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Abstract: Six new metabolites, actinofuranones D-I (compounds 1–6), were isolated together with
three known compounds—JBIR-108 (7), E-975 (8), and E-492 (9)—from a fermentation broth of
Streptomyces gramineus derived from the lichen Leptogium trichophorum. The structures of the new
compounds 1–6 were established using comprehensive NMR spectroscopic data analysis, as well as
UV, IR, and MS data. The anti-inflammatory activity of these isolated compounds were evaluated
by examining their ability to inhibit nitric oxide (NO) production in LPS-stimulated RAW 264.7
macrophage cells. Compounds 4, 5, 8, and 9 attenuated the production of NO due to the suppression
of the expression of nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 cells. Moreover, 4, 5,
8, and 9 also inhibited LPS-induced release of proinflammatory cytokines interleukin-6 (IL-6) and
tumor necrosis factor α (TNF-α).
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1. Introduction

Lichens are symbiotic organisms, composed of fungi (mycobiont) and algae or cyanobacteria
(photobiont or phycobiont). Like mycorrhizal fungi and fungal endophytes, they frequently host
diverse bacterial communities as symbiotic niches [1]. The lichen-forming fungi and endolichenic fungi
inhabiting the lichen thalli had been widely investigated as a source for discovering new bioactive
natural products [2,3]. Recently, with discovery of some new secondary metabolites from them,
lichen-associated actinomycetes have attracted extensive attention [4–8].

In our previous work, the diversity of cultivable actinomycetes associated with lichen symbiosis
in samples collected from Yunnan Province, P. R. China were investigated. A total of 213 actinomycetes
strains were isolated from 35 lichen samples and 16S rRNA gene sequence analysis of the isolates
exhibited a high level of diversity among these strains [9]. Antimicrobical activities and biosynthetic
potential studies of the isolated actinomycetes were also conducted in the research and the results
showed the actinomycetes associated with lichen could be considered as a potential microbial
resource for discovering novel bioactive natural products [9]. As a subsequent work, Streptomyces
gramineus (YIM 130461), occurring in the lichen Leptogium trichophorum, collected from an evergreen
broad-leaf forest in Benzilan, Diqing (Yunnan Province, China) was chosen to investigated its
secondary metabolites. A small scale (100 mL) fermentation broth of S. gramineus showed diverse
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chemical constituents by HPTLC and HPLC-MS analysis. Chromatographic separation of an
EtOAc extract of a large scale fermentation broth of S. gramineus led to the isolation of six new
2-hydroxy-2-(1-hydroxyethyl)-2,3-dihydro-3(2H)-furanones, named actinofuranones D-I (compounds
1–6), as well as three known compounds: JBIR-108 (7) [10], E-975 (8) [11], and E-492 (9) [11].

Actinofuranones are relatively rare polyketide derivatives bearing a 2-hydroxy-2-methyl-2,3-
dihydro-3(2H)- or 2-hydroxy-2-(1-hydroxyethyl)-2,3-dihydro-3(2H)-furanone skeleton, which has
a hemiketal at C-2 and an unsaturated alkyl chain with 13–19 carbons at C-5. To date, only a
few examples of analogues derived from actinomycetes were reported, including JBIR-108,
E-975, E-492, E-837, actinofuranones A and B from Streptomyces sp. [10–12], actinofuranone C
from Amycolatopsis sp. [13], and linfuranone A from Microbispora sp. [14]. In addition, some
structurally related compounds were previously found in other sources, such as siphonarienfuranones
isolated from the marine mollusk Siphonaria sp. [15–17], aglajne-2 from the opisthobranch mollusc
Bulla striata [18], AS-183 from Scedosporium sp. fungi [19], and the aurafurons A and B from
the myxobacteria Stigmatella aurantiaca and Archangium gephyra [20]. The total synthesis of
aurafuron A and JBIR-108 have been achieved [10,21]. It is noteworthy that all of these natural
products with a 2-hydroxy-2-methyl-2,3-dihydro-3(2H)-furanone skeleton mentioned above were
obtained as a mixture of C-2 isomers with a 1:1 ratio. However, actinofuranone JBIR-108 with a
2-hydroxy-2-(1-hydroxyethyl)-2,3-dihydro-3(2H)-franone scaffold was isolated as a mixture of four
diastereomers due to chiral carbons at C-1 and C-2. Till now, only three actinofuranones, including
JBIR-108, E-975, E-492 with 2-(1-hydroxyethyl)-substituents have been found.

The structures of compounds 1–9 were elucidated using comprehensive NMR spectroscopic data
analysis. Meanwhile, as part of our continuous search for the new anti-inflammatory compounds
from lichen-associated actinomycetes, we investigated the anti-inflammatory activity of the isolates
by examining their ability to inhibit production of nitric oxide (NO), interleukin-6 (IL-6) and
tumor necrosis factor α (TNF-α), and the expression of inducible nitric oxide synthase (iNOS) in
LPS-stimulated RAW 264.7 macrophage cells. Herein, details of the isolation, structure elucidation,
anti-inflammatory effects of these derivatives are reported.

