identified as Cr2O3, while carbon black existed in amorphous form.
Furthermore, there were clear signs of peaks broadening, indicating that the particle size of the raw
materials became smaller after being milled by the planetary ball mill [23]. This shows that ball
milling for a long time did not affect particle composition, while reducing the material diameter.
From Figure 1c,d, it can be seen that the product was composed of Cr3C2 (JCPDS 35-0804), Cr7C3

(JCPDS 11-0550), and Cr2O3 (JCPDS 38-1479). This indicated that the oxidation-reduction reaction
between Cr2O3 and carbon was not completed when the carbon content was 32 wt% C. With the
increasing of the carbon content, as shown in Figure 1d, the product was mainly composed of Cr3C2

(JCPDS 35-0804) and Cr7C3 (JCPDS 11-0550), indicating that the oxidation-reduction reaction between
Cr2O3 and carbon was completed when the carbon content was 34 wt% C.
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Figure 2 shows the XRD patterns of the powders after mechanical alloying and their microwave
synthesis products at 1000 ◦C for different holding time (0.5 h, 1 h, 1.5 h, and 2 h). The insertion is
an enlargement of the diffraction peaks of the products at 38–40◦. As shown in Figure 2a, all peaks
were identified as Cr2O3 without the carbon phase. In Figure 2b, it can be seen that the product
was mainly composed of Cr3C2 (JCPDS 35-0804) and Cr7C3 (JCPDS 11-0550), indicating that the
oxidation-reduction reaction between Cr2O3 and carbon was completed at 1000 ◦C for 0.5 h. With the
increase of the holding time, the intensity of the diffraction peaks of Cr7C3 decreased gradually,
while Cr3C2 it showed the opposite trend (Figure 2c,d). When the holding time reached 2 h, all peaks
were identified as Cr3C2 (Figure 2e), indicating that Cr7C3 (JCPDS 11-0550) completely transformed
into Cr3C2 (JCPDS 35-0804). In the insertion in Figure 2b,c, it can be seen that the diffraction peaks
of Cr3C2 shifted toward larger angles with the increase of the holding time, which was caused by
the crystallization of chromium carbide. As shown in the insertion in Figure 2c–e, the diffraction
peaks of Cr3C2 shifted toward smaller angles with a prolonged holding time. This happened mainly
because the crystalline interplanar spacing of Cr3C2 increased with the increase of the holding time,
which led to the decrease of the diffraction angle [23]. As mentioned above, a Cr3C2 phase with
good crystallinity could be synthesized at 1000 ◦C for 1 h. The synthesis temperature required by the
method here described was at least 400 ◦C lower than that of the conventional method (1400 ◦C) [5].
Furthermore, the synthesis temperature was 100 ◦C lower than those of the precursor and carbon
thermal reduction methods [24,25].
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Figure 3 shows typical TEM micrographs of the powders after mechanical alloying and their
microwave synthesis products at 1000 ◦C for different holding time (0.5 h, 1 h, 1.5 h, and 2 h).

