
molecules

Review

Melatonin and Its Effects on Plant Systems

Rahat Sharif 1, Chen Xie 1 ID , Haiqiang Zhang 1, Marino B. Arnao 2 ID , Muhammad Ali 1 ID ,
Qasid Ali 3 ID , Izhar Muhammad 4, Abdullah Shalmani 4, Muhammad Azher Nawaz 5 ID ,
Peng Chen 6,* and Yuhong Li 1,*

1 College of Horticulture, Northwest A&F University, Yangling 712100, China;
rahatsharif2016@nwafu.edu.cn (R.S.); yyxyxc180108@nwafu.edu.cn (C.X.);
zhanghaiqiang@nwafu.edu.cn (H.Z.); alinhorti@yahoo.com (M.A.)

2 Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia,
Campus de Espinardo, 30100 Murcia, Spain; marino@um.es

3 Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey;
qasidmrz01@gmail.com

4 State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences,
Northwest A&F University, Yangling 712100, China; izeyaar@gmail.com (I.M.);
abdullqadir36@yahoo.com (A.S.)

5 Department of Horticulture, University college of Agriculture, University of Sargodha, Sargodha 40100,
Pakistan; azher490@hotmail.com

6 College of Life Science, Northwest A&F University, Yangling 712100, China
* Correspondence: pengchen@nwsuaf.edu.cn (P.C.); liyuhong@126.com (Y.L.); Tel.: +86-029-87082613 (Y.L.)

Received: 13 June 2018; Accepted: 20 July 2018; Published: 14 September 2018
����������
�������

Abstract: Melatonin (N-acetyl-5-methoxytryptamine) is a nontoxic biological molecule produced in
a pineal gland of animals and different tissues of plants. It is an important secondary messenger
molecule, playing a vital role in coping with various abiotic and biotic stresses. Melatonin serves as
an antioxidant in postharvest technology and enhances the postharvest life of fruits and vegetables.
The application of exogenous melatonin alleviated reactive oxygen species and cell damage induced
by abiotic and biotic stresses by means of repairing mitochondria. Additionally, the regulation of
stress-specific genes and the activation of pathogenesis-related protein and antioxidant enzymes
genes under biotic and abiotic stress makes it a more versatile molecule. Besides that, the crosstalk
with other phytohormones makes inroads to utilize melatonin against non-testified stress conditions,
such as viruses and nematodes. Furthermore, different strategies have been discussed to induce
endogenous melatonin activity in order to sustain a plant system. Our review highlighted the diverse
roles of melatonin in a plant system, which could be useful in enhancing the environmental friendly
crop production and ensure food safety.

Keywords: melatonin; abiotic stress; biotic stress; antioxidants; gene expression; postharvest;
mitochondria

1. Introduction

Melatonin was discovered in the bovine pineal gland and called as vertebrate pineal secretory
molecule [1,2]. The pineal gland is an organ present in animals’ bodies, responsible for the production
of melatonin in order to control the behavior of the body toward changing photoperiod and also
serve as a neuronal protective antioxidant [3]. However, in plants, the existence of melatonin has
been reported in more than 20 dicotyledonous and monocotyledonous plant families [4,5]. The name
melatonin was given to this biomolecule after Lerner et al. [6] stated that an indole molecule is
responsible for causing skin lighting in the frog. In addition to that, it is the most important factor
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for controlling the circadian cycle in different vertebrates; the secretion of melatonin reaches to the
highest level during the night time, which makes it the peak signaling molecule of darkness [2].
Moreover, melatonin is an important antioxidant that can be taken in diet and also the body produces
it endogenously, though its production degrades gradually with increasing age [2,7,8]. In plants, the
role of melatonin has been extensively studied [9–11].

Since the discovery of melatonin in 1965, about 34,000 research materials regarding melatonin
are available on Scopus database; this highlights the importance of this molecule in that it has been
studied extensively. Because of its significant effects on plant systems, it attracts scientists and young
researchers from the diverse field of plant sciences [12–15]. It is considered as a central indoleamine
neurotransmitter, largely involved in the diverse biological process and accepted as an important plant
metabolite [16,17]. Additionally, melatonin has been reported for its involvement in improving seed
germination, fruit ripening, photosynthesis, biomass production, circadian rhythm, redox network,
membrane integrity, root development, leaf senescence, osmoregulation, abiotic stress (salt, drought,
cold, heat, oxidative, heavy metals) [18–26]. Moreover, it has been reported to play a beneficial role in
the protection of plants against biotic stresses [14]. Furthermore, melatonin induces gene expression
which helps the plant to cope with biotic and abiotic stresses [27]. Therefore, it could be of great
importance to utilize melatonin as a bio-stimulator for sustainable crop production without affecting
the external environment.