2. Results and Discussion

2.1. Structural Elucidation of Actinofuranones D-I

A large-scale (70 L) fermentation broth of S. gramineus was centrifuged and the supernatant was
extracted with ethyl acetate. Then, the dried extract was fractionated by sequential chromatography
over Sephadex LH-20, silica gel, and octadecylsilyl-bonded silica (ODS) to yield nine actinofuranones
1–9 (Figure 1), including the six new actinofuranone analogues 1–6. All of them were isolated
as a mixture of C-1 and C-2 diastereomers. Here the major components were employed for the
structural establishment.
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Compound 1 was isolated as a colorless amorphous substance. Its molecular formula of C24H38O7

was confirmed by HRESIMS (m/z 461.2573 [M + Na]+), which indicated six degrees of unsaturation.
The presence of hydroxyl (3357 cm−1), carbonyl (1693 cm−1) and double bonds (1645, 1613 cm−1)
functionalities could be obtained from its IR spectrum. The 1H-NMR (DMSO-d6) spectrum of 1 (Table 1
and Supplementary Material) presented four sets of signals of four isomers. The signals of major
isomer revealed that the presence of five olefinic protons (δH 5.97, 5.94, 5.61, 5.55, 5.17), four oxygenated
methine protons (δH 4.10, 3.81, 3.69, 3.50), a methine proton (δH 2.19), four methylenes (δH 2.58; 2.17,
2.07; 1.60, 1.46; 1.42, 1.30), five methyl (δH 1.53, 1.52, 1.13, 0.79, 0.78), in addition to five active protons
(δH 7.25, 4.70, 4.67, 4.61, 4.45). The 13C NMR and HSQC spectra interpreted the carbons corresponding
with 1H NMR spectrum, as well as five quaternary carbons (δC 202.9, 185.4, 136.7, 109.8, 104.2). The 1H
NMR and 13C NMR data of 1 showed typical characteristic of actinofuranone analogues and were very
similar to those of 1S*-JBIR-108 (7) [10], which was also obtained from the same strain S. gramineus
as an isomer mixture (major 1S*-isomer). Herein, we identified the structure of 1 through comparing
NMR data in DMSO-d6 and methanol-d4 with those in the literature (methanol-d4). Compared with
NMR data between major isomers of 1 and 1S*-7, the only difference was an extra hydroxyl located
at the unsaturated alkyl chain in 1. COSY correlations from H-18 (δH 4.10) to H-17 (δH 5.17), H-19
(δH 1.42, 1.30), and 18-OH (δH 4.45) confirmed the position of the additional hydroxy group at C-18
(Figure 2). The 10E and 12E configuration were deduced from the coupling constants of H-10 (δH 5.55,
dd, J = 14.2, 6.8 Hz) and H-13 (δH 5.61, dd, J = 14.5, 7.3 Hz). NOE (in MeOH-d4) correlations from
H-15 (δH 3.65) to H-17 (δH 5.30), from H-18 (δH 4.27) to H-24 (δH 1.65) elucidated the 16E configuration.
The identical 13C NMR data (both in DMSO-d6 and MeOH-d4) of C-1 to C-15 and C-21 to C-24 of the
major isomer in 1 with 1S*-7 revealed that it possessed the same relative configuration at C-1, C-7,
C-14, and C-15 as 1S*-7. The coupling constant 3JH-14/H-15 = 8.5 Hz (in MeOH-d4) further confirmed
the configuration of H-14 and H-15. Therefore, the structure of the major isomer in 1 was elucidated as
1S*-actinofuranone D as shown in Figure 1. By the same deduction above, the minor isomer in 1 was
identified as 1R*-actinofuranone D.
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Figure 2. 1H-1H COSY and key HMBC correlations for compounds 1–6.

JBIR-108 was firstly isolated from S. gramineus IR087Pi-4 as a mixture of two diastereomers at C-1 and
its planar structure and absolute configuration were determined by spectral analysis and total synthesis
(1S*-/1R*-isomer, 5:2) [10]. The NMR data of JBIR-108 was measured in MeOH-d4 without presenting
any active protons signals in the literature. They could not get the relative content of all isomers from
the characteristic protons since most 1H-NMR signals of isomers were same. However, hydroxyl groups
of isomers, especially the hydroxyl of hemiacetal group, presented individual 1H-NMR signals in the
DMSO-d6 (Figure 3). Since the hemiacetal formation was mainly influenced by the steric hindrance of C-1
substitute, the ratio of epimers should be same (1Sα/1Sβ = 1Rβ/1Rα). Thus, we could deduce that 7 is a
1.4:1 mixture of diastereomers at C-1, actually. Even if it exhibited a 3:1 mixture of C-2 epimers for
each C-1 diastereomer (R- or S-isomers), we could not give an absolute content for those 1Sβ, 1Sα,
1Rα or 1Rβ isomers (Figure 3). Approximately the same ratio of isomer was also deduced from the
individual 1H-NMR signals of C-1 and C-7 hydroxyls in Figure 1.
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Table 1. 1H-NMR (600 MHz) and 13C-NMR (150 MHz) data of compounds 1 and 2.

No.
1 2

δC
a, Type δH

a, [J in Hz] δC
b, Type δH

b, [J in Hz] δC
a, Type δH

a, [J in Hz] δC
b, Type δH

b, [J in Hz]

1 68.2 (69.3), CH 3.69 (3.74), m 70.4 (71.0), CH 3.90, m 68.2 (69.3), CH 3.69 (3.74), m 70.3 (70.9), CH 3.90, m

2 104.2 (104.6), C 105.6 (105.5), C 104.1 (104.6), C 105.5 (105.6), C

3 202.9 (201.6), C 205.9 (204.4), C 202.9 (201.6), C 205.7 (204.2), C

4 109.8 (110.4), C 112.2 (112.6), C 109.8 (110.4), C 112.0 (112.5), C

5 185.4 (185.1), C 188.6 (188.2), C 185.4 (185.1), C 188.4 (187.9), C

6 37.7 (37.4), CH2
2.58 (2.63), d [6.8]
2.58 (2.56), d [6.8] 38.4 (38.2), CH2

2.71 (2.76), m
2.71 (2.70), m 37.6 (37.4), CH2

2.58 (2.64), d [7.0]
2.58 (2.55), d [7.0] 38.1 (38.3), CH2

2.70 (2.75), d [7.7]
2.70 (2.69), d [7.7]