As shown in Figure 3a, the powders after mechanical alloying showed good dispersion and were
mainly composed of particles with a mean diameter of about 50 nm. This was mainly because the
particles were constantly impacted and fractured, leading to a considerable reduction of the particle
size as a result of the energy provided during ball milling. However, slight agglomeration occurred in
the powders as a result of intense mechanical deformation, refinement, and cold welding of particles
during mechanical alloying [10,26]. When the holding time was 0.5 h, most powders showed good
dispersion, and a small amount of particles exhibited the aggregation phenomenon, which might have
been caused by the incomplete crystallization of Cr3C2, as shown in Figure 3b. When the holding
time reached 1 h, the powders showed good dispersion and were mainly composed of spherical or
nearly spherical particles with a mean diameter of about 50 nm, as shown in Figure 3c. When the
holding time reached 1.5 h and 2 h, the powders exhibited many agglomerated particles (Figure 3d,e),
indicating that longer holding times led to the occurrence of molten particles [25].
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To determine the effect of gamma irradiation on the microstructure of the synthesized
nanopowders, XRD, TEM, and XPS measurements were carried out on the samples prepared by
the microwave heating method at 1000 ◦C for 1 h in argon gas atmosphere, as shown in Figures 4–7.
Figure 4 shows the XRD patterns of the powders (1000 ◦C, 1 h) before and after gamma ray irradiation.
The insertion in Figure 4 is an enlargement of the diffraction peaks of the products at 38–40◦. As shown
in Figure 4, the products were mainly composed of Cr3C2 (JCPDS 35-0804) and Cr7C3 (JCPDS 11-0550),
indicating that the phase compositions of the samples before and after gamma irradiation did not
changed. According to the Scherrer equation [23], the average crystallite sizes of the powders before
and after gamma irradiation were 26 nm and 35 nm, respectively. This indicates that gamma irradiation
can promote the growth of carbide grains. Comparing the peaks in the insertion in Figure 4, it can
be seen that the diffraction peaks of Cr3C2 after irradiation with 150 kGy gamma ray shifted toward
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smaller angles. According to the Bragg equation 2dsinθ = nλ (d is the crystalline interplanar spacing,
θ is the Bragg angle, n is an integer, λ is the wavelength of a beam of X-rays incident on a crystal
with lattice planes separated by the distance d), the diffraction angle decreased with the increase of
crystalline interplanar spacing. Furthermore, the diffraction peaks of irradiated Cr3C2 had a lower
intensity than the peaks of the unirradiated sample. These phenomena are proposed to be attributed
to the conversion of gamma radiation energy to crystal lattice energy and the entry of a small amount
of carbon atoms into the Cr3C2 lattice, which led to the increase of the crystalline interplanar spacing
and the change of crystal structure of Cr3C2 [27]. They may also be due to the transformation of
Cr3+ with small ionic radium (0.61 nm) into Cr2+ with larger ionic radium (0.73 nm) during the
reduction of a small amount of residual Cr2O3 to Cr3C2. Similar phenomena have been observed in
the literature [28,29].
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Figure 5 shows the TEM and HRTEM images of the samples before and after gamma ray
irradiation. As shown in Figure 5a, the powders before gamma ray irradiation showed good
dispersion and were mainly composed of particles with a mean diameter of about 50 nm. The selected
area’s electron diffraction (SAED) pattern in Figure 5a clearly shows the presence of diffraction
dots, which indicates that the selected area presented a single-crystal nature. However, as shown in
Figure 5c some of the atoms were arranged irregularly. This was mainly due to the fact that Cr3C2