The purpose of this review is to highlight the various aspects of melatonin from the plethora
of research available over its role in protecting plants from abiotic, biotic and post-harvest stresses.
Additionally, the contribution of melatonin in regulating gene expression has been presented here.
The melatonin defense mechanism has also been presented in this review with illustration and
diagrammatic sketch (Figure 1). Furthermore, we discussed the melatonin concentration in different
plants as well as the strategies to improve the endogenous melatonin content to restore the defense
in plants.

Figure 1. Schematic representation of melatonin defense mechanism pathway.
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2. The Occurrence of Melatonin in Plants

Melatonin is an ancient molecule derived from cyanobacteria which was introduced to animals
and plants through evolution [28]. Melatonin is an indolic compound derived from tryptophan and
it was found during 1995 in plants. It is found in almost all the plant species, varying in amount
according to the plant tissues in light depending manner [29,30]. Though the level of melatonin is
higher in aromatic plants and leaves than that of seeds [29]. In higher plants, melatonin was firstly
discovered in 1993 in the Convolvulaceae ivy morning glory (Pharbitis nil L., syn. Ipomoeanil L.) and
in tomato fruits (Solanum lycopersicum L.), however, due to some unknown reasons, the results were
published two years later in 1995 [31,32]. Moreover, the majority of the plants reported to contain
melatonin contents are from family Rosaceae, Vitaceae, Poaceae, Apiaceae and Brassicaceae, however, plants
from other species have also exhibited higher endogenous melatonin contents. During the last decade,
several researchers revealed that the concentration of melatonin also differs between the varieties of
the same species, depending on location, growth stage, organ and harvest timing [33–35]. Endogenous
melatonin was reported to play an important role in the regulation of plant growth attributes in
various species [36]. For that reason, several detection methods and assays have been reported for
the determination of melatonin content in plant samples that includes radioimmunoassay (RIA),
enzyme-linked immunosorbent assay (ELISA), gas chromatography-mass spectrometry (GC-MS),
and high-performance liquid chromatography (HPLC) with electrochemical detection (HPLC-ECD),
fluorescence detection (HPLC-FD), or high-performance liquid chromatography-mass spectrometry
HPLC-MS [37]. However, RIA has been reported to be less reliable in detecting melatonin content
compared with other methods [13]. Therefore, we enlisted the reported melatonin contents and its
detection methods in some of the important agronomic and horticultural plants (Table 1). However,
these values could be changed as melatonin production is dependent on the day length and also
seasonal changes. For example, its production is low during the daytime and high during the night
time [38,39]. Thus, the values stated in Table 1 are uncertain unless the circadian, seasonal and plant
age variations are known. We believe this information could be helpful for future research programs
regarding the detection of endogenous melatonin level.

Table 1. Reported concentration of melatonin in some edible plants.

Crop Used Methodology Melatonin Content (pg/g FW(DW) Tissue) Reference

Apple GC-MS 0.16 [40]
Asparagus RIA 9.5 [41]

Barley LC 500–12,000 R; 82,300 S [42,43]
Cucumber fruit seeds RIA 24.6, 11,000 [41,44]

Chilies UHPLC-MS/MS 31–93 [45]
Kiwi RIA 0.02 [41]

Kidney bean ELISA 529 DW [46]
Rice HPLC 100 L; 500 S; 200 R; 400 Fl [47,48]

Sunflower HPLC 29,000 DW [16]
Tea (Shiya green tea) HPLC 2.12 µg g−1 [49]

Tomato LC 15,000–142,000 L [50]
Wheat LC 124,700 S [42]

Abbreviation: L = leaf, R = roots, FL = flower, GC-MS = gas chromatographic-mass spectroscopy,
RIA = radioimmunoassay, LC = liquid chromatography, UHPLC-MS/MS = Ultra-high performance liquid
chromatography coupled to mass spectrometry in tandem mode, ELISA = Enzyme-linked immunosorbent assay,
HPLC = High performance liquid chromatography.