7 67.9 (67.7), CH 3.81 (3.86), m 67.9 (67.7), CH 3.98 (4.05), m 67.9 (67.7), CH 3.81 (3.86), m 69.6 (69.4), CH 3.98 (4.05), m

8 36.5 (36.7), CH2 1.60, m; 1.46, m 38.2 (38.1), CH2 1.64, m 36.6 (36.7), CH2 1.56, m; 1.46, m 38.1 (38.0), CH2 1.70, m; 1.62, m

9 28.6, CH2 2.17, m; 2.07, m 29.9, CH2 2.26, m; 2.18, m 28.6, CH2 2.16, m; 2.07, m 29.7, CH2 2.25, m; 2.17, m

10 132.0, CH 5.55, dt [14.2, 6.8] 132.2, CH 5.61, m 132.1, CH 5.55, dt [14.6, 7.0] 132.5, CH 5.59, dt [14.5, 7.0]

11 131.1, CH 5.97, m 132.7, CH 6.08, m 131.1, CH 5.93, m 132.5, CH 6.05, m

12 129.7, CH 5.94, m 132.2, CH 6.06, m 129.7, CH 5.90, m 131.8, CH 6.03, m

13 136.3, CH 5.61, dd [14.5, 7.3] 136.3, CH 5.58, m 135.4, CH 5.55, dd [14.6, 7.6] 135.6, CH 5.55, dd [14.5, 8.0]

14 40.4, CH 2.19, sextet [7.0] 41.7, CH 2.31, m 40.0, CH 2.25, sextet [7.0] 41.5, CH 2.35, sextet [7.0]

15 81.0, CH 3.50, dd, [7.8, 4.7] 83.3, CH 3.65, d, [8.5] 80.0, CH 3.56, brt, [5.6] 82.3, CH 3.70, d, [7.0]

16 136.7, C 139.2, C 136.9, C 139.2, C

17 131.4, CH 5.17, d [8.7] 132.0, CH 5.30, d [8.7] 130.2, CH 5.22, d [8.6] 130.9, CH 5.33, d [8.7]

18 68.3, CH 4.10, m 69.8 (69.5), CH 4.27, m 68.3, CH 4.08, m 69.9, CH 4.26, m

19 31.0, CH2 1.42, m; 1.30, m 31.6, CH2 1.57, m; 1.42, m 31.0, CH2 1.43, m; 1.28, m 31.5, CH2 1.57, m; 1.43, m

20 10.1, CH3 0.79, t [7.0] 10.2, CH3 0.88, t [7.2] 10.1, CH3 0.78, t [7.3] 10.1, CH3 0.88, t [7.2]

21 17.1 (16.5), CH3 1.13 (1.04), d [6.4] 16.8 (16.4), CH3 1.29 (1.17), d [6.5] 17.1 (16.5), CH3 1.13 (1.04), d [6.4] 16.7 (16.3), CH3 1.29 (1.17), d [6.4]

22 6.0, CH3 1.53 (1.54), s 5.8, CH3 1.65 (1.64), s 6.0, CH3 1.53, s 5.7, CH3 1.65 (1.64), s

23 17.4, CH3 0.78, d [7.0] 18.0, CH3 0.85, d [7.2] 17.9, CH3 0.88, d [6.6] 18.1, CH3 0.95, d [7.2]

24 11.7, CH3 1.52, s 11.7, CH3 1.65, s 13.0, CH3 1.50, s 12.7, CH3 1.63, s

1-OH 4.67 (4.86), d, [6.4] 4.66 (4.85), d [6.4]

2-OH 7.25 (7.32), s 7.23 (7.35), s

7-OH 4.70 (4.80), d [5.1] 4.68 (4.78), d [5.3]

15-OH 4.61, d [4.6] 4.59, d [4.7]

18-OH 4.45, d [4.8] 4.37, d [4.5]
a Recorded at 150 MHz (13C) and 600 MHz (1H) in DMSO-d6. b Recorded at 150 MHz (13C) and 600 MHz (1H) in methanol-d4. The chemical shifts in parentheses belong to the C-1 epimer.
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The molecular formula of compound 2 was established to be C24H38O7 on the basis of HRESIMS
(m/z 461.2651 [M + Na]+). The UV, IR, 1H-NMR, and 13C-NMR data indicated that 2 was also an
actinofuranone analogue. Further inspection of the HSQC, COSY, and HMBC spectra elucidated
2 possessed the same planar structure as 1 (Figure 2). Compound 2 had identical 13C-NMR data
as 1, except for C-13 (∆δC = +0.9 ppm), C-15 (∆δC = +1.0 ppm), C-17 (∆δC = +1.2 ppm), and C-24
(∆δC = −1.3 ppm) which hinted 2 was a C-15 isomer of 1. The smaller coupling constants of H-14/H-15
in 2 compared with those of 1 (3JH-14/H-15 = 7.0 Hz vs. 8.5 Hz in MeOH-d4; 3JH-14/H-15 = 5.6 Hz vs.
7.8 Hz in DMSO-d6) confirmed the different configuration of C-15 between them. The double bonds
were further confirmed as 10E, 12E, 16E by analysis the coupling constants and NOE correlations.
Therefore, the structure of 2 was identified as that in Figure 1 and named as actinofuranone E.