(JCPDS 35-0804) is a substoichiometric carbide [30]; it belongs to the orthorhombic system with ordered
C vacancies, and its lattice parameters are 0.5527 nm× 1.1488 nm× 0.2829 nm. The interplanar spacing
in Figure 5c was calculated and resulted to be 0.3725 nm, which is consistent with that of a (120) plane
(d = 0.3704 nm) of Cr3C2 (JCPDS 35-0804). Compared with Figure 5a, the powders after gamma ray
irradiation showed obvious aggregation, and the particles appeared larger (Figure 5b). Furthermore,
the SAED pattern in Figure 5b shows that the diffraction spots were irregularly distributed, and the
crystal structure of Cr3C2 appeared changed, which was mainly caused by a small amount of carbon
atoms entering empty spaces or to the transformation of small-radium ions to large-radium ions
during the reduction of Cr2O3 to Cr3C2. These results are consistent with the XRD measurements
(Figure 4). The interplanar spacing in Figure 5d was calculated and the result was 0.3824 nm, which is
obviously higher than that obtained before gamma ray irradiation. Besides, the arrangement of atoms
in Figure 5d was more regular than that observed of Figure 5c. These phenomena are consistent with
the results of SAED.
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Figure 6 shows the XPS spectra of the samples (1000 ◦C, 1 h) before and after gamma irradiation.
As shown in Figure 6, the surface of the specimen was mainly composed of Cr, C, and O. The peaks of
A (576.1 eV→577.4 eV) and B (577.6 eV→587.3 eV) in Figure 7 were assigned to the Cr2p3/2 species of
Cr3C2−x (0 ≤ x ≤ 0.5) and Cr2O3, respectively. Furthermore, the peaks of the irradiated sample shifted
toward higher binding energy and became sharper compared to those of the unirradiated powders.
These phenomena may be caused by the diffusion of carbon atoms from the surface to the interior after
gamma irradiation, leading to the increase of the crystalline interplanar spacing and the change of
the crystal structure of Cr3C2 [31]. These results are consistent with the XRD and TEM measurements
(Figures 4 and 5). The higher binding energy improves the thermal stability and mechanical properties
of Cr3C2 at high temperature.
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Micron-sized chromic oxide (Cr2O3) and nano-sized carbon black were used as raw materials.
We put 66 wt% (68 wt%) Cr2O3 and 34 wt% (32 wt%) C into a QM-3SP2 high-energy planetary ball
mill (Nanjing Lai Technology Industrial Co., Ltd., Jiangsu, China). The mixing and milling medium
were absolute alcohol and cemented carbide balls, respectively. After milling for 64 h, the mixture was
dried in a vacuum drying oven at 90 ◦C for 12 h. Figure 8 shows SEM micrographs of the powders
obtained before and after mechanical alloying (34 wt% C). The powders before mechanical alloying
were mainly composed of 1–2 µm and nano-sized particles (Figure 8a). The powders after mechanical
alloying showed good dispersion and were mainly composed of spherical or nearly spherical particles
with a mean diameter of about 100 nm (Figure 8b). Finally, the mixture was heated at 1000 ◦C for
different holding time (0.5 h, 1 h, 1.5 h, and 2 h) at a heating rate of 15–50 ◦C/min in a multimode
2.45 GHz RWS microwave furnace (Zhongsheng Thermal Technology Co., Ltd., Hunan, China) in
argon gas atmosphere to prepare Cr3C2 nanopowders. During microwave heating, 900–1100 W power
was applied to the samples, and the temperature was measured by infrared measurement (Raytek Inc.,
Santa Cruz, CA, USA).
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The samples were irradiated under gamma (60Co source) radiation in a radiation chamber
with a dose rate of 100 Gy/min at an absorbed dose of 150 kGy. The crystal structure of the
samples was analyzed by X-ray diffraction (XRD) using a Bruker D8 Advance diffractometer (
Bruker AXS Inc., Karlsruhe, Germany) with Cu-Kα radiation in the range of 2θ = 15 to 85◦. X-ray
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photoelectron spectroscopy (XPS) was carried out using a XSAM 800 spectrometer (Kratos Analytical,
Manchester, UK) with MgK (α 1) X-ray source. The morphology and microstructure of the samples
were examined by JSM-6700F scanning electron microscopy (SEM), JEM-1000CX, and JEM-2100
transmission electron microscopy (TEM) (JEOL Ltd., Tokyo, Japan).

4. Conclusions

Cr3C2 nanopowders were synthesized via mechanical alloying and subsequent microwave
heating. The powders prepared at 1000 ◦C for 1 h showed good dispersion and were mainly
composed of spherical or nearly spherical particles with a mean diameter of about 50 nm. The synthesis
temperature required by the presented method was at least 400 ◦C lower than that of conventional
methods. Shorter holding time led to the appearance of oxides and agglomeration. On the contrary,
longer holding time led to the increase of crystalline interplanar spacing of the carbide and the
occurrence of molten particles. Gamma ray irradiation had an important effect on the microstructure of
Cr3C2 nanopowders. XRD, HRTEM, and XPS results showed that gamma ray irradiation can increase
the crystalline interplanar spacing and the binding energy of Cr3C2, which improves the thermal
stability and mechanical properties of Cr3C2 at high temperature. Besides, gamma ray irradiation can
also lead to the increase of the crystalline interplanar spacing and the change of the crystal structure of
Cr3C2.
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