3. Role of Melatonin in Regulating Plant Growth and Physiology

The primary functions of melatonin are as an antioxidant because it is soluble in water and
fats and moves freely across the body to any aqueous section [28,51]. Though it has been reported
that melatonin improves the overall growth of plants [42,52]. It enhances the coleoptile length of
canary grass, barley and wheat [42]. The melatonin-treated maize seeds resulted in better seed
vigor and quality and improved seed storage proteins [53]. According to another report, a coating
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of soybean seed with melatonin significantly improved the leaf growth, plant height, number of
pod plants−1 and number of seeds per pod [54]. A similar role of melatonin was also observed
in etiolated Lupinus albus L., where it was found to be responsible for the promotion of vegetative
growth, and regenerations of lateral and adventitious roots [55,56]. While in cucumber plants, an
increase in the seedling growth, improvement in the nutrient uptake efficiency and enhancement in
nitrogen metabolism were perceived after treatment with melatonin, particularly under salt stress
conditions [57]. Moreover, it was reported that melatonin treatment improved photosynthetic activity,
enhanced redox homeostasis, regulated root growth and development, and seminal root elongation in
barley, wheat, sweet cherry and rice [47,58–62]. The plant hormones such as auxin, ethylene, cytokinin,
gibberellins, IAA (indole 3-acetic acid) and brassinosteroids are extensively involved in regulating
plant growth and development [63]. The effects of these plant hormones can be regulated with the
application of exogenous melatonin application [64]. Among them, IAA shared similarities in structure
and functions [42,65]. In line with that, exogenous treatment of melatonin enhances the production of
IAA [66]. While on the other hand both melatonin and IAA work in the combined and similar fashion
as they were reported for enhancing root morphogenesis [52]. In brassica juncea plant, exogenously
applied melatonin enhanced the IAA level, which further resulted in better root activity [67]. Whereas
it influenced the root organogenesis positively in Mimosa pudica L. [68]. Therefore, it is assumed that
melatonin influenced signal transduction and also had a role in regulating plant physiological and
biological processes. To sum up, melatonin could be considered as a biological plant growth regulator
to improve the production capacity of a plant.

4. Melatonin Effect on Postharvest Produce

The shelf-life and quality of postharvest produce decline due to the deterioration. For this
reason, many treatments have been implemented to maintain the quality and shelf life of postharvest
fruits and vegetables [69–72]. Usually, the produce is stored in a cold environment which induces
oxidative stress by elevating the production of ROS; this is the main drawback of cold storage [73].
However, treatment with melatonin alleviates the ROS activity and increases the antioxidant enzymes
production [70]. In other cases, the application of exogenous melatonin triggered the endogenous
melatonin biosynthetic activity via the antagonistic crosstalk with calcium, preventing the product
from postharvest deterioration [74]. Additionally, the postharvest quality of horticultural produce
is mainly dependent on the preharvest factors as it cannot be increased after harvesting but can
only be maintained [75]. In line with that, the tomato seeds fertigated with melatonin had not only
increased their yield but also kept the postharvest quality by exhibiting an increase of vitamin C,
lycopene and calcium contents. The treated plants also recorded for more soluble solids and P content
than that of control [76]. In another study, the exogenous application of melatonin on the clusters
of grapes attached to the vine had altered metabolism of polyphenol, carbohydrate biosynthesis
and more importantly ethylene signaling in berries of grapes. The restricted ethylene production
resulted in better antioxidant activity [74], which is an important factor for maintaining postharvest
quality. Moreover, melatonin regulates salicylic acid, jasmonic acid, nitric oxide and ethylene which
collectively generate the resistance against diseases in a very familiar action [64]. The cooperative
or antagonistic approach of ethylene and jasmonate is mainly dependent on the interaction of their
downstream signaling pathway [77]. Jasmonic acid encourages the synthesis of lycopene in tomato
independently to ethylene and exogenously applied ethylene is widely used to trigger and initiate
ripening in climacteric fruits [78,79]. Correspondingly, ethylene does not only affect the biochemical
structure but also increases the respiration rate of fruit and vegetables [80]. Likewise, the exogenously
applied melatonin influenced the ethylene biosynthesis pathway and conferred better aroma, color,
sugar and overall postharvest quality of tomato [81]. The research provides a good base for utilizing
melatonin in keeping the postharvest quality of produces. Both of these hormones regulated by
melatonin play an important role in defining the postharvest status of produce by means of their
possible involvement in providing resistance against postharvest diseases and deterioration. Still, not a
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great deal of research material is available on melatonin postharvest application. However, melatonin
may be considered as a potential substance to reduce the percentage of postharvest losses and enhance
the shelf life of postharvest produce. According to a recent report, the silencing of fruit shelf-life regulator
(SIFR) gene has been reported for controlling the postharvest ripeness in tomato and also extended
the fruit shelf life by inhibiting the ethylene production [82]. For that reason, it will be interesting
to see how exogenous melatonin affects the postharvest maturity by regulating the expression level
of SIFR gene. Furthermore, Table 2 represents the reported studies on melatonin application over
postharvest products.