Compound 3 was obtained as a colorless amorphous powder. Its 13C-NMR data and HRESIMS
data (m/z 461.2654 [M + Na]+) suggested that 3 has the same molecular formula as that of 1 and 2
(C24H38O7). The structure of 3 was almost identical to 1 by comparison with 1H- and 13C-NMR data
(Table 2 and Supplementary Material) of 1. However, 1H-1H COSY correlation between the terminal
methyl protons H3-20 (δH 1.00) and oxygenated methine proton H-19 (δH 3.58) indicated that the
hydroxyl group was located at C-19 in 3 instead of C-18 in 1 (Figure 2). The assignment of the hydroxyl
was further confirmed by the clear HMBC correlations between H3-20 (δH 1.00) and C-19 (δC 66.6), C-18
(δC 37.8), between H-18 (δH 1.98) and C-16 (δC 138.2), C-17 (δC 123.1) (Figure 2). The identical 13C-NMR
data of C-1 to C-15 and C-21 to C-24 in 3 with those of 1 deduced the relative configurations of chiral
carbons in 3 except for C-19. Thus, the structure of 3 was elucidated and named as actinofuranone F.

As displayed by 13C-NMR data and [M + Na]+ ion at m/z 447.2363 in HRESIMS, compound 4
had the molecular formula of C23H36O7. The difference in mass compared to 1 owed to a missing
CH2 group. Furthermore, the 1H-NMR and 13C-NMR data of 4 (Table 2 and Supplementary Material)
were very similar to those of 1 except for the terminal methyl instead of ethyl in the C-5 alkenyl side.
Cross-peaks between H-18 (δH 4.35) and H-17 (δH 5.25) and terminal methyl protons H3-19 (δH 1.05)
observed in 1H-1H COSY spectra confirmed the absence of methylene at the end of C-5 alkenyl chain
(Figure 2). The identical 13C-NMR data of C-1 to C-15 in 4 with those of 1 suggested the relative
configurations of 4 and the stereochemistry of C-18 was undetermined.

Compound 5 was isolated as a colorless amorphous powder with molecular formula of
C23H36O7 assigned from HRESIMS (m/z 447.2374 [M + Na]+). Obviously, 5 was a geometric
isomer of 4. Compared with 4 the C-18 hydroxyl in C-5 alkenyl chain of 5 migrated
on the basis of analysis of NMR data of 4 and 5. 1H-1H COSY correlations between
H-6/H-7/H-8/H-9/H-10/H-11/H-12/H-13/H-14/H-15 and the HMBC interactions between H-11
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(δH 6.10), H-10 (δH 5.54) and C-9 (δC 69.2) indicated the migrated hydroxyl was located at C-9 (Figure 2).
The coupling constants of H-10 (δH 5.54, dd, J = 15.1, 6.2 Hz), H-13 (δH 5.67, dd, J = 15.3, 7.4 Hz)
indicated the 10E and 12E configurations. NOE interactions observed from H-17 to H-15, H-18,
H-19, H-22, from H-23 to H-14, H-15, H-18, H-22 determined the 16E. The almost identical 13C-NMR
data with the total synthesis JBIR-108 (7) (Table 3 and Supplementary Material) combining with the
biosynthesis procedure [11], the configuration of 5 was determined except for C-9.

The UV, IR, 1H-NMR, and 13C-NMR data indicated 6 was closely related to 4 and has the molecular
formula of C23H36O7 based on the ion peak at m/z 447.2337 [M+Na]+ in its HRESIMS. Comparison
of NMR data of 6 (Table 3 and Supplementary Material) with those of 4 showed that the substituted
position of C-18 hydroxyl in 4 changed. Moreover, one oxygenated quaternary carbon and a methylene
appeared in 6 instead of two methines of 4. The singlet methyl at C-14 in 6 indicated the migrated
hydroxyl located at C-14, which was confirmed by the HMBC correlations from H-22 to C-13, C-14,
C-15, from H-13 to C-12, C-14 (Figure 2). Thus, the structure of 6 was determined, and named
actinofuranone I. The ratios of the major isomers in 1–4, and 6 could be approximately determined
through analysis of 1H-NMR data of 2-OH and 7-OH (Figure 1), even though the 1-OH of those isomers
did not present an ideally individual 1H-NMR signal.

2.2. Cell Viability and Effects of Compounds on the Production of NO in LPS-Induced RAW 264.7 Cells

Nitric oxide (NO) produced by activated RAW 264.7 macrophages plays an important role
in inflammation diseases [22]. Excess production of NO have been reported to be involved in
inflammatory disorders [23]. In the present study, the anti-inflammatory activity of isolated compounds
were investigated by evaluating their effects on production of NO in LPS-induced RAW 264.7 cells.
In order to exclude influence of the cytotoxic of compounds 1–9 on the anti-inflammatory evaluation,
the viability of RAW 264.7 cells with test compounds treatment was carried out by an MTT assay.
The result showed that cell growth inhibitory rate of compounds 1, 2, 6, and 7 were more than 40%
at 60 µM and others had no obvious effect on cell viability at the test concentration (Figure 4A).
Hence, the compounds 3–5, 8, and 9 were selected for the anti-inflammatory activity evaluation
process. As displayed in Figure 4B, compounds 4, 5, 8, and 9 significantly inhibited the production
of LPS-induced NO in a dose-dependent manner at the varying concentration (0, 15, 30, and 60 µM).
However, compound 3 have no inhibition effect on NO production in LPS-stimulated RAW 264.7 cells
which were treated at the low concentration.
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Figure 4. Cell viability of 1–9 against RAW 264.7 cells (A). Effect of 3–5, 8 and 9 on the inhibition of
LPS-induced NO in RAW 264.7 cells (B). Cells were incubated with compounds or minocycline (MINO,
25 µM) for 2 h then stimulated with or without LPS (1 µg/mL) for 24 h. Cell viability was evaluated by
MTT assay. The NO production in the medium was measured using Griess agent. All conditions were
run in triplicate, and data show mean ± SD values. #, p < 0.05 was compared to control. *, p < 0.05
compared to LPS.
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2.3. Compounds 4, 5, 8, and 9 Attenuated LPS-Induced iNOS Expression in RAW 264.7 Cells