Table 2. Effect of melatonin on postharvest produce.

Crop Stress/Condition Concentration Functional Improvement Reference

Apple Browning 250 mg/L Prevented apple juice from browning [83]

Banana Quality
improvement 50–500 µM

Slowed down ripening, low ethylene
production, accelerate

endogenous melatonin.
[84]

Broccoli senescence 100 µM/L Maintained postharvest freshness [85]

Cabbage Cold 100 µM/L Enhanced anthocyanin activity and
antioxidant capacities [27]

Cassava Hydrogen peroxide 500 mg/L Delayed postharvest physiological
and root deterioration in cassava [74,86]

Cucumber Cold 500 µM Increased protection against
cold-induced oxidative stress in seeds [87]

Peach Oxidative 0.1 mmol/L
Slow down the senescence, increased
antioxidant enzymatic activities and

ascorbic acid content
[70,88]

Pear Quality
improvement 100 µM

Slowed senescence process, increase
antioxidants, less fruit firmness losses,

exhibited to be a strong scavenger
of ROS

[89]

Strawberry Fungal, quality
improvement

1000 µmol/L or
100 µmol/L

triggered H2O2 accumulation,
higher SOD activity, delayed

senescence, decay, weight losses,
maintained fruit firmness, titratable

acidity, increased total phenol,
flavonoids and antioxidant activity

[90,91]

Tomato Quality
improvement trial 50 µM

Promotes ripening, upregulated the
expression level of fruit color

development genes and altered the
ethylene production.

[81]

5. Role of Melatonin in Mitigating Abiotic Stresses

In recent times, melatonin as a biostimulant and plant growth regulator attracts the interest
of plant biologists [14]. For instance, it provides physiological and molecular resistance against
many abiotic stresses by means of its involvement in regulating stress signaling [92,93]. Additionally,
its beneficial effect on photosynthesis and other growth-related factors amongst different crops under
the diverse abiotic stresses is another promising aspect of melatonin application [94,95]. Exogenous
melatonin significantly induced the level of endogenous Abscisic acid (ABA) and Gibberellic acid
(GA) in cucumber seedling under the saline condition, due to which the resistance against salinity
was improved [96]. While in plants affected by heat stress, the level of cytokinin (CK) was degraded
gradually. Though, induction in the level of CK biosynthesis was observed after the plants were treated
with exogenous melatonin. The study further reported that the resistance against heat stress was
perceived in the melatonin-treated plants due to enhanced CK level [97]. In short, the main action of
mechanism is the improvement of the antioxidant defense system and enhancing photosynthetic
activity (Table 3). Moreover, melatonin has been described by many scientists to significantly
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influence the overall plant growth against abiotic stresses [87,97–99] with minimum effects on the
surrounding environment.

Table 3. Protective role of melatonin in various crops against different abiotic stresses.

Crop Stress Condition Concentration Functions Reference

Arabidopsis Heat 1000 µM Improved seed germination
under heat stress [100]

Apple Drought 100 µM Reduced ABA activity and
radical scavenging [101]

Apple Waterlogging 200 µM Reduced chlorosis and
wilting of the seedlings [102]

Barley Senescence 1 mM Boosted chlorophyll content [103]

Brassica napus L. Drought 0.05 mmol/L Increased the overall growth
indices of brassica seedlings [104]

Bermuda grass Cold 100 µM Induced photosynthetic
activity under cold stress [105]

Cucumber Salinity 100 µM Overall growth [95]

Cucumber Cinnamic acid 10 µM

Rescued cucumber seedlings
from Cinnamic acid stress

and increased the allocation
of dry weight in roots.

[106]

Eggplant Cadmium stress 150 µmol/L Enriched
photosynthetic activity [107]

Faba bean Salinity 500 µM
Enriched photosynthetic

activity and
mineral accumulation

[108]

Grapes Water deficient 200 µmol/L Amended antioxidative
enzymes activity [94]

Maize Drought 100 µmol/L Photosynthesis and growth [109]

Melon Cold 200 µM Improved proline and
ascorbic acid content [110]

Medicago sativa Drought 10 µM
regulation of nitro-oxidative

and
osmoprotective homeostasis

[111]

Malus hupehensis Salinity 0.1 mM
Improved photosynthetic

activity and better
plant growth

[112]

Malus hupehensis Alkaline 5 µM

Significantly induced the
tolerance against alkaline
stress by increasing the
antioxidant activity and

biosynthesis of polyamines

[113]

Perennial ryegrass High temperature 20 µM Regulate abscisic acid and
cytokinin biosynthesis [97]

Potato Salinity 100 µM
Better chlorophyll content,
antioxidant activities and

water content
[114]

Pisum sativum L. Oxidative stress 50 µM

Reduced O2
•−

accumulation in leaf tissues
and preservation of

photosynthetic pigments

[115]

Rice Salinity 20 µM Delay leaf senescence and
cell death in rice [116]
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Table 3. Cont.

Crop Stress Condition Concentration Functions Reference

Red cabbage Heavy metal 10 µM
Improved seed germination
and reduced the toxic effect

of metal on the seedling.
[117]

Soybean Multiple stress 100 µM Boost and maintain the
overall plant growth [54]

Soybean Aluminum stress 50 µM Enhanced root growth and
reduced aluminum toxicity [118]

Sunflower Salt 15 µM
Regulate root growth and

hypocotyl elongation under
salt stress

[119]

Tomato Cold and salinity 100 µM

Improved photosynthesis
and regulation of
photosynthetic

electron transport

[120,121]

Tomato Heat and salinity 100 µM
Induced antioxidant

enzymes activity and better
photosynthetic performance

[122]

Tomato Acid rain 100 µM

Enhanced tolerance against
simulated acid rain and

increased the
photosynthetic activity

[123]

Tea Cold 100 µM
Triggered photosynthetic

and antioxidant
enzymes activities

[62]

Watermelon Salinity 150 µM
Redox homeostasis and

improved
photosynthetic activity

[124]

Watermelon Vanadium stress 0.1 µM

Lower the concentration of
vanadium in leaf, stem and
better photosynthetic and

antioxidants activity

[125]

Watermelon Cold 150 µM and 1.5 µM

Alleviate cold stress by
inducing long-distance

signaling in the
untreated tissue.

[126]

Wheat Drought and
nano-ZnO 500 µM and 1 mM

Augmented seedling
percentage, growth, and

antioxidant
enzymes activities.

[59,127]

Wheat Cadmium stress 50 mM

Reduce the level of
hydrogen peroxide which

increases the wheat
plants growth

[128]

6. Melatonin Role in Suppressing Biotic Stresses

To the best of our knowledge, the first study conducted on melatonin’s ability to increase resistance
to biotic stress in plants was reported by Yin et al. [129]. In their study, they successfully used melatonin
to mimic the harmful effects of Diplocarpon mali in apple tree through the root irrigation method.
In another study, the SNAT mutant line in Arabidopsis suffered from avirulent pathogen Pseudomonas
syringae pv due to the reduced induction capacity of defense genes (PR1, ICS1, and PDF 1.2). However,
the induction was restored with the application of exogenous melatonin, confirming the role of
melatonin in suppressing biotic stress [20]. Similarly, in apple juice, the melatonin showed excellent
anti-microbes activity by reducing the percentage to 19% compared with control [83]. Moreover,
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the application of exogenous melatonin on the Arabidopsis plant augmented the level of endogenous
melatonin and nitric oxide (NO) that was lethal against the pathogen Pseudomonas syringe pv.
tomato (Pst) DC3000 [24]. So far it is known that melatonin expresses the activity of chitinase
genes [129], which is an important factor in restricting the lesion expansion and inhibiting the growth
of pathogen [69]. However, the induction in endogenous melatonin activity also plays an important
role in sustaining the defense system [24]. More generally, that melatonin induces resistance against
biotic stress is a collective action of endogenous hormonal [20], antioxidant enzymes activities and
expression of PR and Chitinase genes.