Inhibition of NO overproduction through blocking inducible nitric synthase (iNOS) expression
have been proved to be potential target of anti-inflammatory drug [24]. In the following, the inhibitory
effect of compounds 4, 5, 8, and 9 on iNOS expression in LPS-stimulated RAW 264.7 cells were
investigated. Western blotting analysis revealed that compounds 4, 5, 8, and 9 markedly suppressed
the iNOS protein expression in LPS-induced RAW 264.7 cells in a concentration-dependent manner
(Figure 5). The downregulation of the expression of iNOS corresponded to the reduction of the
production of NO.
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Figure 5. Effect of 4, 5, 8, and 9 on iNOS expression in LPS-induced RAW 264.7 cells. Cells were
pretreated with varying concentrations (0–60 µM) of 4, 5, 8 and 9 for 2 h and then stimulated with
or without LPS (1 µg/mL) for 24 h. Protein levels of iNOS were evaluated by western blot ((A–D),
for compounds 4, 5, 8, and 9 respectively). The data show mean ± SD values. ###, p < 0.001 was
compared to control. *, p < 0.05, ***, p < 0.001 were versus LPS.

2.4. Compounds 4, 5, 8, and 9 Suppressed Release of IL-6 and TNF-α in LPS-Induced RAW 264.7 Cells

Proinflammatory cytokines, such as IL-6 and TNF-α produced by activated macrophages
contribute to the inflammatory responses in inflammation-related diseases [25,26]. Therefore, they are
regarded as targets for inhibiting the inflammatory process. To evaluate the effects of compounds
4, 5, 8, and 9 on the production of proinflammatory mediators, the levels of IL-6 and TNF-α in the
culture medium were measured by ELISA. In accordance with the NO results, compounds 4, 5, 8,
and 9 also significantly inhibited LPS-induced IL-6 and TNF-α released by RAW 264.7 cells in a
concentration-dependent manner (Figure 6).

As illustrated in Figure 4B, anti-inflammatory effect of actinofuranones was dramatically
influenced by the locality of hydroxyl substitute of C-5 unsaturated alkyl chains (3 vs. 4, 5). Meanwhile,
the more hydroxyl located at alkyl chain, the weaker anti-inflammation effect exhibited (3–5 vs. 8, 9).
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The additional hydroxyl possibly adjust the physico-chemical properties of drugs and change their
biological activities.Molecules 2018, 23, x FOR PEER REVIEW  8 of 14 
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264.7 cells. The cells were pretreated with various concentrations (0–60 µM) of 4, 5, 8 and 9 for 2 h and
then incubated with or without LPS (1 µg/mL) for 24 h. Extracellular production of TNF-α (A) and
IL-6 (B) in culture media were measured using commercial ELISA kits. The data show mean ± SD
values. ###, p < 0.001 was compared to control. *, p < 0.05, **, p < 0.01, ***, p < 0.001 were versus LPS.

3. Materials and Methods

3.1. General Information

Optical rotations were determined using an MCP200 automatic polarimeter (Anton Paar, Graz,
Austria). Ultraviolet spectra were recorded on a DU 730 nucleic acid/protein analyzer (Beckman
Coulter, Brea, CA, USA). IR spectra (film) were measured with a Tensor 27 FT-IR spectrometer (Bruker,
Ettlingen, Germany). 1D and 2D NMR spectra were recorded on a Bruker AV-600 spectrometer, δ

in ppm rel. to TMS, J in Hz. ESIMS were recorded using an 1290-6420 Triple Quadrupole LC-MS
spectrometer (Agilent, Santa Clara, CA, USA). HRESIMS were recorded with an Agilent G6230 TOF
mass spectrometer. Silica gel (100–200 mesh, 300–400 mesh, Qingdao Marine Chemical Ltd., Qingdao,
China), Sephadex LH-20 (GE Healthcare Bio-sciences AB, Uppsala, Sweden), YMC*GEL ODS-A
(S-50 µm, 12 nm) (YMC Co., Ltd., Kyoto, Japan), and reversed-phase HPLC (Rohm and Hass Shanghai
Chemical Industry Co., Ltd., Shanghai, China) were used for column chromatography. Biological
assays were analyzed using a microplate reader (BioTek Synergy H1, BioTek Instruments, Winooski,
VT, USA).

3.2. Microbial Material

The strain (No. YIM 130461) was isolated from Leptogium trichophorum collected from an evergreen
broad-leaf forest at an elevation of 2500 m in Benzilan, Diqing (Yunnan Province, China). On the
basis of NCBI BLAST analysis of 16S rRNA gene sequences, this strain was identified as Streptomyces
gramineus because it had 99.90% sequence identity with previously reported S. gramineus (GenBank
accession no. HM748598). The strain (No. YIM 130461) was deposited at the Yunnan Institute of
Microbiology, Yunnan University, China.