Furthermore, the melatonin-directed regulation of other phytohormones could provide resistance
against biotic stresses, which is yet to be examined in plant [64]. For example, ethylene enhances
the infection capacity and symptoms development as observed for cucumber inoculated with
Cucumber mosaic virus (CMV) [130,131]. However, treatment with exogenous melatonin suppresses
the ethylene activity [73] and could help in sustaining the plant defense system against that particular
virus. A similar case is with other phytohormones as they are highly involved in keeping the balance
of the plant defense system [63,132,133] but virus infection inanimates the plant hormones system,
which helps them to replicate quickly [134]. Therefore, it could be of great importance to unravel
the role of melatonin mediated defense response against plant viruses and other biotic stress factors.
The reported studies in Table 4 demonstrated the potential role of melatonin application against
biotic stress. However, more research is needed on the melatonin application against plant viruses,
nematodes, and insects.

Table 4. Defense mechanism induced by melatonin against biotic stresses in different plants.

Crop Pathogen Concentration Beneficial Functions Reference

Apple Diplocarpon mali 0.1 mM Improved resistance to apple
blotch disease [129]

Arabidopsis Pseudomonas
syringae 10 µM

Increased the resistance by
suppressing the bacterium

about 10-fold
[19]

Arabidopsis Pseudomonas
syringae 10 µM

Alternatively, increased the
resistance by triggering the level

of endogenous salicylic acid.
[20]

Banana Fusarium oxysporum 100 µM Induce resistance in banana
against the pathogen attack [135]

Lupinus albus Penicillium spp. 70 µM Enhanced resistance against the
fungal pathogen [14]

Potato Phytophthora
infestans 5 mM

Inhibited the potato late blight
disease by arresting the mycelial

growth
[136]

Strawberry Botrytis cinerea and
Rhizopus stolonifer 1000 µmol/L

Attenuating fungal decay and
maintaining nutritional quality

of strawberry fruits
[90]

Tobacco Pseudomonas
syringae 10 µM

Increased the resistance by
suppressing the bacterium

about 10-fold
[19]

7. Regulation of Gene Expression

Gene expression is defined as a biological process which changes according to environmental
stimuli. Sometimes these environmental stimuli induce positive and negative gene expression which
further delimits the biological processes and production capacity of plants. Recently, various biological
gene regulators have been reported [69,137,138]. Here we discussed the melatonin role in regulating
and expressing gene activities in different plants under various stress conditions. Additionally,
an Arabidopsis mutant, SNAT, was subjected to cold stress, whose anthocyanin producing ability was
quite low compared to that of wild-type. However, after the application of exogenous melatonin,
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a restoration process was upheld due to the up-regulation of anthocyanin biosynthesis genes, which
confirmed that the melatonin improves plant growth via the induction of anthocyanin activities [27].
In another report, cucumber seeds primed with melatonin have been employed to the RNA-seq
approach. The study reported that 121 and 196 genes were up and down-regulated respectively.
Among them, genes responsible for carbohydrate metabolism, cell wall synthesis, and lateral root
formation were reported for exhibiting mix expression pattern [139]. The study made inroads for
further functional characterization of the genes involved in lateral root formation, other biological
processes and highlighted the all-important role of melatonin involvement in gene expression and
regulation. Besides that, a stability analysis of reference genes was performed for the anti-cancerous
medicinal plant Catharanthus roseus under exogenous melatonin treatment. The study confirmed
that EXP and EXPR were the most stable genes under melatonin treatment, which is important
for the future research in order to achieve an accurate expression pattern [140]. Melatonin is also
involved in regulating stress-specific genes. For example, the Arabidopsis plant under iron deficient
condition restored its tolerance to iron deficiency by regulating FIT1, FRO2, and IRT1 genes after
melatonin treatment [141]. The study confirmed that melatonin can increase the tolerance of the plant
to iron deficiency by upregulating the iron stress-specific genes. While in Apple, the exogenously
applied melatonin delayed leaf senescence by suppressing the chlorophyll degradation genes namely
senescence-associated gene 12 (SAG12) and AUXIN RESISTANT 3 (AXR3)/INDOLE-3-ACETIC ACID
INDUCIBLE 17 (IAA17) [122]. The same mechanism could be used for other stresses as well, though
no study has stated it so far. In another report, the melatonin significantly upregulated the expression
of CmSOD, CmPOD, and CmCAT and MYB, bHLH, WD40 genes in melon and cabbage under cold
and oxidative stress respectively [27,142]. The restoration of antioxidant enzymes activity is at the
center of this induced resistance by these several expressed genes reported in Table 5. Moreover, there
is a significant amount of study available on melatonin-induced gene expression, however, no study
has examined the role of melatonin in regulating the MLO clade V genes, which is responsible for
bringing susceptibility to powdery and downy mildew disease in different plants [143,144]. It could
be worth studying the effect of melatonin on these important economic fungal diseases and also the
genes responsible for their induction, as melatonin does show the potential of inducing resistance
against fungal diseases [14,136]. Furthermore, gene expression in different plant species regulated by
melatonin is listed in Table 5.

Table 5. Role of exogenous melatonin in regulating gene expression.

Crop Stress/Conditions Genes Expression Functions Reference

Arabidopsis thaliana Iron deficiency FIT1, FRO2,
IRT1 ↑ Increased plants tolerance to

Fe deficiency [141]

Arabidopsis thaliana Oxidative AtAPX1,
AtCATs ↑

Removed damaged protein
via the activation of

autophagy
[145]

Arabidopsis thaliana Heat HSFA2, HSA32 ↑
Activated thermotolerance
related genes in quadruple

knockout mutant
[23]

Apple Oxidative
stress

MdTDC1,
MdT5H4,

MdAANAT2,
and MdASMT1

↓

Slowing the decline in
chlorophyll concentrations,

restraining membrane damage
and lipid peroxidation

[146]

Cabbage Oxidative MYB, bHLH,
WD40 ↑

Enhanced anthocyanins
accumulation and increased

antioxidant activities.
[27]

Melon Cold
CmSOD,

CmPOD, and
CmCAT

↑
Recovered melon from cold
stress through regulation of

antioxidant activities
[142]
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Table 5. Cont.

Crop Stress/Conditions Genes Expression Functions Reference

Potato Salinity
SDP1, LACS6,
LACS7, and

ACX4
↑

Maintenance of PM
HC–ATPase activity and

KC/NaC homeostasis and
increase tolerance to

salinity stress

[114]

Peach Cold

PpAPX1,
PpAPX3,

PpAPX4, and
PpAPX7

↑

Activated the expression of
genes involved in ASA-GSH

cycle which improved
resistance to cold stress

[70]

Peony Fluctuating
light TDC ↑↓

Controls the production of
melatonin biosynthesis under

changing light spectrum
[30]

Rice OsARF,
OsSAUR ↑

Regulate rice root architecture
on auxin dependent signalling

manner
[58]

Tomato Salinity and
Heat

SlcAPX, SlGR1,
SlGST, and
SlPh-GPX

↑
Enhanced tolerance to

multiple stress by activating
antioxidant enzymes system

[122]

Watermelon Vanadium
Cla018095,
Cla009820,
Cla012125

↑ Improved chlorophyll content
and antioxidant activities [125]

Wheat Drought APX and
MDHAR4 ↑ Increase tolerance against

drought stress [127]

↑ showing up-regulation and ↓ down-regulation of the respective genes presented in the table.

8. Melatonin Defense Mechanism

The defense mechanism of melatonin continues to puzzle researchers as no definite defense
mechanism has been proposed so far. Nevertheless, there are many suggested mechanisms of
action. For example, the ability to scavenge H2O2 and the induction of antioxidant enzymes
activities by melatonin helps to recover plants from abiotic stresses [112,116,147]. In another report,
the melatonin was proposed to up-regulate the expression of heat shock protein (HSP) to mitigate
the high-temperature stress [92]. While for biotic stress, the melatonin was anticipated for activating
the NO and salicylic acid (SA) mediated defense signaling pathway by expressing the PR-protein
(pathogenesis-related protein) immediately [24,148]. Mitochondria are the main powerhouse for energy
production through aerobic respiration and play a key role in plant growth and development [149].
Additionally, mitochondria and chloroplast are referred to as the original site of melatonin synthesis
in plants [28]. In another study, mitochondria were pinpointed as a major generation site for NO
and ROS [150,151] and could be important in playing a key role in mitigating various stresses via
NO accumulation and ROS regulation [151–153]. Though, the mitochondria can be damaged due to
the over-production of ROS under environmental stresses [151]. However, melatonin was reported
to recover the damaged mitochondria [154]. Therefore, from the recent research reported, we have
proposed a new model of melatonin defense mechanism (Figure 1).