3.3. Fermentation, Extraction and Isolation

The strain, grown on agar plate, was prepared to inoculate 500 mL Erlenmeyer flasks each
containing 100 mL of sterile seed medium composed of glucose 0.4%, yeast extract 0.4%, malt extract
0.5%, multiple vitamin (thiamine 0.5 mg, riboflavin 0.5 mg, niacin 0.5 mg, pyridoxine 0.5 mg, inositol
0.5 mg, calcium pentothenate 0.5 mg, p-aminobenzoic acid 0.5 mg, biotin 0.25 mg) 3.75 mg per liter,
and trace element solution (2g L−1 FeSO4·7H2O, 1 g L−1 MnCl2·4H2O, 1 g L−1 ZnSO4·7H2O) 1.0 mL
per liter at a pH of 7.2 with no adjustment. These flasks cultures were incubated at 28 ◦C for 2 days
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on a rotary shaker set at 180 rpm. For large-scale fermentation, 20 mL of seed medium was used to
transferred into 1-L Erlenmeyer flasks containing 200 mL of sterile fermentation medium composed
of 10 g L−1 soybean meal, 2 g L−1 peptone, 20 g L−1 glucose, 5 g L−1 soluble starch, 2 g L−1 yeast
extract, 4 g L−1 NaCl, 0.5 g L−1 K2HPO4, 0.5 g L−1 MgSO4·7H2O, and 2 g L−1 CaCO3 at a pH of 7.8
with no adjustment. The fermentation batches were cultured at 28 ◦C for 7 days on a rotary shaker
set at 180 rpm. The mycelium and broth filtrate (70 L) were separated by centrifugation (4000 rpm,
5 min). The resultant aqueous phase filtrate was extracted with EtOAc, then the organic partition
layer was collected. Meanwhile, the mycelium cake was steeped in MeOH for 24 h to produce cell
extracts. The methanol solution was centrifuged, concentrated, diluted with water and extracted with
EtOAc. The combined extracts were evaporated in vacuo to yield 13 g of dried crude extract and further
separated by chromatography on a silica gel column with a gradient of CH2Cl2-MeOH (v/v 50:1–1:1)
to obtain nine fractions. Fraction 4 was subjected to Sephadex LH-20 chromatography (MeOH) to
produce five subfractions. Fraction 4.2 was further separated by ODS column chromatography, eluting
with MeOH-H2O (v/v 70:30) to yield 7 (21.0 mg), 8 (25.0 mg), 9 (5.0 mg). Fraction 6 was subjected to
Sephadex LH-20 chromatography (MeOH) to afford six subfractions. Fraction 6.3 was purified using
semi-preparative reversed-phase HPLC (CH3CN-H2O, v/v 38:62, 10 mL/min) to yield 5 (13.4 mg)
and 6 (6.0 mg). Fraction 7 was separated by silica gel column chromatography, eluting with 15:1
CH2Cl2-MeOH to afford six subfractions. Subfraction 7.4 was applied to ODS column chromatography,
eluting with MeOH-H2O (v/v 65:35) to yield 3 (5.0 mg). Subfraction 7.5 was purified by the ODS
column chromatography (MeOH-H2O, v/v 60:40) to produce 2 (25.0 mg). Subfraction 7.6 was separated
by semi-preparative reversed-phase HPLC on a C18 column (MeOH-H2O, v/v 60:40, 10 mL/min) to
yield 4 (11.0 mg) and 1 (4.0 mg).

Actinofuranone D (1): colorless amorphous powder; UV (MeOH) λmax (log ε) 230 (4.3) nm, 286 (3.9) nm.
IR (film) νmax 3357, 2919, 2848, 1693, 1645, 1613, 1418, 1113,1020 cm−1. HR-ESI-MS m/z 461.2573
[M + Na]+ (calcd. for C24H38O7Na, 461.2515). For 1H- and 13C–NMR data see Table 1.

Actinofuranone E (2): colorless amorphous powder; UV (MeOH) λmax (log ε) 230 (4.6) nm, 286 (4.2) nm.
IR (film) νmax 3356, 2920, 2850, 1693, 1613, 1409, 1104, 988cm−1. HR-ESI-MS m/z 461.2651 [M + Na]+

(calcd. for C24H38O7 Na, 461.2515). For 1H- and 13C-NMR data see Table 1.

Actinofuranone F (3): colorless amorphous powder; UV (MeOH) λmax (log ε) 230 (4.6) nm, 286 (4.4) nm.
IR (film) νmax 3360, 2920, 2848, 1697, 1644, 1374, 1105, 990cm−1. HR-ESI-MS m/z 461.2654 [M + Na]+

(calcd. for C24H38O7Na, 461.2515). For 1H- and 13C-NMR data see Table 2.

Actinofuranone G (4): colorless amorphous powder; UV (MeOH) λmax (log ε) 230 (4.4) nm, 286 (4.3) nm.
IR (film) νmax 3359, 2920, 2850, 1696, 1615, 1410, 1106, 990 cm−1. HR-ESI-MS m/z 447.2363 [M + Na]+

(calcd. for C23H36O7Na, 447.2359). For 1H- and 13C-NMR data see Table 2.

Actinofuranone H (5): colorless amorphous powder; UV (MeOH) λmax (log ε) 230 (4.5) nm, 286 (4.2) nm.
IR (film) νmax 3359, 2920, 2850, 1696, 1615, 1409, 1105, 990cm−1. HR-ESI-MS m/z 447.2374 [M + Na]+

(calcd. for C23H36O7Na, 447.2359). For 1H- and 13C-NMR data see Table 3.

Actinofuranone I (6): colorless amorphous powder; UV (MeOH) λmax (log ε) 232 (4.5) nm, 286 (4.4) nm.
IR (film) νmax 3352, 2920, 2839, 1646, 1450, 1111, 1015 cm−1. HR-ESI-MS m/z 447.2337 [M + Na]+ (calcd.
for C23H36O7Na, 447.2359). For 1H- and 13C-NMR data see Table 3.
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Table 2. 1H-NMR (600 MHz) and 13C-NMR (150 MHz) data of compounds 3 and 4 in DMSO-d6.