9. Approaches to Inducing Endogenous Melatonin Level

9.1. Transgenic Approaches to Inducing Endogenous Melatonin Level

The enzymes responsible for regulating the melatonin biosynthesis pathway has been successfully
overexpressed in various crops and showed good results by boosting the level of endogenous
melatonin. These enzymes include tryptophan decarboxylase (TDC), tryptamine5-hydroxylase,
arylalkylamine N-acetyltransferase (AANAT)/serotonin N-acetyltransferase, and N-acetylserotonin
methyltransferase/hydroxyindole-O-methyltransferase (HIOMT) [11,26,155–160]. In line with this,
Apple MZASMT1 overexpression in Arabidopsis increased the production of melatonin and enhanced
the resistance against drought stress by lowering the activity of ROS [161]. In another report, the
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tomato lines overexpressing the N-acetylserotonin methyltransferase (ASMT) gene improved the level
of endogenous melatonin. Additionally, it increased the cellular protection through the generation
of heat shock protein (HSP) and activation of autophagy to refold denatured proteins that triggered
heat resistance [92]. Moreover, the rice chloroplast caffeic acid O-methyltransferase COMT transgenic
lines produced a higher level of melatonin by regulating the 5-methoxytryptamine (5-MT) pathway,
which further resulted in improved seedling growth under continuous lighted environment [162].
Similarly, in tomato, the upregulation in COMT1 transcription factor occurred in the plants due to the
overexpression of the HsfA1a gene. Additionally, the induction of melatonin biosynthesis and resistance
against cadmium stress was also observed in the overexpressed plants [163]. The overexpression of
tryptophan decarboxylase 2 (MeTDC2)-interacting proteins, N-acetylserotonin O-methyltransferase 2
(MeASMT2) interacting proteins, and N-acetylserotonin O-methyltransferase 3 (MeASMT3) produced
more melatonin than any other enzyme in cassava protoplast. Furthermore, the co-overexpression
of these three enzymes with MeWRKY20/75 activated the MeWRKY20 and MeWRKY75 W-box
transcriptional activities along with the positive effect on endogenous melatonin level [36]. Taken
together, these findings suggested that the transgenic induction of the endogenous melatonin level
could be a useful and reliable approach to understand the mechanism of this important signaling
molecule in a plant system.

9.2. Some Other Strategies to Induce Endogenous Melatonin Level

Apart from the transgenic approach, there are other ways to induce the endogenous melatonin
level in plants. An Arabidopsis melatonin mutant was unable to tackle the avirulent pathogen due
to the decrease in melatonin level. However, exogenous melatonin recovers the plant defense
mechanism and restores resistance against a pathogen by recovering the endogenous melatonin
level [20]. In another study, the endophytic bacterium Pseudomonas fluorescens RG11 strain was
used successfully to induce endogenous melatonin level in grapes. The inoculated grape plants
showed resistance to salt stress by decreasing the reactive oxygen species burst and cell damage [164].
Similarly, the Bacillus amyloliquefaciens SB-9 endophytic bacterium strain from grapevine root promotes
the endogenous melatonin production and also ameliorates the adverse effect of salt and drought
stress via scavenging H2O2 activities [165]. Altogether, these environmentally friendly approaches of
inducing endogenous melatonin can be utilized against biotic and abiotic stresses in agronomic and
horticultural crops.

10. Conclusions

The plethora of research available about melatonin proves that it is an indispensable signaling
molecule. The plant produces melatonin endogenously and research showed that it is highly important
in maintaining plant growth and development. Additionally, the mitigation of abiotic and biotic
stresses makes it a more versatile molecule. Moreover, it significantly reduces the percentage of losses
during postharvest storage among different fruits and vegetables. Furthermore, the regulation of
gene expression and crosstalk with other phytohormones is another important factor of melatonin,
which contributes greatly to many plant biological processes under both normal and unfriendly
environmental conditions. However, the endogenously produced melatonin sometimes is not enough
to tackle harsh scenarios. For that reason, exogenous melatonin and some other approaches were
implemented to induce the level of endogenous melatonin in order to sustain plant immunity and
normal growth capacity. In addition, melatonin is considered as a nontoxic biodegradable molecule,
which could be used for the promotion of organic farming [166]. To sum up, melatonin showed great
importance across different plant science sectors; however, there is still no evidence available regarding
the use of melatonin against viruses, nematodes, or insects; this requires further investigation.
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