No.
3 4

δC, Type δH, [J in Hz] δC, Type δH, [J in Hz]

1 68.3 (69.3), CH 3.70 (3.75), m 68.2 (69.3), CH 3.69 (3.74), m

2 104.1 (104.5), C 104.1 (104.6), C

3 202.8 (201.6), C 202.9 (201.6), C

4 109.8 (110.3), C 109.8 (110.4), C

5 185.1 (185.4), C 185.4 (185.1), C

6 37.8 (37.4), CH2
2.58 (2.62), m
2.58 (2.58), m 37.6 (37.4), CH2

2.58 (2.63), d [6.5]
2.58 (2.56), d [6.5]

7 67.9 (67.7), CH 3.81 (3.86), m 67.9 (67.7), CH 3.81 (3.86), m

8 36.6 (36.7), CH2 1.59, m; 1.45, m 36.6 (36.7), CH2 1.57, m; 1.45, m

9 28.6, CH2 2.16, m; 2.08, m 28.6, CH2 2.16, m; 2.08, m

10 131.9, CH 5.54, dt [14.0, 6.6] 132.0, CH 5.54, dt [13.6, 6.7]

11 131.1, CH 5.96, m 131.1, CH 5.96, m

12 129.6, CH 5.92, m 129.7, CH 5.92, m

13 136.1, CH 5.58, dd [14.8, 7.5] 135.8, CH 5.56, dd [15.1, 7.5]

14 40.4, CH 2.21, sextet [7.3] 40.4, CH 2.22, sextet [7.0]

15 81.0, CH 3.53, dd [7.7, 3.0] 80.2, CH 3.52, dd, [7.0, 4.8]

16 138.2, C 135.8, C

17 123.1, CH 5.28, t [7.3] 132.0, CH 5.25, d [8.1]

18 37.8 CH2 2.08, m; 1.98, m 63.0, CH 4.35, m

19 66.6, CH 3.58, q [6.0] 24.4, CH3 1.05, d [6.2]

20 23.4, CH3 1.00, d [6.2] 17.1 (16.5), CH3 1.13 (1.04), d [6.4]

21 17.1 (16.5), CH3 1.14 (1.04), d [6.4] 6.0, CH3 1.53, s

22 6.0, CH3 1.53, s 17.7, CH3 0.84, d [6.8]

23 17.6, CH3 0.79, d [6.9] 12.4 (12.9), CH3 1.50, s

24 12.0, CH3 1.49, s

1-OH 4.68 (4.90), brs 4.67 (4.85), d [6.4]

2-OH 7.33, s 7.23 (7.35), s

7-OH 4.72 (4.79), brs 4.69 (4.78), d [5.4]

15-OH 4.52, d [3.4]

18-OH 4.57, d [4.6]

19-OH 4.40, brs 4.44, d [4.4]

The chemical shifts in parentheses belong to the C-1 epimer.
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Table 3. 1H-NMR (600 MHz) and 13C-NMR (150 MHz) data of compounds 5–7 in DMSO-d6.

No.
5 6 7

δC, Type δH, [J in Hz] δC, Type δH, [J in Hz] δC, Type δH, [J in Hz]

1 68.3 (69.3), CH 3.69 (3.74), m 68.2 (69.3), CH 3.69 (3.74), m 68.4 (69.4), CH 3.70 (3.74), m

2 104.2 (104.6), C 104.2 (104.6), C 104.3 (104.7), C

3 202.9 (201.6), C 202.9 (201.6), C 203.0 (201.7), C

4 109.9 (110.5), C 109.8 (110.4), C 109.9 (110.5), C

5 185.3 (185.1), C 185.4 (185.1), C 185.5 (185.2), C

6 37.7 (37.4), CH2 2.62, (2.62, 2.58), m 37.6 (37.4), CH2 2.56 (2.62, 2.56), m 37.7 (37.5), CH2 2.57 (2.64, 2.56), d [7.0]

7 66.5 (66.3), CH 3.90 (3.96), m 67.9 (67.7), CH 3.81 (3.86), m 67.8 (68.0), CH 3.81 (3.86), m

8 44.5 (44.6), CH2 1.61 (1.59, 1.46), m 36.5 (36.6), CH2 1.59, m; 1.46, m 36.7 (36.8), CH2 1.57 (1.56), m; 1.45 (1.46), m

9 69.2 (69.1), CH 4.16, m 28.7, CH2 2.18, m; 2.09, m 28.7, CH2 2.18, m; 2.07, m

10 135.3, CH 5.54, dt [15.1, 6.2] 132.9 (132.8), CH 5.59, dt [15.1, 7.0] 132.1, CH 5.55 (5.53), dt [14.8, 7.0]

11 130.1, CH 6.10, m 130.7, CH 6.08, dd, [15.1, 10.5] 131.3, CH 5.95, m

12 129.2, CH 5.96, dd [15.2, 10.4] 127.3 (127.2), CH 5.99, dd [15.1, 10.5] 129.7, CH 5.95, m

13 137.8, CH 5.67, dd [15.3, 7.4] 138.5 (138.6), CH 5.65, brd [15.1] 136.3, CH 5.59 (5.55), dd [15.0, 7.5]

14 40.4, CH 2.23, sextet [7.0] 74.7, C 40.0, CH 2.21, sextet [7.0]

15 80.8, CH 3.52, dd, [7.5, 3.8] 82.6, CH 3.63, d, [4.4] 81.1, CH 3.53, dd [7.8, 4.4]

16 136.5, C 135.4, C 137.4, C

17 127.7, CH 5.25, t [7.5] 129.3, CH 5.23, t [7.0] 126.0, CH 5.24, t [7.3]

18 20.6, CH2 1.97, quint [7.5] 20.7, CH2 1.95, quint [7.3] 29.5, CH2 1.94, q [7.3]

19 14.5, CH3 0.90, t [7.5] 14.4, CH3 0.89, t [7.5] 22.8, CH2 1.32 m

20 17.1, CH3 1.14 (1.04), d [7.5] 17.1 (16.5), CH3 1.13 (1.04), d [6.4] 14.1, CH3 0.85, t [7.4]

21 6.0, CH3 1.53, s 6.0, CH3 1.53, s 17.2 (16.6), CH3 1.14 (1.04), d [6.4]

22 17.5, CH3 0.80, d [7.0] 25.4 (25.5), CH3 1.06, s 6.1, CH3 1.54, s

23 11.6, CH3 1.49, s 13.8, CH3 1.53, s 17.7, CH3 0.80, d [6.9]

24 11.9, CH3 1.49, s

1-OH 4.67 (4.85), brs 4.66 (4.85), d [6.4] 4.66 (4.84), d [4.5]

2-OH 7.25 (7.35), s 7.24 (7.35), s 7.23 (7.34), s

7-OH 4.72 (4.81), m 4.69 (4.78), d [5.3] 4.68 (4.78), brs

9-OH 4.76 (4.80), brs

14-OH 4.17, s

15-OH 4.54, d [3.8] 4.62, d [4.5] 4.52, d [3.6]

18-OH

The chemical shifts in parentheses belong to the C-1 epimer.



Molecules 2018, 23, 2393 12 of 14

3.4. Cell Culture and Vability Assay

RAW 264.7 cells were cultured in DMEM containing 10% fetal bovine serum (FBS), 2 mM
L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C under 5% CO2.
RAW 264.7 cells were plated at 2 × 105 cells per well in 96-well-plates and incubated for
12 h, then treated with different treatment of compounds 1–9 (0–60 µM) and stimulated with
or without lipopolysaccharides (LPS, 1 µg/mL) for 24 h. At the end of the treatment period,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT, 20 µL, 5 mg/mL) was added and
incubated for additional 4 h. The supernatant was removed and dimethylsulfoxide (DMSO, 150 µL)
was added for solubilization. The absorbance was read at 570 nm using a microplate reader.

3.5. Nitric Oxide (NO) Production Assay

RAW 264.7 cells were seeded onto 6-well-plate at a density of 1 × 106 cells per well and
cultured for 24 h. The cells were then pretreated with the varying concentrations of compounds
3, 4, 5, 8 and 9 (0, 15, 30, and 60 µM) for 2 h before stimulation with LPS (1 µg/mL) for 24 h.
After that, 50 µL of supernatant was mixed with equal volumes of Griess reagents (1% sulfanilamide,
0.1% N-(1-naphthyl) ethylenediamine dihydrochloride and 5% phosphoric acid) and incubated for
5 min at room temperature, the absorbance was measured at 540 nm using a microplate reader.
The accumulation of nitrite was calculated using a standard curve of NaNO2.

3.6. Western Blot

RAW 264.7 cells were pretreated with compounds 4, 5, 8 and 9 (0, 15, 30, or 60 µM) for 2 h, then LPS
(1 µg/mL) was added to stimulate for 24 h. Total cell protein was isolated with RIPA buffer (Beyotime,
Beijing, China). After cell debris was discarded following centrifugation at 15,000 × g for 30 min,
and the protein concentration measured by BCA protein assay (Beyotime, Beijing, China) according to
the manufacturer’s protocols. Samples (30 µg) were separated on 10% SDS-PAGE and transferred onto
PVDF (Millipore, Billerica, MA, USA) membrane, which was blocked with 5% non-fat milk in TBST
(10% tris-buffered saline (tris base 24.2 g, NaCl 80 g, H2O 1 L), 0.1% polysorbate 20) for 1 h at room
temperature followed by incubated with primary antibody overnight at 4 ◦C. The membrane was
then washed three times with TBST and incubated with horseradish peroxidase conjugated secondary
antibody for 1 h at room temperature, washed for three times with TBST and then developed by an
enhanced chemiluminescence (ECL) detection system (Millipore, Billerica, MA, USA). Band pattern
was analyzed with Bio-Rad ChemiDocTM XRS + System (Bio-Rad, Hercules, CA, USA).

3.7. Measurement of IL-6 and TNF-α by an Enzyme-Linked Immunosorbent Assay (ELISA)

RAW 264.7 cells were plated at a density of 1 × 106 cells per well in 6-well plates and cultured
for 24 h. The cells were then treated with various concentrations of compounds 4, 5, 8 and 9 (0, 15, 30,
and 60 µM) and stimulated with or without of LPS (1 µg/mL) for 24 h. The levels of IL-6 and TNF-α in
the cultured medium (supernatant) were determined using a commercially available ELISA kit (R&D
Systems, Inc. Minneapolis, MN, USA) according to the manufacture’s protocols. The absorbance was
measured at 450 nm with a microplate reader. IL-6 and TNF-αwere determined from a standard curve.
The concentrations were expressed as pg/mL.

3.8. Statistical Analysis

The measured data were expressed as mean ± the standard deviation. Student’s t test was
performed using SPSS 10.0. A p value of <0.05 was considered as statistically significant.

4. Conclusions

Six new actinofuranones (compounds 1–6) were isolated together with three known compounds
from the ethyl acetate extract a fermentation broth of S. gramineus associated a with lichen. Compounds
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4, 5, 8 and 9 significantly inhibited the production of NO through down-regulation of iNOS protein
expression in LPS-stimulated RAW 264.7 cells. In addition, compounds 4, 5, 8 and 9 were also highly
effective at inhibiting IL-6 and TNF-α production in the LPS-induced RAW 264.7 cells. These bioactive
actinofuranones have potential usefulness in development of anti-inflammatory drugs.

Supplementary Materials: Supplementary data associated with this article can be found in the online version.
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